

Data Structures for Incremental Maintenance of String Properties under Updates

Antoine Amarilli

May 9, 2022

Télécom Paris

- You have a string:
 - ightarrow e.g., aaaabaabaca

- You have a string:
 - ightarrow e.g., aaaabaabaca
- You are interested in a property
 - $\rightarrow\,$ e.g., having at least one ${\tt a}$

- You have a string:
 - ightarrow e.g., aaaabaabaca
- You are interested in a property
 - $\rightarrow\,$ e.g., having at least one ${\tt a}$
- The string is **updated**
 - $ightarrow\,$ e.g., replace the 3rd character by an ${f a}$

- You have a string:
 - ightarrow e.g., aaaabaabaca
- You are interested in a property
 - $\rightarrow~$ e.g., having at least one ${\tt a}$
- The string is **updated**
 - ightarrow e.g., replace the 3rd character by an ${f a}$
- You want to maintain the property efficiently
 - $\rightarrow~{\rm e.g.},$ with low running time or memory overhead

• Naive algorithm:

• Naive algorithm: After each substitution, go over w and search for an a

- Naive algorithm: After each substitution, go over **w** and search for an **a**
 - $\rightarrow\,$ Complexity per update:

• Naive algorithm: After each substitution, go over w and search for an a \rightarrow Complexity per update: linear in the length of w, i.e., in O(n)

- Naive algorithm: After each substitution, go over w and search for an a \rightarrow Complexity per update: linear in the length of w, i.e., in O(n)
- Clever algorithm:

- Naive algorithm: After each substitution, go over w and search for an a \rightarrow Complexity per update: linear in the length of w, i.e., in O(n)
- Clever algorithm: Maintain a counter κ of the number of a's

- Naive algorithm: After each substitution, go over w and search for an a \rightarrow Complexity per update: linear in the length of w, i.e., in O(n)
- Clever algorithm: Maintain a counter κ of the number of a's
 - + If you replace an a by another character, decrement κ

- Naive algorithm: After each substitution, go over w and search for an a \rightarrow Complexity per update: linear in the length of w, i.e., in O(n)
- Clever algorithm: Maintain a counter κ of the number of a's
 - + If you replace an a by another character, decrement κ
 - If you replace another character by an $\mathbf{a},$ increment κ

- Naive algorithm: After each substitution, go over w and search for an a \rightarrow Complexity per update: linear in the length of w, i.e., in O(n)
- Clever algorithm: Maintain a counter κ of the number of a's
 - If you replace an a by another character, decrement κ
 - If you replace another character by an $\mathbf{a},$ increment κ
 - + If $\kappa > \mathbf{0}$ then \mathbf{W} contains an \mathbf{a}

- Naive algorithm: After each substitution, go over w and search for an a \rightarrow Complexity per update: linear in the length of w, i.e., in O(n)
- Clever algorithm: Maintain a counter κ of the number of a's
 - If you replace an ${\tt a}$ by another character, decrement κ
 - If you replace another character by an $\mathbf{a},$ increment κ
 - + If $\kappa > \mathbf{0}$ then \mathbf{W} contains an \mathbf{a}
 - $\rightarrow\,$ Complexity per update:

- Naive algorithm: After each substitution, go over w and search for an a \rightarrow Complexity per update: linear in the length of w, i.e., in O(n)
- Clever algorithm: Maintain a counter κ of the number of a's
 - If you replace an ${\tt a}$ by another character, decrement κ
 - If you replace another character by an $\mathbf{a},$ increment κ
 - + If $\kappa > \mathbf{0}$ then \mathbf{W} contains an \mathbf{a}
 - \rightarrow Complexity per update: constant (in the RAM model)

We focus on the dynamic membership problem: incremental maintenance of membership to a regular language

- Dynamic membership under substitution updates
 - A general-purpose $O(\log n)$ algorithm
 - Better algorithms for specific languages: [A., Jachiet, Paperman, ICALP'21]

We focus on the dynamic membership problem: incremental maintenance of membership to a regular language

