A Circuit-Based Approach to Efficient Enumeration

Antoine Amarilli ${ }^{1}$, Pierre Bourhis ${ }^{2}$, Louis Jachiet³, Stefan Mengel ${ }^{4}$
December 6th, 2017
${ }^{1}$ Télécom ParisTech
${ }^{2}$ CNRS CRIStAL
${ }^{3}$ Université Grenoble-Alpes
4 CNRS CRIL

Problem statement

Problem: Enumerating large result sets

Input

Problem: Enumerating large result sets

Problem: Enumerating large result sets

Problem: Enumerating large result sets

- Problem: The output may be too large to compute efficiently

Problem: Enumerating large result sets

- Problem: The output may be too large to compute efficiently

Q knowledge compilation

Problem: Enumerating large result sets

- Problem: The output may be too large to compute efficiently

Q knowledge compilation

Results 1-20 of 10,514

Problem: Enumerating large result sets

- Problem: The output may be too large to compute efficiently

Q knowledge compilation

Results 1-20 of 10,514

Problem: Enumerating large result sets

- Problem: The output may be too large to compute efficiently

Q knowledge compilation

Results 1-20 of 10,514

View (previous 20 | next 20$)(20|50| 100|250| 500)$

Problem: Enumerating large result sets

- Problem: The output may be too large to compute efficiently

Q knowledge compilation

Results 1-20 of 10,514

View (previous 20 | next 20) (20 | 50 | $100 \mid 250$ | 500)
\rightarrow Solution: Enumerate solutions one after the other

Enumeration algorithm

Input

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Results

Enumeration algorithm

General idea for enumeration

Currently:

General idea for enumeration

Currently:

General idea for enumeration

Currently:

General idea for enumeration

Our idea:

Currently:

General idea for enumeration

Our idea:

Currently:

General idea for enumeration

Our idea:

Currently:

General idea for enumeration

Our idea:

Currently:

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
(x)
- Internal gates:

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$ mapped to 1

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$ mapped to 1
- Assignment: set of variables mapped to 1 Example: $S_{\nu}=\{y\}$; more concise than ν

Boolean circuits

- Directed acyclic graph of gates

- Output gate:

- Variable gates:
- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$ mapped to 1
- Assignment: set of variables mapped to 1 Example: $S_{\nu}=\{y\}$; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

Circuit restrictions

d-DNNF:

- V are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

Circuit restrictions

d-DNNF:

- V are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

- \wedge are all decomposable: The inputs are independent (= no variable x has a path to two different inputs)

Circuit restrictions

d-DNNF:

v-tree: \wedge-gates follow a tree on the variables

- V are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

- \bigwedge are all decomposable: The inputs are independent (= no variable x has a path to two different inputs)

Main results

Theorem

Given a d-DNNF circuit C with a v -tree T , we can enumerate its satisfying assignments with preprocessing linear in $|C|+|T|$ and delay linear in each assignment

Main results

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments with preprocessing linear in $|C|+|T|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$ (at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments of size $\leq k$
with preprocessing linear in $|C|+|T|$ and constant delay

Application 1: Factorized databases

Orders (O for short)		
customer	day	dish
Elise	Monday	burger
Elise	Friday	burger
Steve	Friday	hotdog
Joe	Friday	hotdog

Dish (D for short)			Items (I for short)	
dish	item		item	price
burger	patty		patty	6
burger	onion		onion	2
burger	bun		bun	2
hotdog	bun		sausage	4
hotdog	onion			
hotdog	sausage			

Consider the join of the above relations:

O (customer, day, dish), D (dish, item), l(item, price)				
customer	day	dish	item	price
Elise	Monday	burger	patty	6
Elise	Monday	burger	onion	2
Elise	Monday	burger	bun	2
Elise	Friday	burger	patty	6
Elise	Friday	burger	onion	2
Elise	Friday	burger	bun	2
\cdots	\cdots	\cdots	\cdots	\cdots

Application 1: Factorized databases

O(customer, day, dish), D (dish, item), I (item, price)				
customer	day	dish	item	price
Elise	Monday	burger	patty	6
Elise	Monday	burger	onion	2
Elise	Monday	burger	bun	2
Elise	Friday	burger	patty	6
Elise	Friday	burger	onion	2
Elise	Friday	burger	bun	2
\ldots	\ldots	\cdots	\ldots	\ldots

A relational algebra expression encoding the above query result is:

\langle Elise \rangle	\times	\langle Monday \rangle	\times	\langle burger \rangle	\times	\langle patty \rangle	\times	$\langle 6\rangle$	\cup
\langle Elise \rangle	\times	\langle Monday \rangle	\times	\langle burger \rangle	\times	\langle onion \rangle	\times	$\langle 2\rangle$	\cup
\langle Elise \rangle	\times	\langle Monday \rangle	\times	\langle burger \rangle	\times	\langle bun \rangle	\times	$\langle 2\rangle$	\cup
\langle Elise \rangle	\times	\langle Friday \rangle	\times	\langle burger \rangle	\times	\langle patty \rangle	\times	$\langle 6\rangle$	\cup
\langle Elise \rangle	\times	\langle Friday \rangle	\times	\langle burger \rangle	\times	\langle onion \rangle	\times	$\langle 2\rangle$	\cup
\langle Elise \rangle	\times	\langle Friday \rangle	\times	\langle burger \rangle	\times	\langle bun \rangle	\times	$\langle 2\rangle$	$\cup \ldots$

(Slides courtesy of Dan Olteanu)

Application 1: Factorized databases

(Slides courtesy of Dan Olteanu)

Application 1: Factorized databases

(Slides courtesy of Dan Olteanu)

Application 1: Factorized databases

- Decomposable: by definition (following the schema)
- Deterministic: we do not obtain the same tuple multiple times

Application 1: Factorized databases

- Decomposable: by definition (following the schema)
- Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])
Given a deterministic factorized representation, we can enumerate its tuples with linear preprocessing and constant delay

Application 2: Query evaluation

Query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q : a sentence in monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

"Is there both a pink and a blue node?"
$\exists x$ y $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of the tree T (the query Q is fixed)

Application 2: Query evaluation

- Compute the results (a, b, c) of a query $Q(x, y, z)$ on a tree T
\rightarrow Generalizes to bounded-treewidth databases

Application 2: Query evaluation

- Compute the results (a, b, c) of a query $Q(x, y, z)$ on a tree T
\rightarrow Generalizes to bounded-treewidth databases
- Query given as a deterministic tree automaton
\rightarrow Captures monadic second-order (data-independent translation)
\rightarrow Captures conjunctive queries, SQL, etc.

Application 2: Query evaluation

- Compute the results (a, b, c) of a query $Q(x, y, z)$ on a tree T \rightarrow Generalizes to bounded-treewidth databases
- Query given as a deterministic tree automaton
\rightarrow Captures monadic second-order (data-independent translation)
\rightarrow Captures conjunctive queries, SQL, etc.
\rightarrow We can construct a d-DNNF that describes the query results

Application 2: Query evaluation

- Compute the results (a, b, c) of a query $Q(x, y, z)$ on a tree T \rightarrow Generalizes to bounded-treewidth databases
- Query given as a deterministic tree automaton
\rightarrow Captures monadic second-order (data-independent translation)
\rightarrow Captures conjunctive queries, SQL, etc.
\rightarrow We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013])
For any constant $k \in \mathbb{N}$ and fixed MSO query Q, given a database D of treewidth $\leq k$, the results of Q on D can be enumerated with linear preprocessing in D and linear delay in each answer (\rightarrow constant delay for free first-order variables)

Application 2bis: Query evaluation under relabelings

- Compute the results of a query on data that can be updated
- Goal: avoid running the linear preprocessing at each update
- Update complexity: time required to perform an update and reset the enumeration

Application 2bis: Query evaluation under relabelings

- Compute the results of a query on data that can be updated
- Goal: avoid running the linear preprocessing at each update
- Update complexity: time required to perform an update and reset the enumeration

Type of updates:

- Relabel a tree node
\rightarrow On a treelike instance, add/remove a unary fact
- Insert and delete a tree leaf

Application 2bis: Query evaluation under relabelings (results)

Work
Data Delay Updates

Application 2bis: Query evaluation under relabelings (results)

Work	Data	Delay	Updates
[Bagan, 2006],	trees	$O(1)$	N / A
[Kazana and Segoufin, 2013]			

Application 2bis: Query evaluation under relabelings (results)

Work	Data	Delay	Updates
[Bagan, 2006],	trees	$O(1)$	N / A
[Kazana and Segoufin, 2013]			
[Losemann and Martens, 2014]	words	$O(\log n)$	$O(\log n)$

Application 2bis: Query evaluation under relabelings (results)

