
Enumeration for MSO Queries on Trees via Circuits

Antoine Amarilli1 Pierre Bourhis2, Louis Jachiet2, Stefan Mengel3, Matthias
Niewerth4

July 14, 2019
1Télécom Paris, Institut Polytechnique de Paris

2CNRS CRIStAL

3CNRS CRIL

4Universität Bayreuth 1/35

Enumeration for MSO Queries on Trees via Circuits

Antoine Amarilli1 Pierre Bourhis2, Louis Jachiet2, Stefan Mengel3, Matthias
Niewerth4

July 1414141414141414141414141414141414, 2019
1Télécom Paris, Institut Polytechnique de Paris

2CNRS CRIStAL

3CNRS CRIL

4Universität Bayreuth 1/35

Circuits pour l’énumération de MSO sur des arbres

Antoine Amarilli1 Pierre Bourhis2, Louis Jachiet2, Stefan Mengel3, Matthias
Niewerth4

July 1414141414141414141414141414141414, 2019
1Télécom Paris, Institut Polytechnique de Paris

2CNRS CRIStAL

3CNRS CRIL

4Universität Bayreuth 1/35

Query evaluation

The main database problem is query evaluation

Data D: what we know

? Query Q: question asked about the data

i Result: all results of the query Q on the data D

Measure of e�ciency: computational complexity:

• Combined complexity: D and Q are inputs
• Data complexity: Q is �xed, D is the input

2/35

Query evaluation

The main database problem is query evaluation

Data D: what we know

? Query Q: question asked about the data

i Result: all results of the query Q on the data D

Measure of e�ciency: computational complexity:

• Combined complexity: D and Q are inputs
• Data complexity: Q is �xed, D is the input

2/35

Query evaluation

The main database problem is query evaluation

Data D: what we know

? Query Q: question asked about the data

i Result: all results of the query Q on the data D

Measure of e�ciency: computational complexity:

• Combined complexity: D and Q are inputs
• Data complexity: Q is �xed, D is the input

2/35

Query evaluation

The main database problem is query evaluation

Data D: what we know

? Query Q: question asked about the data

i Result: all results of the query Q on the data D

Measure of e�ciency: computational complexity:

• Combined complexity: D and Q are inputs
• Data complexity: Q is �xed, D is the input

2/35

Structured data: trees

• Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

• Important special case: text

• On this kind of data, we can use more e�cient
query evaluation techniques

• Natural query language: monadic second-order
logic (MSO)

• Very expressive
• Corresponds to tree automata
• Data complexity is in linear time

3/35

Structured data: trees

• Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

• Important special case: text

• On this kind of data, we can use more e�cient
query evaluation techniques

• Natural query language: monadic second-order
logic (MSO)

• Very expressive
• Corresponds to tree automata
• Data complexity is in linear time

3/35

Structured data: trees

• Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

• Important special case: text

• On this kind of data, we can use more e�cient
query evaluation techniques

• Natural query language: monadic second-order
logic (MSO)

• Very expressive
• Corresponds to tree automata
• Data complexity is in linear time

3/35

Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a Boolean formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satis�es the query Q

• Data complexity: linear in T
• Combined complexity: cannot be elementary

4/35

Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a Boolean formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satis�es the query Q

• Data complexity: linear in T
• Combined complexity: cannot be elementary

4/35

Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a Boolean formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satis�es the query Q

• Data complexity: linear in T
• Combined complexity: cannot be elementary

4/35

Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a Boolean formula in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satis�es the query Q

• Data complexity: linear in T
• Combined complexity: cannot be elementary

4/35

Beyond Boolean queries

• Boolean queries only gives YES/NO answers
→ YES, there is both a pink and a blue node

• Better idea: non-Boolean queries
→ e.g., Q(x, y): “x is a pink node and y is a blue node”

• Challenge: how to de�ne complexity for non-Boolean queries?
• Just writing the output is slow in the worst case
• Easy solution: the naive algorithm that tests all pairs
→ We need a new de�nition of complexity

5/35

Beyond Boolean queries

• Boolean queries only gives YES/NO answers
→ YES, there is both a pink and a blue node

• Better idea: non-Boolean queries
→ e.g., Q(x, y): “x is a pink node and y is a blue node”

• Challenge: how to de�ne complexity for non-Boolean queries?
• Just writing the output is slow in the worst case
• Easy solution: the naive algorithm that tests all pairs
→ We need a new de�nition of complexity

5/35

Beyond Boolean queries

• Boolean queries only gives YES/NO answers
→ YES, there is both a pink and a blue node

• Better idea: non-Boolean queries
→ e.g., Q(x, y): “x is a pink node and y is a blue node”

• Challenge: how to de�ne complexity for non-Boolean queries?

