
Data Structures for Incremental Maintenance
of String Properties under Updates

Antoine Amarilli
May 9, 2022

Télécom Paris

1/22

Incremental maintenance on strings

The concept: incremental maintenance

• You have a string:
→ e.g., aaaabaabaca

• You are interested in a property
→ e.g., having at least one a

• The string is updated
→ e.g., replace the 3rd character by an a

• You want to maintain the property efficiently
→ e.g., with low running time or memory overhead

2/22

Incremental maintenance on strings

The concept: incremental maintenance

• You have a string:
→ e.g., aaaabaabaca

• You are interested in a property
→ e.g., having at least one a

• The string is updated
→ e.g., replace the 3rd character by an a

• You want to maintain the property efficiently
→ e.g., with low running time or memory overhead

2/22

Incremental maintenance on strings

The concept: incremental maintenance

• You have a string:
→ e.g., aaaabaabaca

• You are interested in a property
→ e.g., having at least one a

• The string is updated
→ e.g., replace the 3rd character by an a

• You want to maintain the property efficiently
→ e.g., with low running time or memory overhead

2/22

Incremental maintenance on strings

The concept: incremental maintenance

• You have a string:
→ e.g., aaaabaabaca

• You are interested in a property
→ e.g., having at least one a

• The string is updated
→ e.g., replace the 3rd character by an a

• You want to maintain the property efficiently
→ e.g., with low running time or memory overhead

2/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm:

After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update:

linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm:

Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s

• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ

• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ

• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update:

constant (in the RAM model)

3/22

Naive vs efficient algorithms

How can we efficiently maintain the property “having at least one a”
under substitutions on an input string w of length n?

• Naive algorithm: After each substitution, go over w and search for an a

→ Complexity per update: linear in the length of w, i.e., in O(n)

• Clever algorithm: Maintain a counter κ of the number of a’s
• If you replace an a by another character, decrement κ
• If you replace another character by an a, increment κ
• If κ > 0 then w contains an a

→ Complexity per update: constant (in the RAM model)

3/22

Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

• Dynamic membership under substitution updates
• A general-purpose O(log n) algorithm
• Better algorithms for specific languages: [A., Jachiet, Paperman, ICALP’21]

• Dynamic membership under other update operations
• Endpoint updates: push and pop at the beginning and end
• Insertions and deletions
• Splitting and joining

• Beyond dynamic membership: incremental maintenance for enumeration

4/22

Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

• Dynamic membership under substitution updates
• A general-purpose O(log n) algorithm
• Better algorithms for specific languages: [A., Jachiet, Paperman, ICALP’21]

• Dynamic membership under other update operations
• Endpoint updates: push and pop at the beginning and end
• Insertions and deletions
• Splitting and joining

• Beyond dynamic membership: incremental maintenance for enumeration

4/22

Structure of the talk

We focus on the dynamic membership problem:
incremental maintenance of membership to a regular language

• Dynamic membership under substitution updates
• A general-purpose O(log n) algorithm
• Better algorithms for specific languages: [A., Jachiet, Paperman, ICALP’21]

• Dynamic membership under other update operations
• Endpoint updates: push and pop at the beginning and end
• Insertions and deletions
• Splitting and joining

• Beyond dynamic membership: incremental maintenance for enumeration

4/22

Regular languages and
substitution updates

Problem: dynamic membership for regular languages under substitutions

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input string w with n := |w|
→ E.g., w = abbbab

• Maintain the membership of w to L under substitution updates
→ Initially, we have w /∈ L
→ Replace character at position 3 with a: we now have w ∈ L
→ The length n never changes

• Model: RAM model
• Cell size in Θ(log(n))
• Unit-cost arithmetics

5/22

Problem: dynamic membership for regular languages under substitutions

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input string w with n := |w|
→ E.g., w = abbbab

• Maintain the membership of w to L under substitution updates
→ Initially, we have w /∈ L
→ Replace character at position 3 with a: we now have w ∈ L
→ The length n never changes

• Model: RAM model
• Cell size in Θ(log(n))
• Unit-cost arithmetics

5/22

Problem: dynamic membership for regular languages under substitutions

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input string w with n := |w|
→ E.g., w = abbbab

• Maintain the membership of w to L under substitution updates
→ Initially, we have w /∈ L
→ Replace character at position 3 with a: we now have w ∈ L
→ The length n never changes

• Model: RAM model
• Cell size in Θ(log(n))
• Unit-cost arithmetics

5/22

A general-purpose O(log n) algorithm

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input string w = abbbab

• Label each node n by the transition monoid element: all pairs q⇝ q′ such
that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

6/22

A general-purpose O(log n) algorithm

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input string w = abbbab

• Label each node n by the transition monoid element: all pairs q⇝ q′ such
that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

6/22

A general-purpose O(log n) algorithm

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input string w = abbbab

• Label each node n by the transition monoid element: all pairs q⇝ q′ such
that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

