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e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Solution: Enumerate solutions one after the other
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Boolean circuits

e Directed acyclic graph of gates

@ e QOutput gate: @

» Variable gates: @
e o  Internal gates: @ @ @

* Valuation: function from variables to {0, 1}

° 0 Example: v = {x+— 0, y — 1}.. mapped to 1
» Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

’ Our task: Enumerate all satisfying assignments of an input circuit
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Circuit restrictions

d-DNNF: v-tree: A-gates follow a tree

on the variables
. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
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Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment
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Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k € N
(at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size < R
with preprocessing linear in |C| + |T| and constant delay
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Application 1: Factorized databases

Orders (O for short) Dish (D for short) Items (I for short)
customer day dish dish item item price
Elise = Monday burger burger patty patty 6
Elise Friday burger burger onion onion 2
Steve Friday  hotdog burger bun bun 2
Joe Friday  hotdog hotdog bun sausage 4

hotdog onion

hotdog sausage

Consider the join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise = Monday  burger patty 6
Elise Monday burger  onion 2
Elise = Monday  burger bun 2
Elise Friday  burger patty 6
Elise Friday ~ burger  onion 2
Elise Friday burger bun 2

(Slides courtesy of Dan Olteanu)
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Application 1: Factorized databases

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday  burger patty 6
Elise Monday  burger  onion 2
Elise =~ Monday  burger bun 2
Elise Friday burger patty 6
Elise Friday  burger  onion 2

2

Elise Friday  burger bun

A relational algebra expression encoding the above query result is:

(Elise) X (Monday) X (burger) X (patty) X (6) U
(Elise) X (Monday) X (burger) X onion X 2 6]
(Elise) X (Monday) X (burger) X (bun) X (2) U
(Elise) X (Friday) X (burger) X (patty) X (6) U
(Elise) X (Friday) X (burger) X onion X 2 u
(Elise) X (Friday) X (burger) X (bun) X (2) U..

(Slides courtesy of Dan Olteanu)
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Application 1: Factorized databases

x / I X
/ \ \ // \
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X X X X X X X X X
\ \ AN AN \ AN AN N AN
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Application 1: Factorized databases

(Elise)y  (Elise) (6) (2) (Joe) (Steve) (2) (&)

« Decomposable: by definition (following the schema)
» Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Zavodny, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay
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Application 2: Query evaluation

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet O O O

Query Q: a sentence in monadic “Is there both a
second-order logic (MSO) pink and a blue

e Po(x) means “x is blue” node?”

e x — y means “x is the parent of y" Ixy Po(x) A Po(y)

Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of the tree T
(the query Q is fixed)

(Slides courtesy of Pierre Bourhis)
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Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on atree T
— Generalizes to bounded-treewidth databases

e Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013])
For any constant k € N and fixed MSO query Q,

given a database D of treewidth < R, the results of Q on D

can be enumerated with linear preprocessing in D and linear delay
in each answer (— constant delay for free first-order variables)
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Application 2bis: Query evaluation under relabelings

e Compute the results of a query on data that can be updated
e Goal: avoid running the linear preprocessing at each update

e Update complexity: time required to perform an update
and reset the enumeration
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Application 2bis: Query evaluation under relabelings %

e Compute the results of a query on data that can be updated
e Goal: avoid running the linear preprocessing at each update

e Update complexity: time required to perform an update
and reset the enumeration

Type of updates:

e Relabel a tree node
— On a treelike instance, add/remove a unary fact

e |nsert and delete a tree leaf
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Application 2bis: Query evaluation under relabelings (results)

Work Data Delay Updates

[Bagan, 2006], trees  0(1) N/A

[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] ~ words O(logn)  O(logn)

[Losemann and Martens, 2014] ~ trees  O(log?n) O(log? n)

[Niewerth and Segoufin, 2018] words  O( (

[Amarilli, Bourhis, Mengel, 2018]  trees  O( (
relabelings

Theorem ([Amarilli, Bourhis, Mengel, 2018], to appear at ICDT)

For any constant k € N and fixed MSO query Q,

given a database D of treewidth < R, the results of Q on D

can be enumerated with linear preprocessing in D and linear delay

in each answer (— constant delay for free first-order variables)

and logarithmic update time for relabelings 11/20
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Proof overview

Preprocessing phase:

Circuit ™ Translation o Normalization (ﬁa
- - — Circuit = . . — .
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A circuit
P suppressed
v-tree semantics

Enumeration phase:

d@b Enumeration A B C
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. 3 (linear delay > v«
Normalized )
o in each result) Results
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Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
« Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in < 2)

13/20



Translating to zero-suppressed semantics

e This is where we use the v-tree /\
X /\
y z
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Translating to zero-suppressed semantics

e This is where we use the v-tree /\
» Add explicitly untested variables ° 0 a

(smoothing) y i 0 @

° e Problem: quadratic blowup
» Solution:
- Order < on variables in the v-tree
x<y<2z)
- Interval [x, Z]
- Range gates to denote \/[x, Z]
in constant space

— For MSO query evaluation: we can directly compute a circuit
that captures the answers in zero-suppressed semantics

14/20



Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}
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Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate

ol Jol

g g’ g9 g
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Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y}, {x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate
g g’ g9 g
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)
and then enumerate S(g’) and for each result t enumerate S(g’)

.. . and concatenate t with each result
Determinism: no duplicates

Decomposability: no duplicates

15/20
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Normalization: handling ()

» Problem: if S(g) = () we waste time

* Solution: compute bottom-up if S(g) = 0
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» Problem: if S(g) contains {} we waste time
in chains of AND-gates

» Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
X3 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

— Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially
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Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index
* Problem: must be done in linear time

e Solution: Determinism ensures we have a multitree @
(we cannot have the pattern at the right) R

e Custom constant-delay reachability index for multitrees :

\ ’

* For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index
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What's new for updates?

Hybrid circuits:
Set gates (zero-suppressed semantics)
: Boolean gates (usual semantics)
. Product between the two (— togglable wire)
e Homogenization: transforms set gates into Boolean gates
Reachability index for OR-hierarchies: trees with updates
» Use balancing lemma to make the input tree balanced
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e Enumerate the satisfying assignments of structured d-DNNFs
— in delay linear in each assignment
— In constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

Future work:

» Practice: implement the technique with automata
« Improvements: enumerate in order? (e.g, of increasing weight?)
» Updates: support insertions/deletions?

Thanks for your attention!
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