

A Circuit-Based Approach to Efficient Enumeration

Antoine Amarilli¹, Pierre Bourhis², Louis Jachiet³, Stefan Mengel⁴

December 6th, 2017

¹Télécom ParisTech

²CNRS CRIStAL

³Université Grenoble-Alpes

⁴CNRS CRIL

Problem statement

Input

• Problem: The output may be too large to compute efficiently

• Problem: The output may be too large to compute efficiently

Q knowledge compilation

Search

2/20

• Problem: The output may be too large to compute efficiently

Q knowledge compilation Search

Results 1 - 20 of 10,514

• Problem: The output may be too large to compute efficiently

Q knowledge compilation Search

Results 1 - 20 of 10,514

. . .

• Problem: The output may be too large to compute efficiently

Q knowledge compilation Search

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

• Problem: The output may be too large to compute efficiently

Q knowledge compilation Search

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

→ Solution: Enumerate solutions one after the other

Input

Currently:

Currently:

Currently:

- Directed acyclic graph of gates
- Output gate:
- Variable gates:

• Internal gates:

(¬)

- Directed acyclic graph of gates
- Outp •
- Varia

Inter •

• Valuation: function from variables to {0,1} Example: $\nu = \{ x \mapsto \mathbf{0}, y \mapsto \mathbf{1} \}$...

- Directed acyclic graph of gates
- Outp •
- Varia

Inter •

• Valuation: function from variables to {0,1} Example: $\nu = \{ x \mapsto \mathbf{0}, y \mapsto \mathbf{1} \}$...

- Directed acyclic graph of gates
- Outp •
- Varia

Inter •

• Valuation: function from variables to {0,1} Example: $\nu = \{ x \mapsto \mathbf{0}, y \mapsto \mathbf{1} \}$...

- Directed acyclic graph of gates
- Output gate
- Varia

Inter •

• Valuation: function from variables to {0,1} Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

- Directed acyclic graph of gates
- Output gate:
- Variable gates:

• Internal gates:

• Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

(\)

(¬)

Assignment: set of variables mapped to 1
 Example: S_ν = {y}; more concise than ν

- Directed acyclic graph of gates
- Output gate:
- Variable gates:

• Internal gates:

• Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

(\)

(¬)

Assignment: set of variables mapped to 1
 Example: S_ν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

Circuit restrictions

d-DNNF:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

Circuit restrictions

d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

The inputs are **independent** (= no variable *x* has a path to two different inputs)

d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

• () are all **decomposable**:

The inputs are **independent** (= no variable *x* has a path to two different inputs) v-tree: ∧-gates follow a tree on the variables

Theorem

Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** with preprocessing **linear in** |C| + |T| and delay **linear in each assignment**

Theorem

Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** with preprocessing **linear in** |C| + |T| and delay **linear in each assignment**

Also: restrict to assignments of constant size $k \in \mathbb{N}$ (at most k variables are set to 1):

Theorem

Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its satisfying assignments of size $\leq k$ with preprocessing linear in |C| + |T| and constant delay

Orde	m rs (O for sh	ort)	Dish (D	Dish (D for short)		or short)
customer	day	dish	dish	item	item	price
Elise	Monday	burger	burger	patty	patty	6
Elise	Friday	burger	burger	onion	onion	2
Steve	Friday	hotdog	burger	bun	bun	2
Joe	Friday	hotdog	hotdog	bun	sausage	4
			hotdog	onion		
			hotdog	sausage		

Consider the join of the above relations:

``	, ,,	<i>,</i> , (, ,, (· · · /
customer	day	dish	item	price
Elise	Monday	burger	patty	6
Elise	Monday	burger	onion	2
Elise	Monday	burger	bun	2
Elise	Friday	burger	patty	6
Elise	Friday	burger	onion	2
Elise	Friday	burger	bun	2

O(customer, day, dish), D(dish, item), I(item, price)

O(customer, day, dish), D(dish, item), I(item, price)					
customer	day	dish	item	price	
Elise	Monday	burger	patty	6	
Elise	Monday	burger	onion	2	
Elise	Monday	burger	bun	2	
Elise	Friday	burger	patty	6	
Elise	Friday	burger	onion	2	
Elise	Friday	burger	bun	2	