6/22

A general-purpose O(log n) algorithm

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input string w = abbbab
• Label each node n by the transition monoid element: all pairs q⇝ q′ such

that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

6/22

A general-purpose O(log n) algorithm

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input string w = abbbab
• Label each node n by the transition monoid element: all pairs q⇝ q′ such

that we can go from q to q′ by reading the factor below n

a b b b a b
0⇝ 0 ∅ 0⇝ 0

∅ 0⇝ 0
∅

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

6/22

A general-purpose O(log n) algorithm

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input string w = abbbab
• Label each node n by the transition monoid element: all pairs q⇝ q′ such

that we can go from q to q′ by reading the factor below n

a b b b a b
0⇝ 0 ∅ 0⇝ 0

∅ 0⇝ 0
∅

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

6/22

Improving on O(log n) for some languages

For our language L = (ab)∗ we can handle updates in O(1):

• Check that n is even
• Count violations: a’s at even positions and b’s at odd positions
• Maintain this counter in constant time
• We have w ∈ L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?

7/22

Improving on O(log n) for some languages

For our language L = (ab)∗ we can handle updates in O(1):

• Check that n is even
• Count violations: a’s at even positions and b’s at odd positions
• Maintain this counter in constant time
• We have w ∈ L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?

7/22

Improving on O(log n) for some languages

For our language L = (ab)∗ we can handle updates in O(1):

• Check that n is even
• Count violations: a’s at even positions and b’s at odd positions
• Maintain this counter in constant time
• We have w ∈ L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?

7/22

Summary of our results

QLZG: in O(1)

QSG: in O(log log n)
not in O(1)?

All: in Θ(log n/ log log n)

• We identify a class QLZG of regular languages:
• for any language in QLZG, dynamic membership is in O(1)
• for any language not in QLZG, we can reduce from a

problem that we conjecture is not in O(1)

• We identify a class QSG of regular languages:
• for any language in QSG, the problem is in O(log log n)
• for any language not in QSG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

• The problem is always in O(log n/ log log n)

8/22

Summary of our results

QLZG: in O(1)

QSG: in O(log log n)
not in O(1)?

All: in Θ(log n/ log log n)

• We identify a class QLZG of regular languages:
• for any language in QLZG, dynamic membership is in O(1)
• for any language not in QLZG, we can reduce from a

problem that we conjecture is not in O(1)

• We identify a class QSG of regular languages:
• for any language in QSG, the problem is in O(log log n)
• for any language not in QSG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

• The problem is always in O(log n/ log log n)

8/22

Summary of our results

QLZG: in O(1)

QSG: in O(log log n)
not in O(1)?

All: in Θ(log n/ log log n)

• We identify a class QLZG of regular languages:
• for any language in QLZG, dynamic membership is in O(1)
• for any language not in QLZG, we can reduce from a

problem that we conjecture is not in O(1)

• We identify a class QSG of regular languages:
• for any language in QSG, the problem is in O(log log n)
• for any language not in QSG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

• The problem is always in O(log n/ log log n)

8/22

Regular languages
and more expressive updates

Endpoint updates

• Simplest updates that change the string length: endpoint updates

• Insert a letter at the beginning of the string, or delete the first letter
• Insert a letter at the end of the string, or delete the last letter

→ Similar to a doubly-ended queue (deque)
→ Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal

9/22

Endpoint updates

• Simplest updates that change the string length: endpoint updates
• Insert a letter at the beginning of the string, or delete the first letter
• Insert a letter at the end of the string, or delete the last letter

→ Similar to a doubly-ended queue (deque)
→ Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal

9/22

Endpoint updates

• Simplest updates that change the string length: endpoint updates
• Insert a letter at the beginning of the string, or delete the first letter
• Insert a letter at the end of the string, or delete the last letter

→ Similar to a doubly-ended queue (deque)
→ Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal

9/22

Endpoint updates

• Simplest updates that change the string length: endpoint updates
• Insert a letter at the beginning of the string, or delete the first letter
• Insert a letter at the end of the string, or delete the last letter

→ Similar to a doubly-ended queue (deque)
→ Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof:

simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal

9/22

Endpoint updates

• Simplest updates that change the string length: endpoint updates
• Insert a letter at the beginning of the string, or delete the first letter
• Insert a letter at the end of the string, or delete the last letter

→ Similar to a doubly-ended queue (deque)
→ Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal

9/22

Endpoint updates

• Simplest updates that change the string length: endpoint updates
• Insert a letter at the beginning of the string, or delete the first letter
• Insert a letter at the end of the string, or delete the last letter

→ Similar to a doubly-ended queue (deque)
→ Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof:

regular languages are closed under reversal

9/22

Endpoint updates

• Simplest updates that change the string length: endpoint updates
• Insert a letter at the beginning of the string, or delete the first letter
• Insert a letter at the end of the string, or delete the last letter