Work

[Bagan, 2006],
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014]
[Losemann and Martens, 2014]

Data Delay Updates

trees $\quad O(1) \quad \mathrm{N} / \mathrm{A}$
words $O(\log n) \quad O(\log n)$
trees $O\left(\log ^{2} n\right) \quad O\left(\log ^{2} n\right)$

Application 2bis: Query evaluation under relabelings (results)

Work

[Bagan, 2006],
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014]
[Losemann and Martens, 2014]
[Niewerth and Segoufin, 2018]

Data Delay Updates

trees $\quad O(1) \quad \mathrm{N} / \mathrm{A}$
words $O(\log n) \quad O(\log n)$
trees $O\left(\log ^{2} n\right) \quad O\left(\log ^{2} n\right)$
words $O(1) \quad O(\log n)$

Application 2bis: Query evaluation under relabelings (results)

Work

[Bagan, 2006],
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014]
[Losemann and Martens, 2014]
[Niewerth and Segoufin, 2018]
[Amarilli, Bourhis, Mengel, 2018]

Data Delay Updates

trees $\quad O(1) \quad \mathrm{N} / \mathrm{A}$
words $O(\log n) \quad O(\log n)$
trees $O\left(\log ^{2} n\right) \quad O\left(\log ^{2} n\right)$
words $O(1) \quad O(\log n)$
trees $O(1) \quad O(\log n)$ for relabelings

Application 2bis: Query evaluation under relabelings (results)

Work

[Bagan, 2006],
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014]
[Losemann and Martens, 2014] [Niewerth and Segoufin, 2018] [Amarilli, Bourhis, Mengel, 2018]

Data	Delay	Updates
trees	$O(1)$	N/A
words	$O(\log n)$	$O(\log n)$
trees	$O\left(\log ^{2} n\right)$	$O\left(\log ^{2} n\right)$
words	$O(1)$	$O\left(\log ^{n} n\right)$
trees	$O(1)$	$O(\log n)$ for relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)
For any constant $k \in \mathbb{N}$ and fixed MSO query Q,
given a database D of treewidth $\leq k$, the results of Q on D can be enumerated with linear preprocessing in D and linear delay in each answer (\rightarrow constant delay for free first-order variables) and logarithmic update time for relabelings

Proof techniques

Proof overview

Preprocessing phase:

Circuit

v-tree

Proof overview

Preprocessing phase:

Proof overview

Preprocessing phase:

Proof overview

Preprocessing phase:

Enumeration phase:

Normalized circuit

Proof overview

Preprocessing phase:

Enumeration phase:

Normalized
circuit

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

- No NOT-gate
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup

Zero-suppressed semantics

(V) $\{\{y\},\{z\}\}$. No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup

Zero-suppressed semantics

$\{\{y\},\{z\}\}$ - No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:
$\{\{y\},\{z\}\}$ • No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- d-DNNF: \cup are disjoint, \times are on disjoint sets

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

- No NOT-gate
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- d-DNNF: \cup are disjoint, \times are on disjoint sets

Many equivalent ways to understand this:

- Generalization of factorized representations
- Analogue of zero-suppressed OBDDs (implicit negation)
- Arithmetic circuits: \times and + on polynomials

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

- No NOT-gate
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- d-DNNF: \cup are disjoint, \times are on disjoint sets

Many equivalent ways to understand this:

- Generalization of factorized representations
- Analogue of zero-suppressed OBDDs (implicit negation)
- Arithmetic circuits: \times and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in ≤ 2)

Translating to zero-suppressed semantics

- This is where we use the v-tree

Translating to zero-suppressed semantics

- This is where we use the v-tree
- Add explicitly untested variables (smoothing)

Translating to zero-suppressed semantics

- This is where we use the v-tree
- Add explicitly untested variables (smoothing)

Translating to zero-suppressed semantics

- This is where we use the v-tree
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup

Translating to zero-suppressed semantics

- This is where we use the v-tree
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup
- Solution:
- Order < on variables in the v -tree ($x<y<z$)
- Interval $[x, z]$
- Range gates to denote $\bigvee[x, z]$ in constant space

Translating to zero-suppressed semantics

- This is where we use the v-tree
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup
- Solution:
- Order < on variables in the v-tree ($x<y<z$)
- Interval $[x, z]$
- Range gates to denote $\bigvee[x, z]$ in constant space