- Dynamic membership under substitution updates
 - A general-purpose $O(\log n)$ algorithm
 - Better algorithms for specific languages: [A., Jachiet, Paperman, ICALP'21]
- Dynamic membership under other update operations
 - Endpoint updates: push and pop at the beginning and end
 - Insertions and deletions
 - Splitting and joining

We focus on the dynamic membership problem: incremental maintenance of membership to a regular language

- Dynamic membership under substitution updates
 - A general-purpose $O(\log n)$ algorithm
 - Better algorithms for specific languages: [A., Jachiet, Paperman, ICALP'21]
- Dynamic membership under other update operations
 - Endpoint updates: push and pop at the beginning and end
 - Insertions and deletions
 - Splitting and joining
- $\cdot\,$ Beyond dynamic membership: incremental maintenance for enumeration

Regular languages and substitution updates

Problem: dynamic membership for regular languages under substitutions

• Fix a regular language L

ightarrow E.g., $L = (ab)^*$

• Read an **input string** w with n := |w|

 \rightarrow E.g., w = abbbab

Problem: dynamic membership for regular languages under substitutions

• Fix a regular language L

ightarrow E.g., $L = (ab)^*$

• Read an **input string** w with n := |w|

 \rightarrow E.g., w = abbbab

- Maintain the membership of w to L under substitution updates
 - \rightarrow Initially, we have $w \notin L$
 - \rightarrow Replace character at position 3 with *a*: we now have $w \in L$
 - \rightarrow The length *n* never changes

Problem: dynamic membership for regular languages under substitutions

• Fix a regular language L

ightarrow E.g., $L = (ab)^*$

• Read an **input string** w with n := |w|

 \rightarrow E.g., w = abbbab

- Maintain the membership of w to L under substitution updates
 - \rightarrow Initially, we have $w \notin L$
 - \rightarrow Replace character at position 3 with *a*: we now have $w \in L$
 - \rightarrow The **length** *n* never changes
- Model: RAM model
 - Cell size in $\Theta(\log(n))$
 - Unit-cost arithmetics

Fix the language
$$L = (ab)^*$$
: start b

Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

• Build a **balanced binary tree** on the input string **w** = **abbbab**

Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

• Build a **balanced binary tree** on the input string **w** = **abbbab**

Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

- Build a **balanced binary tree** on the input string **w** = **abbbab**
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n

Fix the language
$$L = (ab)^*$$
: start b

- Build a **balanced binary tree** on the input string w = abbbab
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n

Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

- Build a **balanced binary tree** on the input string **w** = **abbbab**
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n

- The tree root describes if $w \in L$
- We can update the tree for each substitution in $O(\log n)$
- Can be improved to $O(\log n / \log \log n)$ with a log-ary tree

For our language $L = (ab)^*$ we can handle updates in O(1):

For our language $L = (ab)^*$ we can handle updates in O(1):

- Check that **n** is **even**
- Count violations: *a*'s at even positions and *b*'s at odd positions
- Maintain this counter in constant time
- We have $w \in L$ iff there are no violations

For our language $L = (ab)^*$ we can handle updates in O(1):

- Check that **n** is **even**
- Count violations: *a*'s at even positions and *b*'s at odd positions
- Maintain this counter in constant time
- We have $w \in L$ iff there are no violations

Question: what is the complexity of dynamic membership, depending on the fixed regular language *L*?

Summary of our results

• We identify a class **QLZG** of regular languages:

- for any language in QLZG, dynamic membership is in O(1)
- for any language not in QLZG, we can reduce from a problem that we conjecture is not in O(1)

Summary of our results

- We identify a class **QLZG** of regular languages:
 - for any language in QLZG, dynamic membership is in O(1)
 - for any language not in QLZG, we can reduce from a problem that we conjecture is not in O(1)
- We identify a class **QSG** of regular languages:
 - for any language in **QSG**, the problem is in $O(\log \log n)$
 - for any language not in QSG, it is in $\Omega(\log n / \log \log n)$ (lower bound of Skovbjerg Frandsen et al.)