→ Similar to a doubly-ended queue (deque)
→ Special case: sliding window

Theorem
Dynamic membership to any fixed regular language under endpoint updates at
the end of the string is possible in constant time

Proof: simply extend/truncate the run of a deterministic automaton

Theorem
The same holds for udpates at the beginning of the string

Proof: regular languages are closed under reversal
9/22

Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed regular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

• Store the string in an amortized circular buffer
• We will again store the transition monoid element achieved by some factors
• Naive idea: split the string in two (put a guardian in the middle):

• store the transition monoid elements of all suffixes of the first half
• and of all prefixes of the second half

• Whenever the updates shift the string too much and the guardian is far from
the current middle, create a new guardian at the new middle

10/22

Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed regular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

• Store the string in an amortized circular buffer
• We will again store the transition monoid element achieved by some factors

• Naive idea: split the string in two (put a guardian in the middle):
• store the transition monoid elements of all suffixes of the first half
• and of all prefixes of the second half

• Whenever the updates shift the string too much and the guardian is far from
the current middle, create a new guardian at the new middle

10/22

Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed regular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

• Store the string in an amortized circular buffer
• We will again store the transition monoid element achieved by some factors
• Naive idea: split the string in two (put a guardian in the middle):

• store the transition monoid elements of all suffixes of the first half
• and of all prefixes of the second half

• Whenever the updates shift the string too much and the guardian is far from
the current middle, create a new guardian at the new middle

10/22

Tractability under endpoint updates

Theorem (Louis Jachiet, CStheory (TCS.SE), 2020)
Dynamic membership to any fixed regular language under endpoint updates is
possible in constant time

Proof (“guardian algorithm”):

• Store the string in an amortized circular buffer
• We will again store the transition monoid element achieved by some factors
• Naive idea: split the string in two (put a guardian in the middle):

• store the transition monoid elements of all suffixes of the first half
• and of all prefixes of the second half

• Whenever the updates shift the string too much and the guardian is far from
the current middle, create a new guardian at the new middle

10/22

Richer updates

Which other updates do we want on strings in practice?

• Insertion and deletion at arbitrary positions
• Split a string in two, and join two strings

• Special case: cut and paste a factor to a different place

Theorem (Folklore?)
Dynamic membership to any fixed regular language under insertion, substitution,
deletion, split, join is possible in O(log n) time

Proof: use balancing binary trees (AVL trees) instead of the fixed complete binary
tree of the O(log n) algorithm for substitutions

11/22

Richer updates

Which other updates do we want on strings in practice?

• Insertion and deletion at arbitrary positions

• Split a string in two, and join two strings
• Special case: cut and paste a factor to a different place

Theorem (Folklore?)
Dynamic membership to any fixed regular language under insertion, substitution,
deletion, split, join is possible in O(log n) time

Proof: use balancing binary trees (AVL trees) instead of the fixed complete binary
tree of the O(log n) algorithm for substitutions

11/22

Richer updates

Which other updates do we want on strings in practice?

• Insertion and deletion at arbitrary positions
• Split a string in two, and join two strings

• Special case: cut and paste a factor to a different place

Theorem (Folklore?)
Dynamic membership to any fixed regular language under insertion, substitution,
deletion, split, join is possible in O(log n) time

Proof: use balancing binary trees (AVL trees) instead of the fixed complete binary
tree of the O(log n) algorithm for substitutions

11/22

Richer updates

Which other updates do we want on strings in practice?

• Insertion and deletion at arbitrary positions
• Split a string in two, and join two strings

• Special case: cut and paste a factor to a different place

Theorem (Folklore?)
Dynamic membership to any fixed regular language under insertion, substitution,
deletion, split, join is possible in O(log n) time

Proof: use balancing binary trees (AVL trees) instead of the fixed complete binary
tree of the O(log n) algorithm for substitutions

11/22

Doing better than O(log n) with insertions and deletions?

• For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

• Is the same true when allowing arbitrary insertions and deletions?

→ No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned
by David Eppstein, CStheory (TCS.SE), 2020)
Maintaining membership to the language Σ∗aΣ∗ (“does the string contain an a”)
under insertions and deletions is in Ω(log n/ log log n)

12/22

Doing better than O(log n) with insertions and deletions?

• For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

• Is the same true when allowing arbitrary insertions and deletions?
→ No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned
by David Eppstein, CStheory (TCS.SE), 2020)

Maintaining membership to the language Σ∗aΣ∗ (“does the string contain an a”)
under insertions and deletions is in Ω(log n/ log log n)

12/22

Doing better than O(log n) with insertions and deletions?

• For substitutions, we could do better than O(log n) for some subclasses of
the regular languages

• Is the same true when allowing arbitrary insertions and deletions?
→ No!