Translating to zero-suppressed semantics

- This is where we use the v-tree
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup
- Solution:
- Order < on variables in the v-tree ($x<y<z$)
- Interval $[x, z]$
- Range gates to denote $\bigvee[x, z]$ in constant space
\rightarrow For MSO query evaluation: we can directly compute a circuit that captures the answers in zero-suppressed semantics

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x, y\},\{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x, y\},\{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$ Base case: variable x :

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x, y\},\{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$
Base case: variable x : enumerate $\{x\}$ and stop

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x, y\},\{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$
and then enumerate $S\left(g^{\prime}\right)$

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x, y\},\{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$
and then enumerate $S\left(g^{\prime}\right)$
Determinism: no duplicates

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x, y\},\{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ Lexicographic product: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Determinism: no duplicates
 and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x, y\},\{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ Lexicographic product: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Determinism: no duplicates

and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Decomposability: no duplicates

Normalization: handling \emptyset

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of AND-gates

Normalization: handling empty assignments

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of AND-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of AND-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for AND-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of AND-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for AND-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of AND-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for AND-gates
- collapse AND-chains with fan-in 1

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of AND-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for AND-gates
- collapse AND-chains with fan-in 1

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of AND-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for AND-gates
- collapse AND-chains with fan-in 1
\rightarrow Now, traversing an AND-gate ensures that we make progress: it splits the assignments non-trivially

Normalization: handling OR-hierarchies

Normalization: handling OR-hierarchies

Normalization: handling OR-hierarchies

- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index

Normalization: handling OR-hierarchies

- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

Normalization: handling OR-hierarchies

- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)

Normalization: handling OR-hierarchies

- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

Normalization: handling OR-hierarchies

- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees
- For MSO query evaluation: upwards-deterministic circuit
 so we have a tree: simpler constant-memory index

What's new for updates?

- Hybrid circuits:
- x Set gates (zero-suppressed semantics)
- α Boolean gates (usual semantics)
- \boxtimes Product between the two (\rightarrow togglable wire)

What's new for updates?

- Hybrid circuits:
- x Set gates (zero-suppressed semantics)
- α Boolean gates (usual semantics)
- \triangle Product between the two $(\rightarrow$ togglable wire)
- Homogenization: transforms set gates into Boolean gates

What's new for updates?

- Hybrid circuits:
- x Set gates (zero-suppressed semantics)
- α Boolean gates (usual semantics)
- \triangle Product between the two $(\rightarrow$ togglable wire)
- Homogenization: transforms set gates into Boolean gates
- Reachability index for OR-hierarchies: trees with updates

What's new for updates?

- Hybrid circuits:
- x Set gates (zero-suppressed semantics)
- α Boolean gates (usual semantics)
- \triangle Product between the two $(\rightarrow$ togglable wire)
- Homogenization: transforms set gates into Boolean gates
- Reachability index for OR-hierarchies: trees with updates
- Use balancing lemma to make the input tree balanced

Conclusion

Summary and conclusion

- Enumerate the satisfying assignments of structured d-DNNFs
\rightarrow in delay linear in each assignment
\rightarrow in constant delay for constant Hamming weight
\rightarrow Can recapture existing enumeration results
\rightarrow Useful general-purpose result for applications

Summary and conclusion

- Enumerate the satisfying assignments of structured d-DNNFs
\rightarrow in delay linear in each assignment
\rightarrow in constant delay for constant Hamming weight
\rightarrow Can recapture existing enumeration results
\rightarrow Useful general-purpose result for applications

Future work:

- Practice: implement the technique with automata
- Improvements: enumerate in order? (e.g., of increasing weight?)
- Updates: support insertions/deletions?

Summary and conclusion

- Enumerate the satisfying assignments of structured d-DNNFs
\rightarrow in delay linear in each assignment
\rightarrow in constant delay for constant Hamming weight
\rightarrow Can recapture existing enumeration results
\rightarrow Useful general-purpose result for applications

Future work:

- Practice: implement the technique with automata
- Improvements: enumerate in order? (e.g., of increasing weight?)
- Updates: support insertions/deletions?

Thanks for your attention!

References i

囯 Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on Trees under Relabelings.
In ICDT.
To appear.
围 Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).

References ii

Losemann, K. and Martens, W. (2014).
MSO queries on trees: enumerating answers under updates.
In CSL-LICS.
梂 Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and logarithmic updates.
In PODS.
To appear.
圊 Olteanu, D. and Závodnỳ, J. (2015).
Size bounds for factorised representations of query results.
TODS, 40(1).

