
A Circuit-Based Approach to E�cient Enumeration

Antoine Amarilli1, Pierre Bourhis2, Louis Jachiet3, Stefan Mengel4

December 6th, 2017
1Télécom ParisTech

2CNRS CRIStAL

3Université Grenoble-Alpes

4CNRS CRIL

1/20

Problem statement

Problem: Enumerating large result sets

Input

Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/20

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/20

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/20

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/20

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/20

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/20

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/20

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other

2/20

Problem: Enumerating large result sets

Input Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other
2/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input)

Indexed
input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c

a b’ c
a’ b’ c

Results

State

010001

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c

a b’ c

a’ b’ c

Results

State

01100111

3/20

Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c

a’ b’ c

Results

State

⊥

3/20

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/20

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/20

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/20

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/20

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/20

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

4/20

General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit

Input Compilation

∨

¬

x

∧

z

Circuit
∨

¬

x

∧

z

Circuit Enumeration

A B C

a b c
a b’ c

Results
4/20

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/20

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/20

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/20

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/20

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/20

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/20

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

5/20

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

6/20

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

6/20

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

6/20

Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|+ |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C|+ |T| and constant delay

7/20

Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|+ |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C|+ |T| and constant delay

7/20

Application 1: Factorized databases

(Slides courtesy of Dan Olteanu)

• Decomposable: by de�nition (following the schema)
• Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/20

Application 1: Factorized databases

(Slides courtesy of Dan Olteanu)

• Decomposable: by de�nition (following the schema)
• Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/20

Application 1: Factorized databases

(Slides courtesy of Dan Olteanu)

∪
× ×

〈burger〉 〈hotdog〉 ∪

× × ×

〈bun〉 〈onion〉 〈saus.〉

〈2〉 〈2〉 〈4〉

∪

×

〈Fri〉∪

〈Joe〉 〈Steve〉

∪

× × ×

〈patty〉 〈bun〉 〈onion〉

〈6〉 〈2〉 〈2〉

∪

×

〈Fri〉

〈Elise〉

×

〈Mon〉

〈Elise〉

• Decomposable: by de�nition (following the schema)
• Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/20

Application 1: Factorized databases

(Slides courtesy of Dan Olteanu)

∨
∧ ∧

〈burger〉 〈hotdog〉 ∨

∧ ∧ ∧

〈bun〉 〈onion〉 〈saus.〉

〈2〉 〈2〉 〈4〉

∨

∧

〈Fri〉∨

〈Joe〉 〈Steve〉

∨

∧ ∧ ∧

〈patty〉 〈bun〉 〈onion〉

〈6〉 〈2〉 〈2〉

∨

∧

〈Fri〉

〈Elise〉

∧

〈Mon〉

〈Elise〉

• Decomposable: by de�nition (following the schema)
• Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/20

Application 1: Factorized databases

∨
∧ ∧

〈burger〉 〈hotdog〉 ∨

∧ ∧ ∧

〈bun〉 〈onion〉 〈saus.〉

〈2〉 〈2〉 〈4〉

∨

∧

〈Fri〉∨

〈Joe〉 〈Steve〉

∨

∧ ∧ ∧

〈patty〉 〈bun〉 〈onion〉

〈6〉 〈2〉 〈2〉

∨

∧

〈Fri〉

〈Elise〉

∧

〈Mon〉

〈Elise〉

• Decomposable: by de�nition (following the schema)
• Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/20

Application 1: Factorized databases

∨
∧ ∧

〈burger〉 〈hotdog〉 ∨

∧ ∧ ∧

〈bun〉 〈onion〉 〈saus.〉

〈2〉 〈2〉 〈4〉

∨

∧

〈Fri〉∨

〈Joe〉 〈Steve〉

∨

∧ ∧ ∧

〈patty〉 〈bun〉 〈onion〉

〈6〉 〈2〉 〈2〉

∨

∧

〈Fri〉

〈Elise〉

∧

〈Mon〉

〈Elise〉

• Decomposable: by de�nition (following the schema)
• Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/20

Application 2: Query evaluation

(Slides courtesy of Pierre Bourhis)

• Compute the results (a,b, c) of a query Q(x, y, z) on a tree T
→ Generalizes to bounded-treewidth databases

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/20

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a tree T
→ Generalizes to bounded-treewidth databases

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/20

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a tree T
→ Generalizes to bounded-treewidth databases

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/20

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a tree T
→ Generalizes to bounded-treewidth databases

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/20

Application 2: Query evaluation

• Compute the results (a,b, c) of a query Q(x, y, z) on a tree T
→ Generalizes to bounded-treewidth databases

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)

9/20

Application 2bis: Query evaluation under relabelings NEW
!