Summary of our results

- We identify a class **QLZG** of regular languages:
 - for any language in QLZG, dynamic membership is in O(1)
 - for any language **not** in **QLZG**, we can reduce from a problem that we **conjecture** is **not** in *O*(1)
- We identify a class **QSG** of regular languages:
 - for any language in **QSG**, the problem is in $O(\log \log n)$
 - for any language **not** in **QSG**, it is in $\Omega(\log n / \log \log n)$ (lower bound of Skovbjerg Frandsen et al.)
 - The problem is always in $O(\log n / \log \log n)$

Regular languages and more expressive updates

• Simplest updates that change the string length: endpoint updates

- Simplest updates that change the string length: endpoint updates
 - Insert a letter at the **beginning** of the string, or delete the first letter
 - Insert a letter at the end of the string, or delete the last letter

- Simplest updates that change the string length: endpoint updates
 - Insert a letter at the **beginning** of the string, or delete the first letter
 - Insert a letter at the end of the string, or delete the last letter
 - \rightarrow Similar to a **doubly-ended queue** (deque)
 - \rightarrow Special case: sliding window

- Simplest updates that change the string length: endpoint updates
 - Insert a letter at the **beginning** of the string, or delete the first letter
 - Insert a letter at the end of the string, or delete the last letter
 - → Similar to a **doubly-ended queue** (deque)
 - \rightarrow Special case: sliding window

Theorem

Dynamic membership to any fixed **regular language** under endpoint updates at the **end** of the string is possible in **constant time**

Proof:

- Simplest updates that change the string length: endpoint updates
 - Insert a letter at the **beginning** of the string, or delete the first letter
 - Insert a letter at the end of the string, or delete the last letter
 - → Similar to a **doubly-ended queue** (deque)
 - \rightarrow Special case: sliding window

Theorem

Dynamic membership to any fixed **regular language** under endpoint updates at the **end** of the string is possible in **constant time**

Proof: simply extend/truncate the run of a deterministic automaton

- Simplest updates that change the string length: endpoint updates
 - Insert a letter at the **beginning** of the string, or delete the first letter
 - Insert a letter at the end of the string, or delete the last letter
 - → Similar to a **doubly-ended queue** (deque)
 - \rightarrow Special case: sliding window

Theorem

Dynamic membership to any fixed **regular language** under endpoint updates at the **end** of the string is possible in **constant time**

Proof: simply extend/truncate the run of a deterministic automaton

Theorem

The same holds for udpates at the beginning of the string

Proof:

- Simplest updates that change the string length: endpoint updates
 - Insert a letter at the **beginning** of the string, or delete the first letter
 - Insert a letter at the end of the string, or delete the last letter
 - → Similar to a **doubly-ended queue** (deque)
 - \rightarrow Special case: sliding window

Theorem

Dynamic membership to any fixed **regular language** under endpoint updates at the **end** of the string is possible in **constant time**

Proof: simply extend/truncate the run of a deterministic automaton

Theorem

The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal

Dynamic membership to any fixed **regular language** under **endpoint updates** is possible in **constant time**

Dynamic membership to any fixed **regular language** under **endpoint updates** is possible in **constant time**

Proof ("guardian algorithm"):

- Store the string in an **amortized circular buffer**
- We will again store the transition monoid element achieved by some factors

Dynamic membership to any fixed **regular language** under **endpoint updates** is possible in **constant time**

Proof ("guardian algorithm"):

- Store the string in an **amortized circular buffer**
- We will again store the transition monoid element achieved by some factors
- Naive idea: split the string in two (put a guardian in the middle):
 - store the transition monoid elements of all suffixes of the first half
 - and of all **prefixes** of the **second half**

Dynamic membership to any fixed **regular language** under **endpoint updates** is possible in **constant time**

Proof ("guardian algorithm"):

- Store the string in an **amortized circular buffer**
- We will again store the transition monoid element achieved by some factors
- Naive idea: split the string in two (put a guardian in the middle):
 - store the transition monoid elements of all suffixes of the first half
 - and of all **prefixes** of the **second half**
- Whenever the updates shift the string too much and the guardian is far from the current middle, create a new guardian at the new middle

• Insertion and deletion at arbitrary positions

- Insertion and deletion at arbitrary positions
- Split a string in two, and join two strings
 - Special case: **cut** and **paste** a factor to a different place

- Insertion and deletion at arbitrary positions
- Split a string in two, and join two strings
 - $\cdot\,$ Special case: cut and paste a factor to a different place

Theorem (Folklore?)