A relational algebra expression encoding the above query result is:

$\langle Elise \rangle$	×	$\langle Monday \rangle$	×	$\langle burger \rangle$	×	$\langle patty \rangle$	×	$\langle 6 \rangle$	U
$\langle \textit{Elise} \rangle$	×	$\langle Monday \rangle$	×	$\langle burger \rangle$	×	$\langle onion \rangle$	×	$\langle 2 \rangle$	U
$\langle Elise \rangle$	×	$\langle Monday \rangle$	×	$\langle burger \rangle$	×	$\langle bun \rangle$	×	$\langle 2 \rangle$	U
$\langle \textit{Elise} \rangle$	×	⟨ <i>Friday</i> ⟩	×	$\langle burger \rangle$	×	$\langle patty \rangle$	×	$\langle 6 \rangle$	U
$\langle \textit{Elise} \rangle$	×	⟨ <i>Friday</i> ⟩	×	$\langle burger \rangle$	×	$\langle onion \rangle$	×	$\langle 2 \rangle$	U
$\langle Elise \rangle$	×	(<i>Friday</i>)	×	(burger)	×	(bun)	×	$\langle 2 \rangle$	υ

- Decomposable: by definition (following the schema)
- Deterministic: we do not obtain the same tuple multiple times

- Decomposable: by definition (following the schema)
- Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015]) Given a deterministic factorized representation, we can enumerate its tuples with **linear preprocessing** and **constant delay**

Query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: a sentence in monadic second-order logic (MSO) • $P_{\odot}(x)$ means "x is blue"

• $x \rightarrow y$ means "x is the parent of y"

"Is there both a pink and a blue node?" $\exists x \ y \ P_{\odot}(x) \land P_{\odot}(y)$

Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of the tree T (the query Q is fixed)

(Slides courtesy of Pierre Bourhis)

Application 2: Query evaluation

- Compute the results (*a*, *b*, *c*) of a query *Q*(*x*, *y*, *z*) on a tree *T*
 - ightarrow Generalizes to **bounded-treewidth** databases

Application 2: Query evaluation

- Compute the results (a, b, c) of a query Q(x, y, z) on a tree T
 → Generalizes to bounded-treewidth databases
- Query given as a **deterministic tree automaton**
 - → Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.

Application 2: Query evaluation

- Compute the results (a, b, c) of a query Q(x, y, z) on a tree T
 → Generalizes to bounded-treewidth databases
- Query given as a **deterministic tree automaton**
 - \rightarrow Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.
- ightarrow We can construct a **d-DNNF** that describes the query results

- Compute the results (a, b, c) of a query Q(x, y, z) on a tree T \rightarrow Generalizes to bounded-treewidth databases
- Query given as a **deterministic tree automaton**
 - \rightarrow Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.
- ightarrow We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013]) For any constant $k \in \mathbb{N}$ and fixed MSO query Q, given a database D of treewidth $\leq k$, the results of Q on Dcan be enumerated with linear preprocessing in D and linear delay in each answer (\rightarrow constant delay for free first-order variables)

- Compute the results of a query on data that can be **updated**
- Goal: avoid running the linear preprocessing at each update
- Update complexity: time required to perform an update and reset the enumeration

- Compute the results of a query on data that can be **updated**
- Goal: avoid running the linear preprocessing at each update
- Update complexity: time required to perform an update and reset the enumeration

Type of updates:

- Relabel a tree node
 - $\rightarrow~$ On a treelike instance, add/remove a unary fact
- Insert and delete a tree leaf

Work	Data	Delay	Updates
-			

Work	Data	Delay	Updates
[Bagan, 2006],	trees	O(1)	N/A
[Kazana and Segoufin, 2013]			

Work	Data	Delay	Updates
[Bagan, 2006],	trees	O(1)	N/A
[Kazana and Segoufin, 2013]			
[Losemann and Martens, 2014]	words	$O(\log n)$	$O(\log n)$