• Just writing the output is slow in the worst case
• Easy solution: the naive algorithm that tests all pairs
→ We need a new de�nition of complexity

5/35

Beyond Boolean queries

• Boolean queries only gives YES/NO answers
→ YES, there is both a pink and a blue node

• Better idea: non-Boolean queries
→ e.g., Q(x, y): “x is a pink node and y is a blue node”

• Challenge: how to de�ne complexity for non-Boolean queries?
• Just writing the output is slow in the worst case

• Easy solution: the naive algorithm that tests all pairs
→ We need a new de�nition of complexity

5/35

Beyond Boolean queries

• Boolean queries only gives YES/NO answers
→ YES, there is both a pink and a blue node

• Better idea: non-Boolean queries
→ e.g., Q(x, y): “x is a pink node and y is a blue node”

• Challenge: how to de�ne complexity for non-Boolean queries?
• Just writing the output is slow in the worst case
• Easy solution: the naive algorithm that tests all pairs

→ We need a new de�nition of complexity

5/35

Beyond Boolean queries

• Boolean queries only gives YES/NO answers
→ YES, there is both a pink and a blue node

• Better idea: non-Boolean queries
→ e.g., Q(x, y): “x is a pink node and y is a blue node”

• Challenge: how to de�ne complexity for non-Boolean queries?
• Just writing the output is slow in the worst case
• Easy solution: the naive algorithm that tests all pairs
→ We need a new de�nition of complexity

5/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

6/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input)

Indexed
input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c

a’ b c

a b’ c
a’ b’ c

Results

State

010001

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c

a b’ c

a’ b’ c

Results

State

01100111

7/35

Formalizing an enumeration algorithm

Input

Step 1:
Indexing
in O(input) Indexed

input

Step 2:
Enumeration
in O(result)

A B C

a b c
a’ b c
a b’ c

a’ b’ c

Results

State

⊥

7/35

Main results

• We are given: the tree T, a non-Boolean query Q in MSO
→ Example: Q(x, y) asks for pairs of a blue node x and a pink node y

• We want: enumerate the results of the query
→ Here, the pairs of a pink node and blue node

Theorem

[Bagan, 2006, Kazana and Segou�n, 2013]

For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what’s new?

• Modular proof based on a notion of set circuits
• Tractable in combined complexity for Q given as an automaton
• E�ciently update the preprocessing when the tree changes

8/35

Main results

• We are given: the tree T, a non-Boolean query Q in MSO
→ Example: Q(x, y) asks for pairs of a blue node x and a pink node y

• We want: enumerate the results of the query
→ Here, the pairs of a pink node and blue node

Theorem

[Bagan, 2006, Kazana and Segou�n, 2013]

For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what’s new?

• Modular proof based on a notion of set circuits
• Tractable in combined complexity for Q given as an automaton
• E�ciently update the preprocessing when the tree changes

8/35

Main results

• We are given: the tree T, a non-Boolean query Q in MSO
→ Example: Q(x, y) asks for pairs of a blue node x and a pink node y

• We want: enumerate the results of the query
→ Here, the pairs of a pink node and blue node

Theorem

[Bagan, 2006, Kazana and Segou�n, 2013]

For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what’s new?

• Modular proof based on a notion of set circuits
• Tractable in combined complexity for Q given as an automaton
• E�ciently update the preprocessing when the tree changes

8/35

Main results

• We are given: the tree T, a non-Boolean query Q in MSO
→ Example: Q(x, y) asks for pairs of a blue node x and a pink node y

• We want: enumerate the results of the query
→ Here, the pairs of a pink node and blue node

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what’s new?

• Modular proof based on a notion of set circuits
• Tractable in combined complexity for Q given as an automaton
• E�ciently update the preprocessing when the tree changes

8/35

Main results

• We are given: the tree T, a non-Boolean query Q in MSO
→ Example: Q(x, y) asks for pairs of a blue node x and a pink node y

• We want: enumerate the results of the query
→ Here, the pairs of a pink node and blue node

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what’s new?