Dynamic membership to any fixed **regular language** under **insertion, substitution, deletion, split, join** is possible in **O**(log **n**) time

Proof: use **balancing binary trees** (AVL trees) instead of the fixed complete binary tree of the *O*(log *n*) algorithm for substitutions

Doing better than $O(\log n)$ with insertions and deletions?

- For substitutions, we could do better than O(log n) for some subclasses of the regular languages
- Is the same true when allowing arbitrary insertions and deletions?

Doing better than $O(\log n)$ with insertions and deletions?

- For substitutions, we could do better than O(log n) for some subclasses of the regular languages
- Is the same true when allowing arbitrary insertions and deletions?

\rightarrow No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned by David Eppstein, CStheory (TCS.SE), 2020)

Doing better than $O(\log n)$ with insertions and deletions?

- For substitutions, we could do better than O(log n) for some subclasses of the regular languages
- Is the same true when allowing arbitrary insertions and deletions?

\rightarrow No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned by David Eppstein, CStheory (TCS.SE), 2020)

Maintaining membership to the language $\Sigma^* a \Sigma^*$ ("does the string contain an **a**") under **insertions and deletions** is in $\Omega(\log n / \log \log n)$

• With endpoint updates:

• With endpoint updates: always doable in O(1)

- With endpoint updates: always doable in O(1)
- With substitution updates:

- With endpoint updates: always doable in O(1)
- With substitution updates:
 - General bound $\Theta(\log n / \log \log n)$
 - Characterization of some (all?) O(1) cases and O(log log n) cases
 - \rightarrow **Open question:** are there other classes?

- With endpoint updates: always doable in O(1)
- With substitution updates:
 - General bound $\Theta(\log n / \log \log n)$
 - Characterization of some (all?) O(1) cases and O(log log n) cases
 - $\rightarrow~$ Open question: are there other classes?
- With insertion and deletions:

- With endpoint updates: always doable in O(1)
- With substitution updates:
 - General bound $\Theta(\log n / \log \log n)$
 - Characterization of some (all?) O(1) cases and O(log log n) cases
 - \rightarrow **Open question:** are there other classes?
- With insertion and deletions:
 - General $O(\log n)$ bound with AVL-trees, event with split and join
 - Lower bound $\Omega(\log n / \log \log n)$ for essentially all languages

- With endpoint updates: always doable in O(1)
- With substitution updates:
 - General bound $\Theta(\log n / \log \log n)$
 - Characterization of some (all?) O(1) cases and O(log log n) cases
 - \rightarrow **Open question:** are there other classes?
- With insertion and deletions:
 - General $O(\log n)$ bound with AVL-trees, event with split and join
 - Lower bound $\Omega(\log n / \log \log n)$ for essentially all languages
- $\rightarrow\,$ Open question: combination of substitutions + endpoint updates
- \rightarrow Open question: different models, e.g., doubly linked lists?

Incremental maintenance for enumeration structures

- So far, we have only talked about maintaining Boolean information
 - \rightarrow "does the string contain a factor ab^*c ?"

- So far, we have only talked about maintaining Boolean information
 - \rightarrow "does the string contain a factor ab^*c ?"
- More interesting: maintain non-Boolean information, i.e., a set of results:
 - \rightarrow "what are the factors ab^*c ?"

- $\cdot\,$ So far, we have only talked about maintaining Boolean information
 - ightarrow "does the string contain a factor ab^*c ?"
- More interesting: maintain non-Boolean information, i.e., a set of results: \rightarrow "what are the factors ab^*c ?"
- Problem: there can be many results, so we cannot maintain the full set

- $\cdot\,$ So far, we have only talked about maintaining Boolean information
 - ightarrow "does the string contain a factor ab^*c ?"
- More interesting: maintain non-Boolean information, i.e., a set of results: \rightarrow "what are the factors ab^*c ?"
- Problem: there can be many results, so we cannot maintain the full set
- Ideas:

- $\cdot\,$ So far, we have only talked about maintaining Boolean information
 - ightarrow "does the string contain a factor ab^*c ?"
- More interesting: maintain non-Boolean information, i.e., a set of results: \rightarrow "what are the factors ab^*c ?"
- Problem: there can be many results, so we cannot maintain the full set
- Ideas:
 - "what is the first factor ab*c?"