Theorem (Question by Louis Jachiet, result by Kasper Green Larsen, mentioned
by David Eppstein, CStheory (TCS.SE), 2020)
Maintaining membership to the language Σ∗aΣ∗ (“does the string contain an a”)
under insertions and deletions is in Ω(log n/ log log n)

12/22

Summary for dynamic membership to fixed regular languages

• With endpoint updates:

always doable in O(1)
• With substitution updates:

• General bound Θ(log n/ log log n)
• Characterization of some (all?) O(1) cases and O(log log n) cases

→ Open question: are there other classes?
• With insertion and deletions:

• General O(log n) bound with AVL-trees, event with split and join
• Lower bound Ω(log n/ log log n) for essentially all languages

→ Open question: combination of substitutions + endpoint updates
→ Open question: different models, e.g., doubly linked lists?

13/22

Summary for dynamic membership to fixed regular languages

• With endpoint updates: always doable in O(1)

• With substitution updates:
• General bound Θ(log n/ log log n)
• Characterization of some (all?) O(1) cases and O(log log n) cases

→ Open question: are there other classes?
• With insertion and deletions:

• General O(log n) bound with AVL-trees, event with split and join
• Lower bound Ω(log n/ log log n) for essentially all languages

→ Open question: combination of substitutions + endpoint updates
→ Open question: different models, e.g., doubly linked lists?

13/22

Summary for dynamic membership to fixed regular languages

• With endpoint updates: always doable in O(1)
• With substitution updates:

• General bound Θ(log n/ log log n)
• Characterization of some (all?) O(1) cases and O(log log n) cases

→ Open question: are there other classes?
• With insertion and deletions:

• General O(log n) bound with AVL-trees, event with split and join
• Lower bound Ω(log n/ log log n) for essentially all languages

→ Open question: combination of substitutions + endpoint updates
→ Open question: different models, e.g., doubly linked lists?

13/22

Summary for dynamic membership to fixed regular languages

• With endpoint updates: always doable in O(1)
• With substitution updates:

• General bound Θ(log n/ log log n)
• Characterization of some (all?) O(1) cases and O(log log n) cases

→ Open question: are there other classes?

• With insertion and deletions:
• General O(log n) bound with AVL-trees, event with split and join
• Lower bound Ω(log n/ log log n) for essentially all languages

→ Open question: combination of substitutions + endpoint updates
→ Open question: different models, e.g., doubly linked lists?

13/22

Summary for dynamic membership to fixed regular languages

• With endpoint updates: always doable in O(1)
• With substitution updates:

• General bound Θ(log n/ log log n)
• Characterization of some (all?) O(1) cases and O(log log n) cases

→ Open question: are there other classes?
• With insertion and deletions:

• General O(log n) bound with AVL-trees, event with split and join
• Lower bound Ω(log n/ log log n) for essentially all languages

→ Open question: combination of substitutions + endpoint updates
→ Open question: different models, e.g., doubly linked lists?

13/22

Summary for dynamic membership to fixed regular languages

• With endpoint updates: always doable in O(1)
• With substitution updates:

• General bound Θ(log n/ log log n)
• Characterization of some (all?) O(1) cases and O(log log n) cases

→ Open question: are there other classes?
• With insertion and deletions:

• General O(log n) bound with AVL-trees, event with split and join
• Lower bound Ω(log n/ log log n) for essentially all languages

→ Open question: combination of substitutions + endpoint updates
→ Open question: different models, e.g., doubly linked lists?

13/22

Summary for dynamic membership to fixed regular languages

• With endpoint updates: always doable in O(1)
• With substitution updates:

• General bound Θ(log n/ log log n)
• Characterization of some (all?) O(1) cases and O(log log n) cases

→ Open question: are there other classes?
• With insertion and deletions:

• General O(log n) bound with AVL-trees, event with split and join
• Lower bound Ω(log n/ log log n) for essentially all languages

→ Open question: combination of substitutions + endpoint updates
→ Open question: different models, e.g., doubly linked lists?

13/22

Incremental maintenance
for enumeration structures

Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:
• “what is the first factor ab∗c?”
• “how many factors ab∗c are there?”
• “compute an index to test efficiently if a factor is of the form ab∗c?”

→ “compute an index to enumerate efficiently the factors ab∗c”

14/22

Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:
• “what is the first factor ab∗c?”
• “how many factors ab∗c are there?”
• “compute an index to test efficiently if a factor is of the form ab∗c?”

→ “compute an index to enumerate efficiently the factors ab∗c”

14/22

Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:
• “what is the first factor ab∗c?”
• “how many factors ab∗c are there?”
• “compute an index to test efficiently if a factor is of the form ab∗c?”

→ “compute an index to enumerate efficiently the factors ab∗c”

14/22

Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:

• “what is the first factor ab∗c?”
• “how many factors ab∗c are there?”
• “compute an index to test efficiently if a factor is of the form ab∗c?”

→ “compute an index to enumerate efficiently the factors ab∗c”

14/22

Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:
• “what is the first factor ab∗c?”

