UNIVERSITE
¢ Grenoble TSN
= Alpes

TELECOM
~C

i il

A Circuit-Based Approach to Efficient Enumeration

cr il

Antoine Amarilli’, Pierre Bourhis?, Louis Jachiet3, Stefan Mengel“
December 6th, 2017

1Télécom ParisTech
2CNRS CRIStAL
3Université Grenoble-Alpes

4CNRS CRIL

1/20

Problem statement

Problem: Enumerating large result sets

Input

Problem: Enumerating large result sets

Input Algorithm

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

2/20

Problem: Enumerating large result sets

Vo Yo | B
O oco|lw
[g]

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

2/20

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

2/20

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

2/20

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

2/20

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

2/20

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Solution: Enumerate solutions one after the other

2/20

Enumeration algorithm

2

Input

Enumeration algorithm

Step 1
— Indexing

Input | in O(input)

Enumeration algorithm

Step 1 IE.
—| Indexing |»
in O(input)| Indexed
Input (input) input

Enumeration algorithm

Step 1 IE. Step 2:
— Indexing |» —| Enumeration
in O(input)| Indexed in O(result
Input (p) input ()

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

Indexed

input

Step 2:
Enumeration
in O(result)

Results

Enumeration algorithm

A B C
Step 1: IE. Step 2: a b ¢
— Indexing |» —| Enumeration >
in O(input)| Indexed in O(result
|nput (p) mput ()
Results
0011
mw -

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

N

Step 2:
Enumeration
in O(result)

L 2

A B C
a b ¢
Results

3/20

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

N

Step 2:
Enumeration
in O(result)

010001

h— 1

State

>
il —

Results

3/20

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

N

Step 2:
Enumeration
in O(result)

01100111

h— 1

State

>
il —

L 2

Results

3/20

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

N

Step 2:
Enumeration
in O(result)

L 2

Results

3/20

General idea for enumeration

Currently:

>
w
o

o o
o o
o n

AR a H
Input | Enumeration| Results

4/20

General idea for enumeration

Currently:

ol

o o
o o
o n

SR —
Input | Enumeration| Results

>
w
o

[
o o
o n

7 —
Input Enumeration | Results

4120

General idea for enumeration

Currently:

>
w
o

fodn

oy
Input | Enumeration| Results

o o
o o
o n

A B C
a b c
—_— ? a b ¢

Input Enumeration | Results

codns
:ﬁ;:(ﬁz —

Input [Enumeration| Resuylts

o | >
o o|w
a0 |a

4120

General idea for enumeration

Currently:

A B C

a b ¢

— a b ¢
Results

A B C

a b ¢

— a b oc
Input Enumeration | Results

f‘z"& A B C

= B
Input [Enumeration| Resuylts

Input

Compilation ONG
Circuit

4/20

General idea for enumeration

Currently:

A B C

a b ¢

— a b ¢
Results

A B C

a b ¢

— a b oc
Input Enumeration | Results

ﬁ"& A B C

= B
Input Enumeration | Results

Input

Input

RO
5]

Compilation

Circuit

4/20

General idea for enumeration

Currently:

A B C

a b ¢

_)a b ¢

Results

A B C

a b ¢

_)a b ¢

Input Enumeration | Results
A B C

= 8
Input [Enumeration| Resuylts

RO
5]

Compilation

X ”

LA]
POS
s

Compilation

Circuit

4/20

General idea for enumeration

Currently:

‘:){:){: A B C

e O —
Input | Enumeration| Results

ﬁ)ﬂ: A B C

— S
Input Enumeration | Results

ﬁ"& A B C

= 8 -
Input [Enumeration| Resuylts

Input
- &
Input Compilation
Compilation
A B C
i?ﬁ —
Enumeration| Results

Circuit

e Directed acyclic graph of gates
@ Output gate: @
Variable gates: @
Internal gates: @ @ @

5/20

Boolean circuits

e Directed acyclic graph of gates

@ e QOutput gate: @

» Variable gates: @
e o Internal gates: @ @ @

* Valuation: function from variables to {0, 1}

Example: v = {x+— 0, y — 1}..
OO

5/20

Boolean circuits

e Directed acyclic graph of gates

e Output gate: @
» Variable gates: @
e o Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}..

5/20

Boolean circuits

e Directed acyclic graph of gates

e Output gate: @
» Variable gates: @
e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}..