- $\cdot\,$ So far, we have only talked about maintaining Boolean information
 - ightarrow "does the string contain a factor ab^*c ?"
- More interesting: maintain non-Boolean information, i.e., a set of results: \rightarrow "what are the factors ab^*c ?"
- Problem: there can be many results, so we cannot maintain the full set
- · Ideas:
 - "what is the first factor ab*c?"
 - "how many factors ab*c are there?"

- So far, we have only talked about maintaining **Boolean information**
 - ightarrow "does the string contain a factor ab^*c ?"
- More interesting: maintain non-Boolean information, i.e., a set of results: \rightarrow "what are the factors ab^*c ?"
- Problem: there can be many results, so we cannot maintain the full set
- · Ideas:
 - "what is the first factor ab*c?"
 - "how many factors ab*c are there?"
 - "compute an index to **test efficiently** if a factor is of the form **ab*****c**?"

- So far, we have only talked about maintaining **Boolean information**
 - ightarrow "does the string contain a factor ab^*c ?"
- More interesting: maintain non-Boolean information, i.e., a set of results: \rightarrow "what are the factors ab^*c ?"
- Problem: there can be many results, so we cannot maintain the full set
- · Ideas:
 - "what is the first factor ab*c?"
 - "how many factors ab*c are there?"
 - "compute an index to **test efficiently** if a factor is of the form **ab*****c**?"
 - ightarrow "compute an index to enumerate efficiently the factors ab^*c "

Generalizing factors

What is the right notion of **result** that we want to find in a string?

• Factors? suffixes? prefixes?

Generalizing factors

What is the right notion of **result** that we want to find in a string?

- Factors? suffixes? prefixes?
- Pairs of factors? Tuples of factors?

Generalizing factors

What is the right notion of **result** that we want to find in a string?

- Factors? suffixes? prefixes?
- Pairs of factors? Tuples of factors?
- A robust notion: automata with captures

Generalizing factors

What is the right notion of **result** that we want to find in a string?

- Factors? suffixes? prefixes?
- Pairs of factors? Tuples of factors?
- A robust notion: automata with captures

- Equivalently: monadic second-order queries with free variables
- Special case: document spanners studied in information extraction

Consider the automaton with captures **A** on an input string **w**:

Consider the automaton with captures **A** on an input string **w**:

Set of **results** of **A** on **w**:

Consider the automaton with captures **A** on an input string **w**:

Set of **results** of **A** on **w**: **positions** where to insert **x** and **y** in **w** such that **A** accepts

Consider the automaton with captures **A** on an input string **w**:

Set of **results** of **A** on **w**: **positions** where to insert **x** and **y** in **w** such that **A** accepts Here, two results:

Consider the automaton with captures **A** on an input string **w**:

Set of **results** of **A** on **w**: **positions** where to insert **x** and **y** in **w** such that **A** accepts Here, two results:

Consider the automaton with captures **A** on an input string **w**:

Set of **results** of **A** on **w**: **positions** where to insert **x** and **y** in **w** such that **A** accepts Here, two results: {**x** : **1**, **y** : **3**} and

Consider the automaton with captures **A** on an input string **w**:

Set of **results** of **A** on **w**: **positions** where to insert **x** and **y** in **w** such that **A** accepts Here, two results: {**x** : **1**, **y** : **3**} and

Consider the automaton with captures **A** on an input string **w**:

Set of **results** of **A** on **w**: **positions** where to insert **x** and **y** in **w** such that **A** accepts Here, two results: {**x** : **1**, **y** : **3**} and {**x** : **4**, **y** : **8**}

Consider the automaton with captures **A** on an input string **w**:

Set of **results** of **A** on **w**: **positions** where to insert **x** and **y** in **w** such that **A** accepts Here, two results: {**x** : 1, **y** : 3} and {**x** : 4, **y** : 8}