• “how many factors ab∗c are there?”
• “compute an index to test efficiently if a factor is of the form ab∗c?”

→ “compute an index to enumerate efficiently the factors ab∗c”

14/22

Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:
• “what is the first factor ab∗c?”
• “how many factors ab∗c are there?”

• “compute an index to test efficiently if a factor is of the form ab∗c?”
→ “compute an index to enumerate efficiently the factors ab∗c”

14/22

Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:
• “what is the first factor ab∗c?”
• “how many factors ab∗c are there?”
• “compute an index to test efficiently if a factor is of the form ab∗c?”

→ “compute an index to enumerate efficiently the factors ab∗c”

14/22

Beyond dynamic membership

• So far, we have only talked about maintaining Boolean information
→ “does the string contain a factor ab∗c?”

• More interesting: maintain non-Boolean information, i.e., a set of results:
→ “what are the factors ab∗c?”

• Problem: there can be many results, so we cannot maintain the full set

• Ideas:
• “what is the first factor ab∗c?”
• “how many factors ab∗c are there?”
• “compute an index to test efficiently if a factor is of the form ab∗c?”

→ “compute an index to enumerate efficiently the factors ab∗c”
14/22

Generalizing factors

What is the right notion of result that we want to find in a string?

• Factors? suffixes? prefixes?

• Pairs of factors? Tuples of factors?

A robust notion: automata with captures

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

• Equivalently: monadic second-order queries with free variables
• Special case: document spanners studied in information extraction

15/22

Generalizing factors

What is the right notion of result that we want to find in a string?

• Factors? suffixes? prefixes?
• Pairs of factors? Tuples of factors?

A robust notion: automata with captures

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

• Equivalently: monadic second-order queries with free variables
• Special case: document spanners studied in information extraction

15/22

Generalizing factors

What is the right notion of result that we want to find in a string?

• Factors? suffixes? prefixes?
• Pairs of factors? Tuples of factors?

A robust notion: automata with captures

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

• Equivalently: monadic second-order queries with free variables
• Special case: document spanners studied in information extraction

15/22

Generalizing factors

What is the right notion of result that we want to find in a string?

• Factors? suffixes? prefixes?
• Pairs of factors? Tuples of factors?

A robust notion: automata with captures

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

• Equivalently: monadic second-order queries with free variables
• Special case: document spanners studied in information extraction

15/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b

x

a c

y

b

x

a b b c

y

c

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results: {x : 1, y : 3} and {x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b

x

a c

y

b

x

a b b c

y

c

Set of results of A on w:

positions where to insert x and y in w such that A accepts

Here, two results: {x : 1, y : 3} and {x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b

x

a c

y

b

x

a b b c

y

c

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results: {x : 1, y : 3} and {x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b

x

a c

y

b

x

a b b c

y

c

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results:

{x : 1, y : 3} and {x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b xa c yb

x

a b b c

y

c

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results:

{x : 1, y : 3} and {x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b xa c yb

x

a b b c

y

c

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results: {x : 1, y : 3} and

{x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b

x

a c

y

b xa b b c yc

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results: {x : 1, y : 3} and

{x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b

x

a c

y

b xa b b c yc

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results: {x : 1, y : 3} and {x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c

16/22

Semantics of an automaton with captures

Consider the automaton with captures A on an input string w:

0start 1 2 3 4

a,b, c

x a

b

c y

a,b, c

0 1 2 3 4 5 6 7 8 9
w = b

x

a c

y

b

x

a b b c

y

c

Set of results of A on w: positions where to insert x and y in w such that A accepts

Here, two results: {x : 1, y : 3} and {x : 4, y : 8}

In this case: endpoints of the factors which are in language ab∗c
16/22

Enumeration algorithms

We want

an index of

all the results of an automaton with captures on a string

:

• Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions

• Performance: maximal delay between two consecutive results

Example: enumerate the results of 0start 1 3

a,b, c

x

a,b, c

y

a,b, c

Goal: constant-delay, independent from the string length. Several uses:

• We can check if there is at least one result, in constant time
• We can produce all results in output-linear time

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

• Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions

• Performance: maximal delay between two consecutive results

Example: enumerate the results of 0start 1 3

a,b, c

x

a,b, c

y

a,b, c

Goal: constant-delay, independent from the string length. Several uses:

• We can check if there is at least one result, in constant time
• We can produce all results in output-linear time

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

• Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions

• Performance: maximal delay between two consecutive results

Example: enumerate the results of 0start 1 3

a,b, c

x

a,b, c

y

a,b, c

Goal: constant-delay, independent from the string length. Several uses:

• We can check if there is at least one result, in constant time
• We can produce all results in output-linear time

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

• Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions

• Performance: maximal delay between two consecutive results

Example: enumerate the results of 0start 1 3

a,b, c

x

a,b, c

y

a,b, c

Goal: constant-delay, independent from the string length. Several uses:

• We can check if there is at least one result, in constant time
• We can produce all results in output-linear time

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

• Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions

• Performance: maximal delay between two consecutive results

Example: enumerate the results of 0start 1 3

a,b, c

x

a,b, c

y

a,b, c

Goal: constant-delay, independent from the string length. Several uses:

• We can check if there is at least one result, in constant time
• We can produce all results in output-linear time

17/22

Enumeration algorithms

We want an index of all the results of an automaton with captures on a string:

• Enumeration algorithm: produce the results in streaming, one after the other,
without repetitions

• Performance: maximal delay between two consecutive results

Example: enumerate the results of 0start 1 3

a,b, c

x

a,b, c

y

a,b, c

Goal: constant-delay, independent from the string length. Several uses:

• We can check if there is at least one result, in constant time
• We can produce all results in output-linear time

17/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

• Do a product of A and w
• Annotate variable transitions with the position in w
• Replace non-variable transitions by ϵ

• Do a form of ϵ-removal (can be done in linear time here)
• Enumerate the paths of the resulting DAG

→ Can we incrementally maintain enumeration structures under updates?

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

• Do a product of A and w

• Annotate variable transitions with the position in w
• Replace non-variable transitions by ϵ

• Do a form of ϵ-removal (can be done in linear time here)
• Enumerate the paths of the resulting DAG

→ Can we incrementally maintain enumeration structures under updates?

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

• Do a product of A and w
• Annotate variable transitions with the position in w

• Replace non-variable transitions by ϵ

• Do a form of ϵ-removal (can be done in linear time here)
• Enumerate the paths of the resulting DAG

→ Can we incrementally maintain enumeration structures under updates?

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

• Do a product of A and w
• Annotate variable transitions with the position in w
• Replace non-variable transitions by ϵ

• Do a form of ϵ-removal (can be done in linear time here)
• Enumerate the paths of the resulting DAG

→ Can we incrementally maintain enumeration structures under updates?

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

• Do a product of A and w
• Annotate variable transitions with the position in w
• Replace non-variable transitions by ϵ

• Do a form of ϵ-removal (can be done in linear time here)

• Enumerate the paths of the resulting DAG

→ Can we incrementally maintain enumeration structures under updates?

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

• Do a product of A and w
• Annotate variable transitions with the position in w
• Replace non-variable transitions by ϵ

• Do a form of ϵ-removal (can be done in linear time here)
• Enumerate the paths of the resulting DAG

→ Can we incrementally maintain enumeration structures under updates?

18/22

Enumeration without updates

How can we enumerate the results of an automaton with captures on a string
(without updates)?

Theorem ([Florenzano et al., 2018])
For a fixed automaton with captures A, given a string w, we can prepare in O(w) a
data structure to enumerate the results with constant-delay

Proof:

• Do a product of A and w
• Annotate variable transitions with the position in w
• Replace non-variable transitions by ϵ

• Do a form of ϵ-removal (can be done in linear time here)
• Enumerate the paths of the resulting DAG

→ Can we incrementally maintain enumeration structures under updates?
18/22

Maintaining an enumeration structure

Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])
The same holds with join and split (and more complex edit operations) but with
logarithmic delay.

Proof: balancing straight-line programs (SLP)

Conjecture
Both are doable: support join and split in time O(log n) and constant-delay

Also: support endpoint updates with constant time and constant-delay

19/22

Maintaining an enumeration structure

Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])
The same holds with join and split (and more complex edit operations) but with
logarithmic delay.

Proof: balancing straight-line programs (SLP)

Conjecture
Both are doable: support join and split in time O(log n) and constant-delay

Also: support endpoint updates with constant time and constant-delay

19/22

Maintaining an enumeration structure

Theorem ([Niewerth and Segoufin, 2018])
We can maintain a constant-delay enumeration structure for automata with
captures under insertion, substitution, and deletion updates in time O(log n)

Proof: complex formal language results (Krohn-Rhodes theory).

Theorem ([Schmid and Schweikardt, 2022])
The same holds with join and split (and more complex edit operations) but with
logarithmic delay.

Proof: balancing straight-line programs (SLP)

Conjecture
Both are doable: support join and split in time O(log n) and constant-delay

Also: support endpoint updates with constant time and constant-delay 19/22

Improving the complexity

• Can we have a complexity better than O(log n)?

• Idea: restricting to specific languages of automata with captures
(like in our classification of regular languages under updates)

→ Open research question!

20/22

Improving the complexity

• Can we have a complexity better than O(log n)?
• Idea: restricting to specific languages of automata with captures

(like in our classification of regular languages under updates)

→ Open research question!

20/22

Improving the complexity

• Can we have a complexity better than O(log n)?
• Idea: restricting to specific languages of automata with captures

(like in our classification of regular languages under updates)
→ Open research question!