• Modular proof based on a notion of set circuits
• Tractable in combined complexity for Q given as an automaton
• E�ciently update the preprocessing when the tree changes

8/35

Structure of the talk

• Building a set circuit: given a tree T and automaton A,
we can build a set circuit C that represents the results

• Enumeration on set circuits: given a set circuit C,
we can enumerate e�ciently the results that it captures
(under some assumptions on C)

• New stu�:
• Tractability in the automaton and application to text
• E�cient updates of the index

9/35

Structure of the talk

• Building a set circuit: given a tree T and automaton A,
we can build a set circuit C that represents the results

• Enumeration on set circuits: given a set circuit C,
we can enumerate e�ciently the results that it captures
(under some assumptions on C)

• New stu�:
• Tractability in the automaton and application to text
• E�cient updates of the index

9/35

Structure of the talk

• Building a set circuit: given a tree T and automaton A,
we can build a set circuit C that represents the results

• Enumeration on set circuits: given a set circuit C,
we can enumerate e�ciently the results that it captures
(under some assumptions on C)

• New stu�:
• Tractability in the automaton and application to text
• E�cient updates of the index

9/35

Building a set circuit

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”

10/35

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”

10/35

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”

10/35

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”

10/35

Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}

• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

11/35

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

→ Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

→ Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree

12/35

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

→ Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

→ Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree

12/35

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

→ Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

→ Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree

12/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T

A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula

A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”

“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree
• Replace the non-Boolean query Q by a Boolean query Q′
• Enumerate the ways to color the tree

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T

A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula

A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”

“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree
• Replace the non-Boolean query Q by a Boolean query Q′
• Enumerate the ways to color the tree

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T

A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula

A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”

“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree
• Replace the non-Boolean query Q by a Boolean query Q′
• Enumerate the ways to color the tree

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T

A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula

A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”

“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree

• Replace the non-Boolean query Q by a Boolean query Q′
• Enumerate the ways to color the tree

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T
A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula

A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”

“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree

• Replace the non-Boolean query Q by a Boolean query Q′
• Enumerate the ways to color the tree

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T
A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula

A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”

“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree
• Replace the non-Boolean query Q by a Boolean query Q′

• Enumerate the ways to color the tree

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T
A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula
A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”
“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree
• Replace the non-Boolean query Q by a Boolean query Q′

• Enumerate the ways to color the tree

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T
A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula
A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”
“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds

All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree
• Replace the non-Boolean query Q by a Boolean query Q′
• Enumerate the ways to color the tree 13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

Data: A tree T
A tree T with more colors to select nodes

? Query: A non-Boolean MSO Q(x) formula
A Boolean MSO formula Q′

“What are the pairs of
a pink and blue node?”
“Are the two selected
nodes pink and blue?”

i Result: All the a such that Q(a) holds
All the ways ν to color T such that Q′ holds on ν(T)

For technical reasons it will be simpler to:

• Write the choice for variables as colors on the tree
• Replace the non-Boolean query Q by a Boolean query Q′
• Enumerate the ways to color the tree 13/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

→ The results that we want to enumerate are
all valuations of T that make A accept

14/35

Set circuits

We want to represent these results as a set circuit:

∪

×

x>

×

y

• Directed acyclic graph of gates

• Output gate:
• Variable gates: x

• Constant gates: > ⊥

• Internal gates: × ∪

15/35

Set circuits

We want to represent these results as a set circuit:

∪

×

x>

×

y

• Directed acyclic graph of gates
• Output gate:

• Variable gates: x

• Constant gates: > ⊥

• Internal gates: × ∪

15/35

Set circuits

We want to represent these results as a set circuit:

∪

×

x>

×

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Constant gates: > ⊥

• Internal gates: × ∪

15/35

Set circuits

We want to represent these results as a set circuit:

∪

×

x>

×

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Constant gates: > ⊥

• Internal gates: × ∪

15/35

Set circuits

We want to represent these results as a set circuit:

∪

×

x>

×

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Constant gates: > ⊥

• Internal gates: × ∪

15/35

Semantics of set circuits

∪

×

x>

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g)

