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Problem statement



Problem: Enumerating large result sets

Input

Algorithm

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Output

• Problem: The output may be too large to compute e�ciently

→ Solution: Enumerate solutions one after the other
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Enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State
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General idea for enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∨

¬
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∧

z

Circuit

Input Compilation
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¬
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z

Circuit
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Circuit Enumeration
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Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit
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Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x
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Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|+ |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C|+ |T| and constant delay
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Application 1: Factorized databases

(Slides courtesy of Dan Olteanu)

• Decomposable: by de�nition (following the schema)
• Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay
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Application 2: Query evaluation

(Slides courtesy of Pierre Bourhis)

• Compute the results (a,b, c) of a query Q(x, y, z) on a tree T
→ Generalizes to bounded-treewidth databases

• Query given as a deterministic tree automaton
→ Captures monadic second-order (data-independent translation)
→ Captures conjunctive queries, SQL, etc.

→ We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segou�n, 2013])
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
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Application 2bis: Query evaluation under relabelings NEW
!

• Compute the results of a query on data that can be updated
• Goal: avoid running the linear preprocessing at each update
• Update complexity: time required to perform an update
and reset the enumeration

Type of updates:

• Relabel a tree node
→ On a treelike instance, add/remove a unary fact

• Insert and delete a tree leaf
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Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] words O(log n) O(log n)
[Losemann and Martens, 2014] trees O(log2 n) O(log2 n)
[Niewerth and Segou�n, 2018] words O(1) O(log n)
[Amarilli, Bourhis, Mengel, 2018] trees O(1) O(log n) for

relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant k ∈ N and �xed MSO query Q,
given a database D of treewidth ≤ k, the results of Q on D
can be enumerated with linear preprocessing in D and linear delay
in each answer (→ constant delay for free �rst-order variables)
and logarithmic update time for relabelings

11/20
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Zero-suppressed semantics

∧

x ∨

y z

{{y}, {z}}

{{x, y}, {x, z}}

Special zero-suppressed semantics for circuits:

• No NOT-gate
• Each gate captures a set of assignments
• Bottom-up de�nition with × and ∪

• d-DNNF: ∪ are disjoint, × are on disjoint sets
Many equivalent ways to understand this:

• Generalization of factorized representations
• Analogue of zero-suppressed OBDDs (implicit negation)
• Arithmetic circuits: × and + on polynomials

Simpli�cation: rewrite circuits to arity-two (fan-in ≤ 2)
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Translating to zero-suppressed semantics

• This is where we use the v-tree

• Add explicitly untested variables
(smoothing)

zy

x

∧

x z

∨

y ∧

∧

∨

x ∧

∨

y ∧

∨

z ∧

∨
[x, z]

• Problem: quadratic blowup
• Solution:

• Order < on variables in the v-tree
(x < y < z)

• Interval [x, z]
• Range gates to denote

∨
[x, z]

in constant space

→ For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics
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Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x, y}, {x, z}}, enumerate {x, y} and then {x, z}

Base case: variable x : enumerate {x} and stop

OR-gate
∨

g g′

Concatenation: enumerate S(g)
and then enumerate S(g′)

Determinism: no duplicates

AND-gate
∧

g g′

Lexicographic product: enumerate S(g)
and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates
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Normalization: handling ∅

∧

∧

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time
• Solution: compute bottom-up if S(g) = ∅
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Normalization: handling empty assignments

∧

∧

∧

x

∧

∧

∧

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of AND-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for AND-gates
• collapse AND-chains with fan-in 1

→ Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially
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Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20



Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20



Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20



Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20



Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20



Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20



Normalization: handling OR-hierarchies

∨

g1 ∨

∨

g2 g3

g4

∨ • Problem: we waste time in OR-hierarchies
to �nd a reachable exit (non-OR gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∨

g

18/20



What’s new for updates?

∪
� �

α

∪ ¬
α

∪
� � � �
¬

β x
¬

γ y β x γ y

• Hybrid circuits:
• x Set gates (zero-suppressed semantics)
• α Boolean gates (usual semantics)
• � Product between the two (→ togglable wire)

• Homogenization: transforms set gates into Boolean gates
• Reachability index for OR-hierarchies: trees with updates
• Use balancing lemma to make the input tree balanced

19/20



What’s new for updates?

∪
� �

α

∪ ¬
α

∪
� � � �
¬

β x
¬

γ y β x γ y

• Hybrid circuits:
• x Set gates (zero-suppressed semantics)
• α Boolean gates (usual semantics)
• � Product between the two (→ togglable wire)

• Homogenization: transforms set gates into Boolean gates

• Reachability index for OR-hierarchies: trees with updates
• Use balancing lemma to make the input tree balanced

19/20



What’s new for updates?

∪
� �

α

∪ ¬
α

∪
� � � �
¬

β x
¬

γ y β x γ y

• Hybrid circuits:
• x Set gates (zero-suppressed semantics)
• α Boolean gates (usual semantics)
• � Product between the two (→ togglable wire)

• Homogenization: transforms set gates into Boolean gates
• Reachability index for OR-hierarchies: trees with updates

• Use balancing lemma to make the input tree balanced

19/20



What’s new for updates?

∪
� �

α

∪ ¬
α

∪
� � � �
¬

β x
¬

γ y β x γ y

• Hybrid circuits:
• x Set gates (zero-suppressed semantics)
• α Boolean gates (usual semantics)
• � Product between the two (→ togglable wire)

• Homogenization: transforms set gates into Boolean gates
• Reachability index for OR-hierarchies: trees with updates
• Use balancing lemma to make the input tree balanced

19/20



Conclusion



Summary and conclusion

• Enumerate the satisfying assignments of structured d-DNNFs
→ in delay linear in each assignment
→ in constant delay for constant Hamming weight

→ Can recapture existing enumeration results
→ Useful general-purpose result for applications

Future work:

• Practice: implement the technique with automata
• Improvements: enumerate in order? (e.g., of increasing weight?)
• Updates: support insertions/deletions?

Thanks for your attention!
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