In this case: endpoints of the factors which are in language **ab*****c**

We want all the results of an automaton with captures on a string

We want an **index** of all the results of an automaton with captures on a string:

We want an index of all the results of an automaton with captures on a string:

• Enumeration algorithm: produce the results in streaming, one after the other, without repetitions

We want an **index** of all the results of an automaton with captures on a string:

- Enumeration algorithm: produce the results in streaming, one after the other, without repetitions
- Performance: maximal delay between two consecutive results

We want an index of all the results of an automaton with captures on a string:

- Enumeration algorithm: produce the results in streaming, one after the other, without repetitions
- Performance: maximal delay between two consecutive results

Goal: constant-delay, independent from the string length. Several uses:

We want an **index** of all the results of an automaton with captures on a string:

- Enumeration algorithm: produce the results in streaming, one after the other, without repetitions
- Performance: maximal delay between two consecutive results

Goal: constant-delay, independent from the string length. Several uses:

- \cdot We can check if there is at least one result, in constant time
- We can produce all results in **output-linear time**

Theorem ([Florenzano et al., 2018])

For a fixed **automaton with captures A**, given a string w, we can prepare in O(w) a data structure to enumerate the results with **constant-delay**

Theorem ([Florenzano et al., 2018])

For a fixed **automaton with captures A**, given a string w, we can prepare in O(w) a data structure to enumerate the results with **constant-delay**

Proof:

• Do a **product** of **A** and **w**

Theorem ([Florenzano et al., 2018])

For a fixed **automaton with captures A**, given a string w, we can prepare in O(w) a data structure to enumerate the results with **constant-delay**

- Do a **product** of **A** and **w**
- Annotate variable transitions with the position in w

Theorem ([Florenzano et al., 2018])

For a fixed **automaton with captures A**, given a string **w**, we can prepare in O(w) a data structure to enumerate the results with **constant-delay**

- Do a **product** of **A** and **w**
- Annotate variable transitions with the position in w
- Replace **non-variable transitions** by ϵ

Theorem ([Florenzano et al., 2018])

For a fixed **automaton with captures A**, given a string w, we can prepare in O(w) a data structure to enumerate the results with **constant-delay**

- Do a **product** of **A** and **w**
- Annotate variable transitions with the position in w
- Replace **non-variable transitions** by ϵ
- Do a form of ϵ -removal (can be done in linear time here)

Theorem ([Florenzano et al., 2018])

For a fixed **automaton with captures A**, given a string **w**, we can prepare in O(w) a data structure to enumerate the results with **constant-delay**

- Do a **product** of **A** and **w**
- Annotate variable transitions with the position in w
- Replace **non-variable transitions** by ϵ
- Do a form of ϵ -removal (can be done in linear time here)
- Enumerate the **paths** of the resulting DAG

Theorem ([Florenzano et al., 2018])

For a fixed **automaton with captures A**, given a string **w**, we can prepare in O(w) a data structure to enumerate the results with **constant-delay**

- Do a **product** of **A** and **w**
- Annotate variable transitions with the position in w
- Replace **non-variable transitions** by ϵ
- Do a form of ϵ -removal (can be done in linear time here)
- Enumerate the paths of the resulting DAG
- \rightarrow Can we incrementally maintain enumeration structures under updates?

Theorem ([Niewerth and Segoufin, 2018])

We can maintain a **constant-delay** enumeration structure for automata with captures under **insertion**, **substitution**, **and deletion updates** in time **O**(log **n**)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Niewerth and Segoufin, 2018])

We can maintain a **constant-delay** enumeration structure for automata with captures under **insertion**, **substitution**, **and deletion updates** in time **O**(log **n**)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])

The same holds with **join** and **split** (and more complex edit operations) but with **logarithmic delay**.

Proof: balancing straight-line programs (SLP)

Theorem ([Niewerth and Segoufin, 2018])

We can maintain a **constant-delay** enumeration structure for automata with captures under **insertion**, **substitution**, **and deletion updates** in time **O**(log **n**)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])

The same holds with **join** and **split** (and more complex edit operations) but with **logarithmic delay**.