5/20

Boolean circuits

Directed acyclic graph of gates

Output gate: @
Variable gates: @
Internal gates: @ @ @

Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}.. mapped to 1

5/20

Boolean circuits

 Directed acyclic graph of gates

* Output gate: @
» Variable gates: @
e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}.. mapped to 1

» Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

5/20

Boolean circuits

e Directed acyclic graph of gates

@ e QOutput gate: @

» Variable gates: @
e o Internal gates: @ @ @

* Valuation: function from variables to {0, 1}

° 0 Example: v = {x+— 0, y — 1}.. mapped to 1
» Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

’ Our task: Enumerate all satisfying assignments of an input circuit

5/20

Circuit restrictions

d-DNNF:

. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

6/20

Circuit restrictions

d-DNNF:

. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

6/20

Circuit restrictions

d-DNNF: v-tree: A-gates follow a tree

on the variables
. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

6/20

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

7/20

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k € N
(at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size < R
with preprocessing linear in |C| + |T| and constant delay

7/20

Application 1: Factorized databases

Orders (O for short) Dish (D for short) Items (I for short)
customer day dish dish item item price
Elise = Monday burger burger patty patty 6
Elise Friday burger burger onion onion 2
Steve Friday hotdog burger bun bun 2
Joe Friday hotdog hotdog bun sausage 4

hotdog onion

hotdog sausage

Consider the join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise = Monday burger patty 6
Elise Monday burger onion 2
Elise = Monday burger bun 2
Elise Friday burger patty 6
Elise Friday ~ burger onion 2
Elise Friday burger bun 2

(Slides courtesy of Dan Olteanu)

8/20

Application 1: Factorized databases

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty 6
Elise Monday burger onion 2
Elise =~ Monday burger bun 2
Elise Friday burger patty 6
Elise Friday burger onion 2

2

Elise Friday burger bun

A relational algebra expression encoding the above query result is:

(Elise) X (Monday) X (burger) X (patty) X (6) U
(Elise) X (Monday) X (burger) X onion X 2 6]
(Elise) X (Monday) X (burger) X (bun) X (2) U
(Elise) X (Friday) X (burger) X (patty) X (6) U
(Elise) X (Friday) X (burger) X onion X 2 u
(Elise) X (Friday) X (burger) X (bun) X (2) U..

(Slides courtesy of Dan Olteanu)

8/20

Application 1: Factorized databases

x / I X
/ \ \ // \
U (burger) U U hotdog) U
X X X X X X X X X
\ \ AN AN \ AN AN N AN
(Mon) (Friy | (patty) | (bun) U (Fri) (bun) (saus.)
/N
(Elise)y (Elise) (6) (2) (Joe) (Steve) (2) (&)

(Slides courtesy of Dan Olteanu)

8/20

Application 1: Factorized databases

(Elise)y (Elise) (6) (2) (Joe) (Steve) (2) (&)

(Slides courtesy of Dan Olteanu)

8/20

Application 1: Factorized databases

(Elise)y (Elise) (6) (2) (Joe) (Steve) (2) (&)

« Decomposable: by definition (following the schema)
» Deterministic: we do not obtain the same tuple multiple times

8/20

Application 1: Factorized databases

(Elise)y (Elise) (6) (2) (Joe) (Steve) (2) (&)

« Decomposable: by definition (following the schema)
» Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Zavodny, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/20

Application 2: Query evaluation

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet O O O

Query Q: a sentence in monadic “Is there both a
second-order logic (MSO) pink and a blue

e Po(x) means “x is blue” node?”

e x — y means “x is the parent of y" Ixy Po(x) A Po(y)

Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of the tree T
(the query Q is fixed)

(Slides courtesy of Pierre Bourhis)

9/20

Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on atree T
— Generalizes to bounded-treewidth databases

9/20

Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on atree T
— Generalizes to bounded-treewidth databases

e Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

9/20

Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on atree T
— Generalizes to bounded-treewidth databases

e Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

9/20

Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on atree T
— Generalizes to bounded-treewidth databases

e Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013])
For any constant k € N and fixed MSO query Q,

given a database D of treewidth < R, the results of Q on D

can be enumerated with linear preprocessing in D and linear delay
in each answer (— constant delay for free first-order variables)

9/20

Application 2bis: Query evaluation under relabelings

e Compute the results of a query on data that can be updated
e Goal: avoid running the linear preprocessing at each update

e Update complexity: time required to perform an update
and reset the enumeration

10/20

Application 2bis: Query evaluation under relabelings %

e Compute the results of a query on data that can be updated
e Goal: avoid running the linear preprocessing at each update

e Update complexity: time required to perform an update
and reset the enumeration

Type of updates:

e Relabel a tree node
— On a treelike instance, add/remove a unary fact

e |nsert and delete a tree leaf

10/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006, trees 0(1) N/A
[Kazana and Segoufin, 2013]

11/20

Application 2bis: Query evaluation under relabelings (results)

Work

Data Delay Updates
[Bagan, 2006, trees 0(1) N/A
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014] ~ words O(logn) O(logn)

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates
[Bagan, 2006, trees 0(1) N/A
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] ~ words O(logn) O(logn)
[Losemann and Martens, 2014] ~ trees O(log?n) O(log? n)

