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Incremental maintenance on strings

The concept: incremental maintenance

• You have a string:
→ e.g., aaaabaabaca

• You are interested in a property
→ e.g., having at least one a

• The string is updated
→ e.g., replace the 3rd character by an a

• You want to maintain the property efficiently
→ e.g., with low running time or memory overhead
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Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm:

After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)
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Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

• Dynamic membership under substitution updates
• A general-purpose O(log n) algorithm
• Better algorithms for specific languages: [A., Jachiet, Paperman, ICALP’21]

• Dynamic membership under other update operations
• Endpoint updates: push and pop at the beginning and end
• Insertions and deletions
• Splitting and joining

• Beyond dynamic membership: incremental maintenance for enumeration
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Regular languages and
substitution updates



Problem: dynamic membership for regular languages under substitutions

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input string w with n := |w|
→ E.g., w = abbbab

• Maintain the membership of w to L under substitution updates
→ Initially, we have w /∈ L
→ Replace character at position 3 with a: we now have w ∈ L
→ The length n never changes

• Model: RAM model
• Cell size in Θ(log(n))
• Unit-cost arithmetics
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A general-purpose O(log n) algorithm

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input string w = abbbab

• Label each node n by the transition monoid element: all pairs q⇝ q′ such
that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree
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Improving on O(log n) for some languages

For our language L = (ab)∗ we can handle updates in O(1):

• Check that n is even
• Count violations: a’s at even positions and b’s at odd positions
• Maintain this counter in constant time
• We have w ∈ L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?
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Summary of our results

QLZG: in O(1)

QSG: in O(log log n)
not in O(1)?

All: in Θ(log n/ log log n)

• We identify a class QLZG of regular languages:
• for any language in QLZG, dynamic membership is in O(1)
• for any language not in QLZG, we can reduce from a

problem that we conjecture is not in O(1)

• We identify a class QSG of regular languages:
• for any language in QSG, the problem is in O(log log n)
• for any language not in QSG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

• The problem is always in O(log n/ log log n)
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Regular languages
and more expressive updates



Endpoint updates

• Simplest updates that change the string length: endpoint updates

• Insert a letter at the beginning of the string, or delete the first letter
• Insert a letter at the end of the string, or delete the last letter

→ Similar to a doubly-ended queue (deque)
→ Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal
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Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed regular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

• Store the string in an amortized circular buffer
• We will again store the transition monoid element achieved by some factors
• Naive idea: split the string in two (put a guardian in the middle):

• store the transition monoid elements of all suffixes of the first half
• and of all prefixes of the second half

• Whenever the updates shift the string too much and the guardian is far from
the current middle, create a new guardian at the new middle
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Richer updates

Which other updates do we want on strings in practice?

• Insertion and deletion at arbitrary positions
• Split a string in two, and join two strings

• Special case: cut and paste a factor to a different place

Theorem (Folklore?)
Dynamic membership to any fixed regular language under insertion, substitution,
deletion, split, join is possible in O(log n) time

Proof: use balancing binary trees (AVL trees) instead of the fixed complete binary
tree of the O(log n) algorithm for substitutions
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Doing better than O(log n) with insertions and deletions?

• For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

• Is the same true when allowing arbitrary insertions and deletions?

→ No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned
by David Eppstein, CStheory (TCS.SE), 2020)
Maintaining membership to the language Σ∗aΣ∗ (“does the string contain an a”)
under insertions and deletions is in Ω(log n/ log log n)
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Summary for dynamic membership to fixed regular languages

• With endpoint updates:

always doable in O(1)
• With substitution updates:

• General bound Θ(log n/ log log n)
• Characterization of some (all?) O(1) cases and O(log log n) cases

→ Open question: are there other classes?
• With insertion and deletions:

• General O(log n) bound with AVL-trees, event with split and join
• Lower bound Ω(log n/ log log n) for essentially all languages

→ Open question: combination of substitutions + endpoint updates
→ Open question: different models, e.g., doubly linked lists?
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Incremental maintenance
for enumeration structures



Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:
• “what is the first factor ab∗c?”
• “how many factors ab∗c are there?”
• “compute an index to test efficiently if a factor is of the form ab∗c?”

→ “compute an index to enumerate efficiently the factors ab∗c”
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Generalizing factors

What is the right notion of result that we want to find in a string?

• Factors? suffixes? prefixes?

• Pairs of factors? Tuples of factors?

A robust notion: automata with captures

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

• Equivalently: monadic second-order queries with free variables
• Special case: document spanners studied in information extraction
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Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b

x

a c

y

b

x

a b b c

y

c

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results: {x : 1, y : 3} and {x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c
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Enumeration algorithms

We want

an index of

all the results of an automaton with captures on a string

:

• Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions

• Performance: maximal delay between two consecutive results

Example: enumerate the results of 0start 1 3

a,b, c

x

a,b, c

y

a,b, c

Goal: constant-delay, independent from the string length. Several uses:

• We can check if there is at least one result, in constant time
• We can produce all results in output-linear time
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Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

• Do a product of A and w
• Annotate variable transitions with the position in w
• Replace non-variable transitions by ϵ

• Do a form of ϵ-removal (can be done in linear time here)
• Enumerate the paths of the resulting DAG

→ Can we incrementally maintain enumeration structures under updates?
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Maintaining an enumeration structure

Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])
The same holds with join and split (and more complex edit operations) but with
logarithmic delay.

Proof: balancing straight-line programs (SLP)

Conjecture
Both are doable: support join and split in time O(log n) and constant-delay

Also: support endpoint updates with constant time and constant-delay
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Improving the complexity

• Can we have a complexity better than O(log n)?

• Idea: restricting to specific languages of automata with captures
(like in our classification of regular languages under updates)

→ Open research question!
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Conclusion and perspectives



High-level summary

• We want to incrementally maintain information on a string under updates
• Simple Boolean problem: dynamic membership to a regular language
• More expressive problem: maintaining an enumeration structure for an

automaton with captures
• General case: everything should always be in O(log n) (?)
• Better cases:

• Endpoint updates: everything is in O(1) (?)
• Substitution updates for dynamic membership: O(1) or O(log log n) or
Θ(log n/ log log n) (... or?) depending on the language

• Future research: identify more cases below O(log n)
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Future directions

• Maintaining a structure for infix testing, membership testing, etc.
→ Without updates: factorization forests, or structure of [Bojańczyk, 2009]
→ With substitutions: amounts to incremental maintenance for another language
→ With endpoint updates: should be possible in constant-time too

• Maintaining a count: number of results, acceptance probability, etc.

• Extending from regular languages to context-free languages
→ Related work: incremental parsing?
→ Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
→ More research and more algebraic tools needed

• Extending from string to trees
→ Doable in O(log2 n) [Losemann and Martens, 2014]
→ Still O(log n)? [Amarilli et al., 2019], proof currently broken
→ Better than O(log n): more research and more algebraic tools needed

Thanks for your attention!
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