• Variable gate with label x: S(g) := {{x}}

• >-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

16/35

Semantics of set circuits

∪

×

x>

×

y
{{x}} {{y}}

{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g)

• Variable gate with label x: S(g) := {{x}}

• >-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

16/35

Semantics of set circuits

∪

×

x>

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g)

• Variable gate with label x: S(g) := {{x}}

• >-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

16/35

Semantics of set circuits

∪

×

x>

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g)

• Variable gate with label x: S(g) := {{x}}

• >-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

16/35

Semantics of set circuits

∪

×

x>

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g)

• Variable gate with label x: S(g) := {{x}}

• >-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

16/35

Semantics of set circuits

∪

×

x>

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}
Every gate g captures a set S(g)

• Variable gate with label x: S(g) := {{x}}

• >-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

16/35

Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T

• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35

Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35

Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35

Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35

Set circuit for a query on a tree

1

5

76

2

43

Set circuit for automaton A on uncertain tree T:

• Variable gates: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {n ∈ T | ν(n) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

17/35

Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

18/35

Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

18/35

Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

18/35

Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

18/35

Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

18/35

Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

18/35

Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

18/35

Building set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

18/35

Set circuit restrictions

To have e�cient enumeration, we need restrictions on the set circuit:

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no set is captured by two
inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two
di�erent inputs)

∪

×

x>

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

19/35

Set circuit restrictions

To have e�cient enumeration, we need restrictions on the set circuit:

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no set is captured by two
inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two
di�erent inputs)

∪

×

x>

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

19/35

Building d-DNNF set circuits

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

20/35

Meaning of the set circuit

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Set circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

21/35

Meaning of the set circuit

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Set circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

21/35

Meaning of the set circuit

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Set circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

21/35

Meaning of the set circuit

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Set circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

21/35

Meaning of the set circuit

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Set circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

21/35

Meaning of the set circuit

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Set circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

21/35

Meaning of the set circuit

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Set circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

21/35

Enumeration for set circuits

The situation so far

×

X1(1) ∪

X2(2) X2(3)

• We started from our input tree T and query Q

• We have built a circuit C describing the results
• We know it is a d-DNNF
• We want to enumerate these results e�ciently

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

→ This is a generic result (does not talk about MSO or trees)
→ Any problems whose solutions can be coded as a d-DNNF

can be e�ciently enumerated via this method

22/35

The situation so far

×

X1(1) ∪

X2(2) X2(3)

• We started from our input tree T and query Q

• We have built a circuit C describing the results
• We know it is a d-DNNF
• We want to enumerate these results e�ciently

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

→ This is a generic result (does not talk about MSO or trees)
→ Any problems whose solutions can be coded as a d-DNNF

can be e�ciently enumerated via this method

22/35

The situation so far

×

X1(1) ∪

X2(2) X2(3)

• We started from our input tree T and query Q

• We have built a circuit C describing the results
• We know it is a d-DNNF
• We want to enumerate these results e�ciently

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

→ This is a generic result (does not talk about MSO or trees)
→ Any problems whose solutions can be coded as a d-DNNF

can be e�ciently enumerated via this method

22/35

Enumeration proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

23/35

Enumeration proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

23/35

Enumeration proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

23/35

Enumeration proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

23/35

Enumeration proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized
circuit

Enumeration phase:
×

x z

Indexed
normalized
circuit

Enumeration
(linear delay
in each result)

A B C

a b c
a b’ c

Results

23/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x :

enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g)

and then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g)

and for each result t enumerate S(g′)
and concatenate t with each result

Decomposability: no duplicates
24/35

Normalization: handling ∅

×

×

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

25/35

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

25/35

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

25/35

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

25/35

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

25/35

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅

• then get rid of the gate

25/35

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

25/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:

• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Normalization: handling empty sets

×

×

×

x

>

>

>

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}
• Problem: if S(g) contains {} we waste time
in chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}}
and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, traversing a ×-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∪

g

27/35

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∪

g

27/35

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∪

g

27/35

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∪

g

27/35

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∪

g

27/35

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∪

g

27/35

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to �nd a reachable exit (non-∪ gate)

• Solution: compute reachability index
• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

• For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

∪

g

27/35

Summary of results

We have shown:
Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

And for any �xed MSO query Q, given a tree T, we can...