20/22

Conclusion and perspectives

High-level summary

• We want to incrementally maintain information on a string under updates
• Simple Boolean problem: dynamic membership to a regular language
• More expressive problem: maintaining an enumeration structure for an

automaton with captures
• General case: everything should always be in O(log n) (?)
• Better cases:

• Endpoint updates: everything is in O(1) (?)
• Substitution updates for dynamic membership: O(1) or O(log log n) or
Θ(log n/ log log n) (... or?) depending on the language

• Future research: identify more cases below O(log n)

21/22

Future directions

• Maintaining a structure for infix testing, membership testing, etc.
→ Without updates: factorization forests, or structure of [Bojańczyk, 2009]
→ With substitutions: amounts to incremental maintenance for another language
→ With endpoint updates: should be possible in constant-time too

• Maintaining a count: number of results, acceptance probability, etc.

• Extending from regular languages to context-free languages
→ Related work: incremental parsing?
→ Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
→ More research and more algebraic tools needed

• Extending from string to trees
→ Doable in O(log2 n) [Losemann and Martens, 2014]
→ Still O(log n)? [Amarilli et al., 2019], proof currently broken
→ Better than O(log n): more research and more algebraic tools needed

Thanks for your attention!

22/22

Future directions

• Maintaining a structure for infix testing, membership testing, etc.
→ Without updates: factorization forests, or structure of [Bojańczyk, 2009]
→ With substitutions: amounts to incremental maintenance for another language
→ With endpoint updates: should be possible in constant-time too

• Maintaining a count: number of results, acceptance probability, etc.

• Extending from regular languages to context-free languages
→ Related work: incremental parsing?
→ Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
→ More research and more algebraic tools needed

• Extending from string to trees
→ Doable in O(log2 n) [Losemann and Martens, 2014]
→ Still O(log n)? [Amarilli et al., 2019], proof currently broken
→ Better than O(log n): more research and more algebraic tools needed

Thanks for your attention!

22/22

Future directions

• Maintaining a structure for infix testing, membership testing, etc.
→ Without updates: factorization forests, or structure of [Bojańczyk, 2009]
→ With substitutions: amounts to incremental maintenance for another language
→ With endpoint updates: should be possible in constant-time too

• Maintaining a count: number of results, acceptance probability, etc.

• Extending from regular languages to context-free languages
→ Related work: incremental parsing?
→ Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
→ More research and more algebraic tools needed

• Extending from string to trees
→ Doable in O(log2 n) [Losemann and Martens, 2014]
→ Still O(log n)? [Amarilli et al., 2019], proof currently broken
→ Better than O(log n): more research and more algebraic tools needed

Thanks for your attention!

22/22

Future directions

• Maintaining a structure for infix testing, membership testing, etc.
→ Without updates: factorization forests, or structure of [Bojańczyk, 2009]
→ With substitutions: amounts to incremental maintenance for another language
→ With endpoint updates: should be possible in constant-time too

• Maintaining a count: number of results, acceptance probability, etc.

• Extending from regular languages to context-free languages
→ Related work: incremental parsing?
→ Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
→ More research and more algebraic tools needed

• Extending from string to trees
→ Doable in O(log2 n) [Losemann and Martens, 2014]
→ Still O(log n)? [Amarilli et al., 2019], proof currently broken
→ Better than O(log n): more research and more algebraic tools needed

Thanks for your attention!

22/22

Future directions

• Maintaining a structure for infix testing, membership testing, etc.
→ Without updates: factorization forests, or structure of [Bojańczyk, 2009]
→ With substitutions: amounts to incremental maintenance for another language
→ With endpoint updates: should be possible in constant-time too

• Maintaining a count: number of results, acceptance probability, etc.

• Extending from regular languages to context-free languages
→ Related work: incremental parsing?
→ Data structures for enumeration: [Peterfreund, 2021] [Amarilli et al., 2022]
→ More research and more algebraic tools needed

• Extending from string to trees
→ Doable in O(log2 n) [Losemann and Martens, 2014]
→ Still O(log n)? [Amarilli et al., 2019], proof currently broken
→ Better than O(log n): more research and more algebraic tools needed

Thanks for your attention! 22/22

References i

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019).
Enumeration on Trees With Tractable Combined Complexity and Efficient
Updates.
In PODS.
Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C. (2022).
Efficient Enumeration Algorithms for Annotated Grammars.
In PODS.
Amarilli, A., Jachiet, L., and Paperman, C. (2021).
Dynamic Membership for Regular Languages.
In ICALP.

https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/
https://arxiv.org/abs/2201.00549
https://2022.sigmod.org/
http://arxiv.org/abs/2102.07728
https://easyconferences.eu/icalp2021/

References ii

Amarilli, A. and Paperman, C. (2021).
Locality and Centrality: The Variety ZG.
Under review.
Bojańczyk, M. (2009).
Factorization Forests.
In DLT.
Eppstein, D.
On the Complexity of a “List” Datastructure in the RAM Model.
Theoretical Computer Science Stack Exchange.
URL: https://cstheory.stackexchange.com/q/46749 (version: 2020-05-25).

http://arxiv.org/abs/2102.07724
https://www.mimuw.edu.pl/~bojan/papers/forests-dlt.pdf
https://cstheory.stackexchange.com/q/46749

References iii

Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).
Constant Delay Algorithms for Regular Document Spanners.
In PODS.
Jachiet, L.
Constraints on Sliding Windows.
Theoretical Computer Science Stack Exchange.
URL: https://cstheory.stackexchange.com/q/46762 (version: 2020-05-06).