• Compute the results of a query on data that can be updated
• Goal: avoid running the linear preprocessing at each update
• Update complexity: time required to perform an update
and reset the enumeration

Type of updates:

• Relabel a tree node
→ On a treelike instance, add/remove a unary fact

• Insert and delete a tree leaf

10/20

Application 2bis: Query evaluation under relabelings NEW
!

• Compute the results of a query on data that can be updated
• Goal: avoid running the linear preprocessing at each update
• Update complexity: time required to perform an update
and reset the enumeration

Type of updates:

• Relabel a tree node
→ On a treelike instance, add/remove a unary fact

• Insert and delete a tree leaf

10/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] words O(log n) O(log n)
[Losemann and Martens, 2014] trees O(log2 n) O(log2 n)
[Niewerth and Segou�n, 2018] words O(1) O(log n)
[Amarilli, Bourhis, Mengel, 2018] trees O(1) O(log n) for

relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
and logarithmic update time for relabelings

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] words O(log n) O(log n)
[Losemann and Martens, 2014] trees O(log2 n) O(log2 n)
[Niewerth and Segou�n, 2018] words O(1) O(log n)
[Amarilli, Bourhis, Mengel, 2018] trees O(1) O(log n) for

relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
and logarithmic update time for relabelings

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] words O(log n) O(log n)

[Losemann and Martens, 2014] trees O(log2 n) O(log2 n)
[Niewerth and Segou�n, 2018] words O(1) O(log n)
[Amarilli, Bourhis, Mengel, 2018] trees O(1) O(log n) for

relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
and logarithmic update time for relabelings

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] words O(log n) O(log n)
[Losemann and Martens, 2014] trees O(log2 n) O(log2 n)

[Niewerth and Segou�n, 2018] words O(1) O(log n)
[Amarilli, Bourhis, Mengel, 2018] trees O(1) O(log n) for

relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
and logarithmic update time for relabelings

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] words O(log n) O(log n)
[Losemann and Martens, 2014] trees O(log2 n) O(log2 n)
[Niewerth and Segou�n, 2018] words O(1) O(log n)

[Amarilli, Bourhis, Mengel, 2018] trees O(1) O(log n) for
relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
and logarithmic update time for relabelings

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] words O(log n) O(log n)
[Losemann and Martens, 2014] trees O(log2 n) O(log2 n)
[Niewerth and Segou�n, 2018] words O(1) O(log n)
[Amarilli, Bourhis, Mengel, 2018] trees O(1) O(log n) for

relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
and logarithmic update time for relabelings

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] words O(log n) O(log n)
[Losemann and Martens, 2014] trees O(log2 n) O(log2 n)
[Niewerth and Segou�n, 2018] words O(1) O(log n)
[Amarilli, Bourhis, Mengel, 2018] trees O(1) O(log n) for

relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
and logarithmic update time for relabelings 11/20

Proof techniques

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

12/20

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

12/20

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

12/20

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

12/20

Proof overview

Preprocessing phase:
∨

¬

x

∧

z

Circuit

zy

x

v-tree

Translation
(linear-time)

∨

∧

x z

Circuit
in zero-

suppressed
semantics

Normalization
(linear-time)

∧

x z

Normalized
circuit

Enumeration phase:
∧

x z

Normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

12/20

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}

Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Analogue of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

Simpli�cation: rewrite circuits to arity-two (fan-in ≤ 2)

13/20

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}

Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Analogue of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

Simpli�cation: rewrite circuits to arity-two (fan-in ≤ 2)

13/20

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}

Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Analogue of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