• Construct a d-DNNF C representing the results in O(T)

• Apply to C the scheme above
So we have re-proved:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

28/35

Summary of results

We have shown:
Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

And for any �xed MSO query Q, given a tree T, we can...

• Construct a d-DNNF C representing the results in O(T)

• Apply to C the scheme above

So we have re-proved:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

28/35

Summary of results

We have shown:
Theorem
Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

And for any �xed MSO query Q, given a tree T, we can...

• Construct a d-DNNF C representing the results in O(T)

• Apply to C the scheme above
So we have re-proved:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
For any �xed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

28/35

Application to text
and combined complexity

Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)

29/35

Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)

29/35

Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)

29/35

Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)

29/35

Reducing to MSO

• A text is just a tree with a simpler shape

• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

30/35

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO

→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

30/35

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

30/35

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

30/35

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

30/35

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

30/35

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity

• For regular expressions: exponential (determinization)
• In fact: our methods adapt to nondeterministic automata
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary
Given a regular expression pattern P and text T, we can enumerate
all matches of P on T with the complexity above

31/35

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity
• For regular expressions: exponential (determinization)

• In fact: our methods adapt to nondeterministic automata
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary
Given a regular expression pattern P and text T, we can enumerate
all matches of P on T with the complexity above

31/35

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity
• For regular expressions: exponential (determinization)
• In fact: our methods adapt to nondeterministic automata

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary
Given a regular expression pattern P and text T, we can enumerate
all matches of P on T with the complexity above

31/35

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity
• For regular expressions: exponential (determinization)
• In fact: our methods adapt to nondeterministic automata
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary
Given a regular expression pattern P and text T, we can enumerate
all matches of P on T with the complexity above

31/35

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity
• For regular expressions: exponential (determinization)
• In fact: our methods adapt to nondeterministic automata
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary
Given a regular expression pattern P and text T, we can enumerate
all matches of P on T with the complexity above

31/35

Implementation (ongoing internship by Rémi Dupré)

• Prototype to �nd matches of a regular expression in a text
• https://github.com/remi-dupre/enum-spanner-rs

• Work-in-progress

• Open questions / projects:
• What about memory usage? (we cannot keep the whole index)
• Output matches in streaming? (problem: duplicates)
• Can we enumerate other notions of matches?

→ factors of maximal/minimal size
→ distinct matching strings
→ etc.

• Which application domains need this?
• Are there good benchmarks?

32/35

https://github.com/remi-dupre/enum-spanner-rs

Implementation (ongoing internship by Rémi Dupré)

• Prototype to �nd matches of a regular expression in a text
• https://github.com/remi-dupre/enum-spanner-rs

• Work-in-progress
• Open questions / projects:

• What about memory usage? (we cannot keep the whole index)
• Output matches in streaming? (problem: duplicates)
• Can we enumerate other notions of matches?

→ factors of maximal/minimal size
→ distinct matching strings
→ etc.

• Which application domains need this?
• Are there good benchmarks?

32/35

https://github.com/remi-dupre/enum-spanner-rs

Implementation (ongoing internship by Rémi Dupré)

• Prototype to �nd matches of a regular expression in a text
• https://github.com/remi-dupre/enum-spanner-rs

• Work-in-progress
• Open questions / projects:

• What about memory usage? (we cannot keep the whole index)
• Output matches in streaming? (problem: duplicates)
• Can we enumerate other notions of matches?

→ factors of maximal/minimal size
→ distinct matching strings
→ etc.

• Which application domains need this?
• Are there good benchmarks?

32/35

https://github.com/remi-dupre/enum-spanner-rs

Handling updates

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

33/35

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

33/35

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

33/35

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing
• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

33/35

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing
• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?
33/35

Results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

[Amarilli et al., 2019b] trees O(T) O(1) O(log T)

34/35

Results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

[Amarilli et al., 2019b] trees O(T) O(1) O(log T)

34/35

Results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

[Amarilli et al., 2019b] trees O(T) O(1) O(log T)

34/35

Results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

[Amarilli et al., 2019b] trees O(T) O(1) O(log T)

34/35

Results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

[Amarilli et al., 2019b] trees O(T) O(1) O(log T)

34/35

Summary and open problems

Summary and conclusion

Theorem
Given a deterministic tree automaton A and a tree T, we can build in
O(|A| × |T|) a d-DNNF set circuit capturing the results of A on T.