Work	Data	Delay	Updates
[Bagan, 2006],	trees	O(1)	N/A
[Kazana and Segoufin, 2013]			
[Losemann and Martens, 2014]	words	$O(\log n)$	$O(\log n)$
[Losemann and Martens, 2014]	trees	$O(\log^2 n)$	$O(\log^2 n)$

Work	Data	Delay	Updates
[Bagan, 2006],	trees	O(1)	N/A
[Kazana and Segoufin, 2013]			
[Losemann and Martens, 2014]	words	$O(\log n)$	$O(\log n)$
[Losemann and Martens, 2014]	trees	$O(\log^2 n)$	$O(\log^2 n)$
[Niewerth and Segoufin, 2018]	words	<i>O</i> (1)	$O(\log n)$

Work	Data	Delay	Updates
[Bagan, 2006],	trees	O(1)	N/A
[Kazana and Segoufin, 2013]			
[Losemann and Martens, 2014]	words	$O(\log n)$	$O(\log n)$
[Losemann and Martens, 2014]	trees	$O(\log^2 n)$	$O(\log^2 n)$
[Niewerth and Segoufin, 2018]	words	<i>O</i> (1)	$O(\log n)$
[Amarilli, Bourhis, Mengel, 2018]	trees	<i>O</i> (1)	O(log n) for
			relabelings

Work	Data	Delay	Updates
[Bagan, 2006],	trees	O(1)	N/A
[Kazana and Segoufin, 2013]			
[Losemann and Martens, 2014]	words	$O(\log n)$	$O(\log n)$
[Losemann and Martens, 2014]	trees	$O(\log^2 n)$	$O(\log^2 n)$
[Niewerth and Segoufin, 2018]	words	<i>O</i> (1)	$O(\log n)$
[Amarilli, Bourhis, Mengel, 2018]	trees	O(1)	O(log n) for
			relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)

For any constant $k \in \mathbb{N}$ and fixed MSO query Q, given a database D of treewidth $\leq k$, the results of Q on Dcan be enumerated with linear preprocessing in D and linear delay in each answer (\rightarrow constant delay for free first-order variables) and logarithmic update time for relabelings

Proof techniques

Preprocessing phase:

Enumeration phase:

Normalized

circuit

Special zero-suppressed semantics for circuits:

Special zero-suppressed semantics for circuits:

- No NOT-gate
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup

Special zero-suppressed semantics for circuits: $\{\{y\}, \{z\}\}$ • No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup

Ζ

х

 $\{x, y\}, \{x, z\}\}$ Special zero-suppressed semantics for circuits: $\{y\}, \{z\}\}$ No NOT-gate

- Each gate captures a set of assignments
- **Bottom-up** definition with \times and \cup

{{x, z}} Special zero-suppressed semantics for circuits: {{y}, {z}} No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

{{x, z}} Special zero-suppressed semantics for circuits: {{y}, {z}} No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

Many **equivalent ways** to understand this:

- Generalization of **factorized representations**
- Analogue of **zero-suppressed** OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials
Zero-suppressed semantics

Special zero-suppressed semantics for circuits: z}}. No NOT-gate

- Each gate **captures** a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

Many **equivalent ways** to understand this:

- Generalization of factorized representations
- Analogue of zero-suppressed OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in \leq 2)

• This is where we use the **v-tree**

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

• Problem: quadratic blowup

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup
- Solution:
 - Order < on variables in the v-tree (x < y < z)
 - Interval [x, z]
 - Range gates to denote $\bigvee [x, z]$ in constant space

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup
- Solution:
 - Order < on variables in the v-tree (x < y < z)
 - Interval [x, z]
 - Range gates to denote $\bigvee [x, z]$ in constant space

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup
- Solution:
 - Order < on variables in the v-tree (x < y < z)
 - Interval [x, z]
 - Range gates to denote $\bigvee [x, z]$ in constant space
- $\rightarrow\,$ For MSO query evaluation: we can directly compute a circuit that captures the answers in zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (X) :