Simpli�cation: rewrite circuits to arity-two (fan-in ≤ 2)

13/20

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}
Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Analogue of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

Simpli�cation: rewrite circuits to arity-two (fan-in ≤ 2)

13/20

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}
Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets

Many equivalent ways to understand this:

• Generalization of factorized representations
• Analogue of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

Simpli�cation: rewrite circuits to arity-two (fan-in ≤ 2)

13/20

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}
Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Analogue of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

Simpli�cation: rewrite circuits to arity-two (fan-in ≤ 2)

13/20

Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}
Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Analogue of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

Simpli�cation: rewrite circuits to arity-two (fan-in ≤ 2)
13/20

Translating to zero-suppressed semantics

• This is where we use the v-tree

• Add explicitly untested variables
(smoothing)

zy

x

∧

x z

∨

y ∧

∧

∨

x ∧

∨

y ∧

∨

z ∧

∨
[x, z]

• Problem: quadratic blowup
• Solution:

• Order < on variables in the v-tree
(x < y < z)

• Interval [x, z]
• Range gates to denote

∨
[x, z]

in constant space

→ For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20

Translating to zero-suppressed semantics

• This is where we use the v-tree
• Add explicitly untested variables
(smoothing)

zy

x

∧

x z

∨

y ∧

∧

∨

x ∧

∨

y ∧

∨

z ∧

∨
[x, z]

• Problem: quadratic blowup
• Solution:

• Order < on variables in the v-tree
(x < y < z)

• Interval [x, z]
• Range gates to denote

∨
[x, z]

in constant space

→ For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20

Translating to zero-suppressed semantics

• This is where we use the v-tree
• Add explicitly untested variables
(smoothing)

zy

x

∧

x z∨

y ∧

∧

∨

x ∧

∨

y ∧

∨

z ∧

∨
[x, z]

• Problem: quadratic blowup
• Solution:

• Order < on variables in the v-tree
(x < y < z)

• Interval [x, z]
• Range gates to denote

∨
[x, z]

in constant space

→ For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20

Translating to zero-suppressed semantics

• This is where we use the v-tree
• Add explicitly untested variables
(smoothing)

zy

x

∧

x z∨

y ∧

∧

∨

x ∧

∨

y ∧

∨

z ∧

∨
[x, z]

• Problem: quadratic blowup

• Solution:
• Order < on variables in the v-tree
(x < y < z)

• Interval [x, z]
• Range gates to denote

∨
[x, z]

in constant space

→ For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20

Translating to zero-suppressed semantics

• This is where we use the v-tree
• Add explicitly untested variables
(smoothing)

zy

x

∧

x z∨

y ∧

∧

∨

x ∧

∨

y ∧

∨

z ∧

∨
[x, z]

• Problem: quadratic blowup
• Solution:

• Order < on variables in the v-tree
(x < y < z)

• Interval [x, z]
• Range gates to denote

∨
[x, z]

in constant space

→ For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20

Translating to zero-suppressed semantics

• This is where we use the v-tree
• Add explicitly untested variables
(smoothing)

zy

x

∧

x z∨

y ∧

∧

∨

x ∧

∨

y ∧

∨

z ∧

∨
[x, z]

• Problem: quadratic blowup
• Solution:

• Order < on variables in the v-tree
(x < y < z)

• Interval [x, z]
• Range gates to denote

∨
[x, z]

in constant space

→ For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20

Translating to zero-suppressed semantics

• This is where we use the v-tree
• Add explicitly untested variables
(smoothing)

zy

x

∧

x z∨

y ∧

∧

∨

x ∧

∨

y ∧

∨

z ∧

∨
[x, z]

• Problem: quadratic blowup
• Solution:

• Order < on variables in the v-tree
(x < y < z)

• Interval [x, z]
• Range gates to denote

∨
[x, z]

in constant space

→ For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x :

enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates
15/20

Normalization: handling ∅

∧

∧

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: compute bottom-up if S(g) = ∅

16/20

Normalization: handling ∅

∧

∧

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: compute bottom-up if S(g) = ∅

16/20

Normalization: handling ∅

∧

∧

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: compute bottom-up if S(g) = ∅

16/20

Normalization: handling ∅

∧

∧

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: compute bottom-up if S(g) = ∅

16/20

Normalization: handling ∅

∧

∧

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: compute bottom-up if S(g) = ∅

16/20

Normalization: handling ∅

∧

∧

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: compute bottom-up if S(g) = ∅

16/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:

• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates

• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates

• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20

Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20

Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20

Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20

Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20

Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20

Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20

What’s new for updates?