Proof: balancing straight-line programs (SLP)

Conjecture

Both are doable: support join and split in time O(log n) and constant-delay

Also: support endpoint updates with constant time and constant-delay

• Can we have a complexity **better than** $O(\log n)$?

- Can we have a complexity **better than** O(log n)?
- Idea: restricting to **specific languages** of automata with captures (like in our classification of regular languages under updates)

- Can we have a complexity **better than** $O(\log n)$?
- Idea: restricting to **specific languages** of automata with captures (like in our classification of regular languages under updates)
- $\rightarrow\,$ Open research question!

Conclusion and perspectives

- We want to **incrementally maintain** information on a string under updates
- Simple Boolean problem: dynamic membership to a regular language
- More expressive problem: maintaining an enumeration structure for an automaton with captures
- General case: everything should always be in $O(\log n)$ (?)
- Better cases:
 - Endpoint updates: everything is in O(1) (?)
 - Substitution updates for dynamic membership: O(1) or $O(\log \log n)$ or $\Theta(\log n / \log \log n)$ (... or?) depending on the language
- Future research: identify more cases below $O(\log n)$

- Maintaining a structure for infix testing, membership testing, etc.
 - \rightarrow Without updates: factorization forests, or structure of [Bojańczyk, 2009]
 - \rightarrow With substitutions: amounts to incremental maintenance for another language
 - \rightarrow With endpoint updates: should be possible in constant-time too

- Maintaining a structure for **infix testing**, membership testing, etc.
 - \rightarrow Without updates: factorization forests, or structure of [Bojańczyk, 2009]
 - \rightarrow With substitutions: amounts to incremental maintenance for another language
 - \rightarrow With endpoint updates: should be possible in constant-time too
- Maintaining a **count**: number of results, acceptance probability, etc.

- Maintaining a structure for **infix testing**, membership testing, etc.
 - \rightarrow Without updates: factorization forests, or structure of [Bojańczyk, 2009]
 - \rightarrow With substitutions: amounts to incremental maintenance for another language
 - \rightarrow With endpoint updates: should be possible in constant-time too
- Maintaining a **count**: number of results, acceptance probability, etc.
- Extending from regular languages to context-free languages
 - \rightarrow Related work: **incremental parsing**?
 - \rightarrow Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
 - $\rightarrow\,$ More research and more algebraic tools needed

- Maintaining a structure for **infix testing**, membership testing, etc.
 - ightarrow Without updates: factorization forests, or structure of [Bojańczyk, 2009]
 - \rightarrow With substitutions: amounts to incremental maintenance for another language
 - \rightarrow With endpoint updates: should be possible in constant-time too
- Maintaining a **count**: number of results, acceptance probability, etc.
- Extending from regular languages to context-free languages
 - \rightarrow Related work: incremental parsing?
 - \rightarrow Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
 - ightarrow More research and more algebraic tools needed
- Extending from string to trees
 - \rightarrow Doable in $O(\log^2 n)$ [Losemann and Martens, 2014]
 - \rightarrow Still $O(\log n)$? [Amarilli et al., 2019], proof currently broken
 - \rightarrow Better than $O(\log n)$: more research and more algebraic tools needed

Future directions

- Maintaining a structure for **infix testing**, membership testing, etc.
 - \rightarrow Without updates: factorization forests, or structure of [Bojańczyk, 2009]
 - \rightarrow With substitutions: amounts to incremental maintenance for another language
 - \rightarrow With endpoint updates: should be possible in constant-time too
- Maintaining a **count**: number of results, acceptance probability, etc.
- Extending from regular languages to context-free languages
 - \rightarrow Related work: **incremental parsing**?
 - \rightarrow Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
 - $\rightarrow\,$ More research and more algebraic tools needed
- Extending from string to trees
 - \rightarrow Doable in $O(\log^2 n)$ [Losemann and Martens, 2014]
 - \rightarrow Still $O(\log n)$? [Amarilli et al., 2019], proof currently broken
 - \rightarrow Better than $O(\log n)$: more research and more algebraic tools needed

- Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019).
 Enumeration on Trees With Tractable Combined Complexity and Efficient Updates.
 - In PODS.
- Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C. (2022).
 Efficient Enumeration Algorithms for Annotated Grammars. In PODS.
- Amarilli, A., Jachiet, L., and Paperman, C. (2021).
 Dynamic Membership for Regular Languages.
 In ICALP.

