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Query evaluation

The main database problem is query evaluation

Data D: what we know

? Query Q: question asked about the data

i Result: all results of the query Q on the data D

Measure of e�ciency: computational complexity:

• Combined complexity: D and Q are inputs
• Data complexity: Q is �xed, D is the input
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Structured data: trees

• Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

• Important special case: text

• On this kind of data, we can use more e�cient
query evaluation techniques

• Natural query language: monadic second-order
logic (MSO)

• Very expressive
• Corresponds to tree automata
• Data complexity is in linear time

3/35



Structured data: trees

• Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

• Important special case: text

• On this kind of data, we can use more e�cient
query evaluation techniques

• Natural query language: monadic second-order
logic (MSO)

• Very expressive
• Corresponds to tree automata
• Data complexity is in linear time

3/35



Structured data: trees

• Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

• Important special case: text

• On this kind of data, we can use more e�cient
query evaluation techniques

• Natural query language: monadic second-order
logic (MSO)

• Very expressive
• Corresponds to tree automata
• Data complexity is in linear time

3/35



Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a Boolean formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satis�es the query Q

• Data complexity: linear in T
• Combined complexity: cannot be elementary

4/35



Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a Boolean formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satis�es the query Q

• Data complexity: linear in T
• Combined complexity: cannot be elementary

4/35



Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a Boolean formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satis�es the query Q

• Data complexity: linear in T
• Combined complexity: cannot be elementary

4/35



Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a Boolean formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satis�es the query Q

• Data complexity: linear in T
• Combined complexity: cannot be elementary

4/35



Beyond Boolean queries

• Boolean queries only gives YES/NO answers
→ YES, there is both a pink and a blue node

• Better idea: non-Boolean queries
→ e.g., Q(x, y): “x is a pink node and y is a blue node”

• Challenge: how to de�ne complexity for non-Boolean queries?
• Just writing the output is slow in the worst case
• Easy solution: the naive algorithm that tests all pairs
→ We need a new de�nition of complexity
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Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms
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Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State
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Main results

• We are given: the tree T, a non-Boolean query Q in MSO
→ Example: Q(x, y) asks for pairs of a blue node x and a pink node y

• We want: enumerate the results of the query
→ Here, the pairs of a pink node and blue node

Theorem

[Bagan, 2006, Kazana and Segou�n, 2013]

For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what’s new?

• Modular proof based on a notion of set circuits
• Tractable in combined complexity for Q given as an automaton
• E�ciently update the preprocessing when the tree changes
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Structure of the talk

• Building a set circuit: given a tree T and automaton A,
we can build a set circuit C that represents the results

• Enumeration on set circuits: given a set circuit C,
we can enumerate e�ciently the results that it captures
(under some assumptions on C)

• New stu�:
• Tractability in the automaton and application to text
• E�cient updates of the index
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Building a set circuit



Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”
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Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥
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Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

→ Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

→ Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree
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A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T

A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula

A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”

“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree
• Replace the non-Boolean query Q by a Boolean query Q′
• Enumerate the ways to color the tree
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Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

→ The results that we want to enumerate are
all valuations of T that make A accept
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Set circuits

We want to represent these results as a set circuit:

∪

×

x>

×

y

• Directed acyclic graph of gates

• Output gate:
• Variable gates: x

• Constant gates: > ⊥

• Internal gates: × ∪
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Semantics of set circuits

∪

×

x>

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g)

• Variable gate with label x: S(g) := {{x}}

• >-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)
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Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T

• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35



Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35



Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35



Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35



Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35



Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×
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Set circuit restrictions

To have e�cient enumeration, we need restrictions on the set circuit:

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no set is captured by two
inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two
di�erent inputs)

∪

×

x>

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}
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Meaning of the set circuit

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Set circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}
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Enumeration for set circuits



The situation so far

×

X1(1) ∪

X2(2) X2(3)

• We started from our input tree T and query Q

• We have built a circuit C describing the results
• We know it is a d-DNNF
• We want to enumerate these results e�ciently

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

→ This is a generic result (does not talk about MSO or trees)
→ Any problems whose solutions can be coded as a d-DNNF

can be e�ciently enumerated via this method

22/35



The situation so far

×

X1(1) ∪

X2(2) X2(3)

• We started from our input tree T and query Q

• We have built a circuit C describing the results
• We know it is a d-DNNF
• We want to enumerate these results e�ciently

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

→ This is a generic result (does not talk about MSO or trees)
→ Any problems whose solutions can be coded as a d-DNNF

can be e�ciently enumerated via this method

22/35



The situation so far

×

X1(1) ∪

X2(2) X2(3)

• We started from our input tree T and query Q

• We have built a circuit C describing the results
• We know it is a d-DNNF
• We want to enumerate these results e�ciently

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

→ This is a generic result (does not talk about MSO or trees)
→ Any problems whose solutions can be coded as a d-DNNF

can be e�ciently enumerated via this method

22/35



Enumeration proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results
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Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates
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Normalization: handling ∅

×

×

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate
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Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially
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Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∪

g
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Summary of results

We have shown:
Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

And for any �xed MSO query Q, given a tree T, we can...

• Construct a d-DNNF C representing the results in O(T)

• Apply to C the scheme above
So we have re-proved:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result
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Application to text
and combined complexity



Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)
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Reducing to MSO

• A text is just a tree with a simpler shape

• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable
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E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity

• For regular expressions: exponential (determinization)
• In fact: our methods adapt to nondeterministic automata
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary
Given a regular expression pattern P and text T, we can enumerate
all matches of P on T with the complexity above
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Implementation (ongoing internship by Rémi Dupré)

• Prototype to �nd matches of a regular expression in a text
• https://github.com/remi-dupre/enum-spanner-rs

• Work-in-progress

• Open questions / projects:
• What about memory usage? (we cannot keep the whole index)
• Output matches in streaming? (problem: duplicates)
• Can we enumerate other notions of matches?

→ factors of maximal/minimal size
→ distinct matching strings
→ etc.

• Which application domains need this?
• Are there good benchmarks?
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Handling updates



Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?
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Results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

[Amarilli et al., 2019b] trees O(T) O(1) O(log T)
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Summary and open problems



Summary and conclusion

Theorem
Given a deterministic tree automaton A and a tree T, we can build in
O(|A| × |T|) a d-DNNF set circuit capturing the results of A on T.

Theorem
Given a d-DNNF set circuit C, we can enumerate its results with
linear preprocessing and delay linear in each result

• If A is nondeterministic, this still works with O(Poly(A))

• If T is updated, we can handle the change in O(log |T|)

Open problems:

• Implementation use cases?
• Lower bounds?
• Enumeration with order?

• Memory usage?
• Connection to tuple testing?
• Generic indexes?
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Hack: adding tree nodes to express the variable assignments

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
→ Now, the results are all ways to color the special nodes red and

make the Boolean query true
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Lower Bound

Existential Marked Ancestor Queries

Given: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

Theorem

tquery ∈ Ω

(
log(n)

log(tupdate log(n))

)



Lower Bound

Reduction to Query Enumeration
Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, i� Q produces some result
3. Mark v as non-special again

Theorem

max(tdelay, tupdate) ∈ Ω

(
log(n)

log log(n)

)
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