Losemann, K. and Martens, W. (2014).
MSO Queries on Trees: Enumerating Answers Under Updates.
In CSL-LICS.

https://www.mimuw.edu.pl/~bojan/papers/forests-dlt.pdf
https://cstheory.stackexchange.com/q/46762
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf

References iv

Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO Queries on Strings with Constant Delay and
Logarithmic Updates.
In PODS.
Peterfreund, L. (2021).
Grammars for Document Spanners.
In ICDT.
Schmid, M. and Schweikardt, N. (2022).
Query Evaluation Over SLP-Represented Document Databases With Complex
Document Editing.
In PODS.

https://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-update-words.pdf
https://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-update-words.pdf
https://drops.dagstuhl.de/opus/volltexte/2021/13715/pdf/LIPIcs-ICDT-2021-7.pdf
https://hal.archives-ouvertes.fr/hal-03652005/
https://hal.archives-ouvertes.fr/hal-03652005/

References v

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).
Dynamic Word Problems.
JACM, 44(2).

Other research themes

- 00
- 01
- 10 ...

• Enumeration algorithms, links to circuit classes
• Enumeration for regular spanners and grammars
• In-order enumeration
• Connections to knowledge compilation

0 0 0 1
1

• Efficient maintenance of query results on dynamic data
• Supporting membership queries, counts, enumeration structures...
• For regular languages, regular tree languages, context-free languages...
• On string, trees, graphs...
• Under substitution updates or other updates

0?
1?

50%
50%

• Query evaluation on probabilistic data
• Dichotomies for homomorphism-closed queries
• Uniform model counting
• Treewidth-based and grid-minor-based methods

• Database theory, provenance, logics...

Other research themes

- 00
- 01
- 10 ...

• Enumeration algorithms, links to circuit classes
• Enumeration for regular spanners and grammars
• In-order enumeration
• Connections to knowledge compilation

0 0 0 1
1

• Efficient maintenance of query results on dynamic data
• Supporting membership queries, counts, enumeration structures...
• For regular languages, regular tree languages, context-free languages...
• On string, trees, graphs...
• Under substitution updates or other updates

0?
1?

50%
50%

• Query evaluation on probabilistic data
• Dichotomies for homomorphism-closed queries
• Uniform model counting
• Treewidth-based and grid-minor-based methods

• Database theory, provenance, logics...

Other research themes

- 00
- 01
- 10 ...

• Enumeration algorithms, links to circuit classes
• Enumeration for regular spanners and grammars
• In-order enumeration
• Connections to knowledge compilation

0 0 0 1
1

• Efficient maintenance of query results on dynamic data
• Supporting membership queries, counts, enumeration structures...
• For regular languages, regular tree languages, context-free languages...
• On string, trees, graphs...
• Under substitution updates or other updates

0?
1?

50%
50%

• Query evaluation on probabilistic data
• Dichotomies for homomorphism-closed queries
• Uniform model counting
• Treewidth-based and grid-minor-based methods

• Database theory, provenance, logics...

Other research themes

- 00
- 01
- 10 ...

• Enumeration algorithms, links to circuit classes
• Enumeration for regular spanners and grammars
• In-order enumeration
• Connections to knowledge compilation

0 0 0 1
1

• Efficient maintenance of query results on dynamic data
• Supporting membership queries, counts, enumeration structures...
• For regular languages, regular tree languages, context-free languages...
• On string, trees, graphs...
• Under substitution updates or other updates

0?
1?

50%
50%

• Query evaluation on probabilistic data
• Dichotomies for homomorphism-closed queries
• Uniform model counting
• Treewidth-based and grid-minor-based methods

• Database theory, provenance, logics...

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaël Fijalkow)

A pledge to reduce the carbon footprint of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

A pledge not to review for conferences and journals that do not
publish their research as open access

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaël Fijalkow)

A pledge to reduce the carbon footprint of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

A pledge not to review for conferences and journals that do not
publish their research as open access

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaël Fijalkow)

A pledge to reduce the carbon footprint of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

A pledge not to review for conferences and journals that do not
publish their research as open access

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

www.tcs4f.org
www.nofreeviewnoreview.org

	Regular languages and substitution updates
	Regular languages and more expressive updates
	Incremental maintenance for enumeration structures
	Conclusion and perspectives
	Appendix