Theorem
Given a d-DNNF set circuit C, we can enumerate its results with
linear preprocessing and delay linear in each result

• If A is nondeterministic, this still works with O(Poly(A))

• If T is updated, we can handle the change in O(log |T|)

Open problems:

• Implementation use cases?
• Lower bounds?
• Enumeration with order?

• Memory usage?
• Connection to tuple testing?
• Generic indexes?

35/35

Summary and conclusion

Theorem
Given a deterministic tree automaton A and a tree T, we can build in
O(|A| × |T|) a d-DNNF set circuit capturing the results of A on T.

Theorem
Given a d-DNNF set circuit C, we can enumerate its results with
linear preprocessing and delay linear in each result

• If A is nondeterministic, this still works with O(Poly(A))

• If T is updated, we can handle the change in O(log |T|)

Open problems:

• Implementation use cases?
• Lower bounds?
• Enumeration with order?

• Memory usage?
• Connection to tuple testing?
• Generic indexes?

35/35

Summary and conclusion

Theorem
Given a deterministic tree automaton A and a tree T, we can build in
O(|A| × |T|) a d-DNNF set circuit capturing the results of A on T.

Theorem
Given a d-DNNF set circuit C, we can enumerate its results with
linear preprocessing and delay linear in each result

• If A is nondeterministic, this still works with O(Poly(A))

• If T is updated, we can handle the change in O(log |T|)

Open problems:

• Implementation use cases?
• Lower bounds?
• Enumeration with order?

• Memory usage?
• Connection to tuple testing?
• Generic indexes? 35/35

References i

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a).
Constant-Delay Enumeration for Nondeterministic Document
Spanners.
In ICDT.
Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).
Enumeration on Trees with Tractable Combined Complexity and
E�cient Updates.
In PODS.
Bagan, G. (2006).
MSO queries on Tree Decomposable Structures Are Computable
with Linear Delay.
In CSL.

https://arxiv.org/abs/1807.09320
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/

References ii

Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc,
D. (2018).
Constant Delay Algorithms for Regular Document Spanners.
In PODS.
Kazana, W. and Segou�n, L. (2013).
Enumeration of Monadic Second-Order Queries on Trees.
TOCL, 14(4).
Losemann, K. and Martens, W. (2014).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.

https://arxiv.org/abs/1803.05277
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References iii

Niewerth, M. and Segou�n, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
To appear.

Thatcher, J. W. and Wright, J. B. (1968).
Generalized Finite Automata Theory with an Application to a
Decision Problem of Second-Order Logic.
Mathematical systems theory, 2(1):57–81.

Hack: adding tree nodes to express the variable assignments

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
→ Now, the results are all ways to color the special nodes red and

make the Boolean query true

Hack: adding tree nodes to express the variable assignments

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn
• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds

→ Add special nodes: for each node n and variable xi,
add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
→ Now, the results are all ways to color the special nodes red and

make the Boolean query true

Hack: adding tree nodes to express the variable assignments

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn
• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
→ Now, the results are all ways to color the special nodes red and

make the Boolean query true

Hack: adding tree nodes to express the variable assignments

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn
• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree

→ Now, the results are all ways to color the special nodes red and
make the Boolean query true

Hack: adding tree nodes to express the variable assignments

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn
• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
→ Now, the results are all ways to color the special nodes red and

make the Boolean query true

Lower Bound

Existential Marked Ancestor Queries

Given: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

Theorem

tquery ∈ Ω

(
log(n)

log(tupdate log(n))

)

Lower Bound

Reduction to Query Enumeration
Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, i� Q produces some result
3. Mark v as non-special again

Theorem

max(tdelay, tupdate) ∈ Ω

(
log(n)

log log(n)

)

Image credits

Title slide: Ei�el tower image by Yann Caradec https:
//www.flickr.com/photos/la_bretagne_a_paris/35118647963,
license CC-BY-SA 2.0.

https://www.flickr.com/photos/la_bretagne_a_paris/35118647963
https://www.flickr.com/photos/la_bretagne_a_paris/35118647963

	Building a set circuit
	Enumeration for set circuits
	Application to text and combined complexity
	Handling updates
	Summary and open problems
	Appendix