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

- Concatenation: enumerate S(g)and then enumerate S(g')
- Determinism: no duplicates

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

- Concatenation: enumerate S(g)and then enumerate S(g')
- Determinism: no duplicates

Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

Decomposability: no duplicates

• **Problem:** if
$$S(g) = \emptyset$$
 we waste time

- **Problem:** if $S(g) = \emptyset$ we waste time
- Solution: compute bottom-up if $S(g) = \emptyset$

• **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1
- → Now, traversing an AND-gate ensures that we make progress: it splits the assignments non-trivially

Normalization: handling OR-hierarchies

• **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)

Normalization: handling OR-hierarchies

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees
- For MSO query evaluation: upwards-deterministic circuit so we have a tree: simpler constant-memory index

- Hybrid circuits:
 - $\cdot (x)$ Set gates (zero-suppressed semantics)
 - α Boolean gates (usual semantics)
 - (\boxtimes) Product between the two (\rightarrow togglable wire)

- Hybrid circuits:
 - $\cdot (x)$ Set gates (zero-suppressed semantics)
 - **Boolean gates** (usual semantics)
 - (\boxtimes) **Product** between the two (\rightarrow togglable wire)
- Homogenization: transforms set gates into Boolean gates

- Hybrid circuits:
 - $\cdot (x)$ Set gates (zero-suppressed semantics)
 - **Boolean gates** (usual semantics)
 - (\boxtimes) **Product** between the two (\rightarrow togglable wire)
- Homogenization: transforms set gates into Boolean gates
- Reachability index for OR-hierarchies: trees with updates

- Hybrid circuits:
 - $\cdot (x)$ Set gates (zero-suppressed semantics)
 - **Boolean gates** (usual semantics)
 - (\boxtimes) **Product** between the two (\rightarrow togglable wire)
- Homogenization: transforms set gates into Boolean gates
- Reachability index for OR-hierarchies: trees with updates
- Use balancing lemma to make the input tree balanced

Conclusion

Summary and conclusion

- Enumerate the satisfying assignments of structured d-DNNFs
 - \rightarrow in delay linear in each assignment
 - $\rightarrow~{\rm in}~{\rm constant}$ delay for constant Hamming weight
- \rightarrow Can recapture existing enumeration results
- $\rightarrow\,$ Useful <code>general-purpose</code> result for applications

Summary and conclusion

- Enumerate the satisfying assignments of structured d-DNNFs
 - \rightarrow in delay **linear** in each assignment
 - $\rightarrow~{\rm in}~{\rm constant}$ delay for constant Hamming weight
- \rightarrow Can recapture existing enumeration results
- \rightarrow Useful **general-purpose** result for applications

Future work:

- Practice: implement the technique with automata
- Improvements: enumerate in order? (e.g., of increasing weight?)
- Updates: support insertions/deletions?

Summary and conclusion

- Enumerate the satisfying assignments of structured d-DNNFs
 - \rightarrow in delay linear in each assignment
 - $\rightarrow~{\rm in}~{\rm constant}$ delay for constant Hamming weight
- \rightarrow Can recapture existing enumeration results
- \rightarrow Useful general-purpose result for applications

Future work:

- Practice: implement the technique with automata
- Improvements: enumerate in order? (e.g., of increasing weight?)
- Updates: support insertions/deletions?

Thanks for your attention!

References i

Amarilli, A., Bourhis, P., and Mengel, S. (2018). **Enumeration on Trees under Relabelings.** In *ICDT*. To appear.

📔 Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay.

In CSL.

Kazana, W. and Segoufin, L. (2013).

Enumeration of monadic second-order queries on trees. *TOCL*, 14(4).

References ii

	1	ĩ

Losemann, K. and Martens, W. (2014).

MSO queries on trees: enumerating answers under updates. In CSL-LICS.

Niewerth, M. and Segoufin, L. (2018).

Enumeration of MSO queries on strings with constant delay and logarithmic updates.

In PODS.

To appear.

Olteanu, D. and Závodnỳ, J. (2015).

Size bounds for factorised representations of query results. *TODS*, 40(1).