∪
� �

α

∪ ¬
α

∪
� � � �
¬

β x
¬

γ y β x γ y

• Hybrid circuits:
• x Set gates (zero-suppressed semantics)
• α Boolean gates (usual semantics)
• � Product between the two (→ togglable wire)

• Homogenization: transforms set gates into Boolean gates
• Reachability index for OR-hierarchies: trees with updates
• Use balancing lemma to make the input tree balanced

19/20

What’s new for updates?

∪
� �

α

∪ ¬
α

∪
� � � �
¬

β x
¬

γ y β x γ y

• Hybrid circuits:
• x Set gates (zero-suppressed semantics)
• α Boolean gates (usual semantics)
• � Product between the two (→ togglable wire)

• Homogenization: transforms set gates into Boolean gates

• Reachability index for OR-hierarchies: trees with updates
• Use balancing lemma to make the input tree balanced

19/20

What’s new for updates?

∪
� �

α

∪ ¬
α

∪
� � � �
¬

β x
¬

γ y β x γ y

• Hybrid circuits:
• x Set gates (zero-suppressed semantics)
• α Boolean gates (usual semantics)
• � Product between the two (→ togglable wire)

• Homogenization: transforms set gates into Boolean gates
• Reachability index for OR-hierarchies: trees with updates

• Use balancing lemma to make the input tree balanced

19/20

What’s new for updates?

∪
� �

α

∪ ¬
α

∪
� � � �
¬

β x
¬

γ y β x γ y

• Hybrid circuits:
• x Set gates (zero-suppressed semantics)
• α Boolean gates (usual semantics)
• � Product between the two (→ togglable wire)

• Homogenization: transforms set gates into Boolean gates
• Reachability index for OR-hierarchies: trees with updates
• Use balancing lemma to make the input tree balanced

19/20

Conclusion

Summary and conclusion

• Enumerate the satisfying assignments of structured d-DNNFs
→ in delay linear in each assignment
→ in constant delay for constant Hamming weight

→ Can recapture existing enumeration results
→ Useful general-purpose result for applications

Future work:

• Practice: implement the technique with automata
• Improvements: enumerate in order? (e.g., of increasing weight?)
• Updates: support insertions/deletions?

Thanks for your attention!

20/20

Summary and conclusion

• Enumerate the satisfying assignments of structured d-DNNFs
→ in delay linear in each assignment
→ in constant delay for constant Hamming weight

→ Can recapture existing enumeration results
→ Useful general-purpose result for applications

Future work:

• Practice: implement the technique with automata
• Improvements: enumerate in order? (e.g., of increasing weight?)
• Updates: support insertions/deletions?

Thanks for your attention!

20/20

Summary and conclusion

• Enumerate the satisfying assignments of structured d-DNNFs
→ in delay linear in each assignment
→ in constant delay for constant Hamming weight

→ Can recapture existing enumeration results
→ Useful general-purpose result for applications

Future work:

• Practice: implement the technique with automata
• Improvements: enumerate in order? (e.g., of increasing weight?)
• Updates: support insertions/deletions?

Thanks for your attention!

20/20

References i

Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on Trees under Relabelings.
In ICDT.
To appear.

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Kazana, W. and Segou�n, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).

https://arxiv.org/abs/1709.06185
https://edbticdt2018.at/
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References ii

Losemann, K. and Martens, W. (2014).
MSO queries on trees: enumerating answers under updates.
In CSL-LICS.
Niewerth, M. and Segou�n, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
To appear.

Olteanu, D. and Závodnỳ, J. (2015).
Size bounds for factorised representations of query results.
TODS, 40(1).

http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf

	Problem statement
	Proof techniques
	Conclusion
	Appendix