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates
[Bagan, 2006, trees 0(1) N/A
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] ~ words O(logn) O(logn)
[Losemann and Martens, 2014] ~ trees O(log?n) O(log? n)
[Niewerth and Segoufin, 2018] words O(1) O(log n)

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006], trees 0(1) N/A

[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] ~ words O(logn) O(logn)

[Losemann and Martens, 2014] trees O(

[Niewerth and Segoufin, 2018] words O(1) 0]

[Amarilli, Bourhis, Mengel, 2018] trees O(
relabelings

11/20

Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006], trees 0(1) N/A

[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] ~ words O(logn) O(logn)

[Losemann and Martens, 2014] ~ trees O(log?n) O(log? n)

[Niewerth and Segoufin, 2018] words O((

[Amarilli, Bourhis, Mengel, 2018] trees O((
relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)

For any constant k € N and fixed MSO query Q,

given a database D of treewidth < R, the results of Q on D

can be enumerated with linear preprocessing in D and linear delay

in each answer (— constant delay for free first-order variables)

and logarithmic update time for relabelings 11/20

Proof techniques

Proof overview

Preprocessing phase:

v-tree

Proof overview

Preprocessing phase:

©
@
- : Y ® @
it mararol o
I\ in zero-
y/\z suppressed

v-tree semantics

Proof overview

Preprocessing phase:

Normalization
(linear-time)

©
@
! - ® @
Circuit Translation o
(linear-time) Circuit =
N in zero-
y/\z suppressed
v-tree semantics

b

Normalized
circuit

12/20

Proof overview

Preprocessing phase:

@)
@,

Circuit

Translation

(linear-time)

®» @
— Circuit =

Normalization
(linear-time)

in zero-

AN

N\

y z
v-tree

Enumeration phase:

©
Normalized
circuit

suppressed
semantics

b

Normalized
circuit

Proof overview

Preprocessing phase:

Circuit ™ Translation o Normalization (ﬁa
- - — Circuit = . . — .
A (linear-time) ero (linear-time) | Normalized
A circuit
P suppressed
v-tree semantics

Enumeration phase:

d@b Enumeration A B C
. a b ¢
. 3 (linear delay > v«
Normalized)
o in each result) Results
circuit

12/20

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:

13/20

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:
° 0 « No NOT-gate
0 a e Each gate captures a set of assignments

e Bottom-up definition with x and U

13/20

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:
O {{y}’{z}}- No NOT-gate
0 a e Each gate captures a set of assignments

e Bottom-up definition with x and U

13/20

Zero-suppressed semantics

{ovhA{xzt _ -
@ Special zero-suppressed semantics for circuits:
iz, No NOT-gate

» Each gate captures a set of assignments
e Bottom-up definition with x and U

13/20

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

» Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

13/20

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
« Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

13/20

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
« Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in < 2)

13/20

Translating to zero-suppressed semantics

e This is where we use the v-tree /\
X /\
y z

14/20

Translating to zero-suppressed semantics

(smoothing)

* This is where we use the v-tree /\
» Add explicitly untested variables X /\
y z

14/20

Translating to zero-suppressed semantics

e This is where we use the v-tree /\ °
» Add explicitly untested variables X /\ ° 0 a
(smoothing) vy 0 @

14/20

Translating to zero-suppressed semantics

* This is where we use the v-tree /\
» Add explicitly untested variables ° 0 a

(smoothing) y i 0 @

° * Problem: quadratic blowup

Translating to zero-suppressed semantics

e This is where we use the v-tree /\
» Add explicitly untested variables ° 0 a

(smoothing) y i 0 @

° * Problem: quadratic blowup
» Solution:
0 0 0 - Order < on variables in the v-tree
x<y<2z)

HOOOOO i

- Range gates to denote \/[x, Z]
in constant space

14/20

Translating to zero-suppressed semantics

* This is where we use the v-tree /\
» Add explicitly untested variables ° 0 a

(smoothing) y i 0 @

° e Problem: quadratic blowup
» Solution:
- Order < on variables in the v-tree
x<y<2z)
- Interval [x, Z]
- Range gates to denote \/[x, Z]
in constant space

14/20

Translating to zero-suppressed semantics

e This is where we use the v-tree /\
» Add explicitly untested variables ° 0 a

(smoothing) y i 0 @

° e Problem: quadratic blowup
» Solution:
- Order < on variables in the v-tree
x<y<2z)
- Interval [x, Z]
- Range gates to denote \/[x, Z]
in constant space

— For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ :

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate

ol

g g
Concatenation: enumerate S(g)
and then enumerate S(g’)

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate
g el

Concatenation: enumerate S(g)
and then enumerate S(g’)