References ii

Amarilli, A. and Paperman, C. (2021). Locality and Centrality: The Variety ZG. Under review.

Bojańczyk, M. (2009).

Factorization Forests.

In *DLT*.

On the Complexity of a "List" Datastructure in the RAM Model.

Theoretical Computer Science Stack Exchange.

URL: https://cstheory.stackexchange.com/q/46749 (version: 2020-05-25).

- Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).
 Constant Delay Algorithms for Regular Document Spanners.
 In PODS.
- 🔋 Jachiet, L.

Constraints on Sliding Windows.

Theoretical Computer Science Stack Exchange. URL: https://cstheory.stackexchange.com/q/46762 (version: 2020-05-06).

Losemann, K. and Martens, W. (2014).
 MSO Queries on Trees: Enumerating Answers Under Updates.
 In CSL-LICS.

References iv

Niewerth, M. and Segoufin, L. (2018). Enumeration of MSO Queries on Strings with Constant Delay and Logarithmic Updates.

In PODS.

Peterfreund, L. (2021).

Grammars for Document Spanners.

In ICDT.

- Sc
 - Schmid, M. and Schweikardt, N. (2022).

Query Evaluation Over SLP-Represented Document Databases With Complex Document Editing.

In PODS.

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997). Dynamic Word Problems. IACM, 44(2).

- Enumeration algorithms, links to circuit classes
 - Enumeration for regular spanners and grammars
 - In-order enumeration
 - Connections to knowledge compilation

0)000

- Enumeration algorithms, links to circuit classes
 - Enumeration for regular spanners and grammars
 - In-order enumeration
 - Connections to knowledge compilation
- Efficient maintenance of query results on dynamic data
 - Supporting membership queries, counts, enumeration structures...
 - For regular languages, regular tree languages, context-free languages...
 - On **string**, trees, graphs...
 - Under substitution updates or other updates

- Enumeration algorithms, links to circuit classes
 - Enumeration for regular spanners and grammars
 - In-order enumeration
 - Connections to knowledge compilation
- Efficient maintenance of query results on dynamic data
 - Supporting membership queries, counts, enumeration structures...
 - For regular languages, regular tree languages, context-free languages...
 - On **string**, trees, graphs...
 - Under substitution updates or other updates
- Query evaluation on probabilistic data
 - Dichotomies for homomorphism-closed queries
 - Uniform model counting
 - Treewidth-based and grid-minor-based methods

0? 50% 1? 50%

 $0 \times 0 1$

- Enumeration algorithms, links to circuit classes
 - Enumeration for regular spanners and grammars
 - In-order enumeration
 - Connections to knowledge compilation
- Efficient maintenance of query results on dynamic data
 - Supporting membership queries, counts, enumeration structures...
 - For regular languages, regular tree languages, context-free languages...
 - On **string**, trees, graphs...
 - Under substitution updates or other updates
- Query evaluation on probabilistic data
 - Dichotomies for homomorphism-closed queries
 - Uniform model counting
 - Treewidth-based and grid-minor-based methods
- Database theory, provenance, logics...
- 0? 50% 1? 50%

 $0 \times 0 1$

Advertisement: TCS4F and "No free view? No review!"

TheoretiCS

A new **open-access journal** for **theoretical computer science** (managing editor with Nathanaël Fijalkow)

Advertisement: TCS4F and "No free view? No review!"

TheoretiCS

A new **open-access journal** for **theoretical computer science** (managing editor with Nathanaël Fijalkow)

A pledge to **reduce the carbon footprint** of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Advertisement: TCS4F and "No free view? No review!"

TheoretiCS

A new **open-access journal** for **theoretical computer science** (managing editor with Nathanaël Fijalkow)

A pledge to **reduce the carbon footprint** of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

A pledge **not to review** for conferences and journals that do not publish their research as **open access**

www.nofreeviewnoreview.org

(with Antonin Delpeuch)