Determinism: no duplicates

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate

ol Jol

g g’ g9 g
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)

and then enumerate S(g’) and for each result t enumerate S(g’)

. . and concatenate t with each result
Determinism: no duplicates

15/20

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate
g g’ g9 g
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)
and then enumerate S(g’) and for each result t enumerate S(g’)

.. . and concatenate t with each result
Determinism: no duplicates

Decomposability: no duplicates

15/20

Normalization: handling ()

16/20

Normalization: handling ()

{1 R0

16/20

Normalization: handling ()

16/20

Normalization: handling ()

16/20

Normalization: handling ()

» Problem: if S(g) = () we waste time

16/20

Normalization: handling ()

» Problem: if S(g) = () we waste time

* Solution: compute bottom-up if S(g) = 0

16/20

Normalization: handling empty assignments

17/20

Normalization: handling empty assignments

17/20

Normalization: handling empty assignments

17/20

Normalization: handling empty assignments

17/20

Normalization: handling empty assignments

17/20

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

17/20

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{1 in chains of AND-gates
* Solution:

17/20

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{1 in chains of AND-gates
* Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

17/20

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{{}} in chains of AND-gates

* Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
- remove inputs with S(g) = {{}} for AND-gates

17/20

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

* Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
- remove inputs with S(g) = {{}} for AND-gates

17/20

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

* Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X3 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

17/20

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{{x}} in chains of AND-gates

* Solution:
{{x}} - split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
X3 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

17/20

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

» Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
X3 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

— Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

17/20

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies

g
1 to find a reachable exit (non-OR gate)

9y

9> gs

18/20

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies

g
1 to find a reachable exit (non-OR gate)

s Solution: compute reachability index

9> gs

18/20

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index

18/20

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index

e Problem: must be done in linear time

18/20

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index

e Problem: must be done in linear time

e Solution: Determinism ensures we have a multitree @
(we cannot have the pattern at the right) ~

18/20

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index

e Problem: must be done in linear time

e Solution: Determinism ensures we have a multitree @
(we cannot have the pattern at the right) ~

e Custom constant-delay reachability index for multitrees ‘ :

18/20

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index
* Problem: must be done in linear time

e Solution: Determinism ensures we have a multitree @
(we cannot have the pattern at the right) R

e Custom constant-delay reachability index for multitrees :

\ ’

* For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

18/20

What's new for updates?

» Hybrid circuits:
Set gates (zero-suppressed semantics)

. Boolean gates (usual semantics)
. Product between the two (— togglable wire)

19/20

What's new for updates?

» Hybrid circuits:
Set gates (zero-suppressed semantics)

. Boolean gates (usual semantics)
. Product between the two (— togglable wire)

e Homogenization: transforms set gates into Boolean gates

19/20

What's new for updates?

» Hybrid circuits:
Set gates (zero-suppressed semantics)

. Boolean gates (usual semantics)
. Product between the two (— togglable wire)

e Homogenization: transforms set gates into Boolean gates
» Reachability index for OR-hierarchies: trees with updates

19/20

What's new for updates?

Hybrid circuits:
Set gates (zero-suppressed semantics)
: Boolean gates (usual semantics)
. Product between the two (— togglable wire)
e Homogenization: transforms set gates into Boolean gates
Reachability index for OR-hierarchies: trees with updates
» Use balancing lemma to make the input tree balanced

19/20

Conclusion

Summary and conclusion

e Enumerate the satisfying assignments of structured d-DNNFs
— in delay linear in each assignment
— In constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

20/20

Summary and conclusion

e Enumerate the satisfying assignments of structured d-DNNFs
— in delay linear in each assignment
— In constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

Future work:

» Practice: implement the technique with automata
« Improvements: enumerate in order? (e.g, of increasing weight?)
» Updates: support insertions/deletions?

20/20

Summary and conclusion

e Enumerate the satisfying assignments of structured d-DNNFs
— in delay linear in each assignment
— In constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

Future work:

» Practice: implement the technique with automata
« Improvements: enumerate in order? (e.g, of increasing weight?)
» Updates: support insertions/deletions?

Thanks for your attention!

20/20

References i

[§ Amarilli, A, Bourhis, P, and Mengel, S. (2018).

Enumeration on Trees under Relabelings.
In ICDT.
To appear.

[§ Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
[§ Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).

https://arxiv.org/abs/1709.06185
https://edbticdt2018.at/
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References ii

[3 Losemann, K. and Martens, W. (2014).
MSO queries on trees: enumerating answers under updates.
In CSL-LICS.

[d Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
To appear.

[@ Olteanu, D. and Zavodny, J. (2015).
Size bounds for factorised representations of query results.
TODS, 1,0(1).

http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf

	Problem statement
	Proof techniques
	Conclusion
	Appendix

