LYT
<© EC&

2¢ ‘ cr il
S G

Enumeration for MSO Queries on Trees via Circuits

TELECOM

Paris

\TuUT
3 °

o

Antoine Amarilli" Pierre Bourhis?, Louis Jachiet?, Stefan Mengel3, Matthias
Niewerth*

July 14, 2019

1Telecom Paris, Institut Polytechnique de Paris
2CNRS CRIStAL

3CNRS CRIL

“Universitat Bayreuth 1/35

LYT
?© EC&

S G

TELECOM

Paris

\TuUTr
3 °

o

Enumeration for MSO Queries on Trees via Circuits

Antoine Amarilli" Pierre Bourhis?, Louis Jachiet?, Stefan Mengel3, Matthias
Niewerth*

July 9, 2019
1Telecom Paris, Institut Polytechnique de Paris
2CNRS CRIStAL

3CNRS CRIL

“Universitat Bayreuth 1/35

LYT
?© EC&

S G

Circuits pour 'énumération de MSO sur des arbres

TELECOM

Paris

\TuUTr
3 °

o

Antoine Amarilli’ Pierre Bourhis?, Louis Jachiet?, Stefan Mengel3, Matthias
Niewerth*

July 9%, 2019
1Télécom Paris, Institut Polytechnique de Paris
2CNRS CRIStAL

3CNRS CRIL

“Universitat Bayreuth 1/35

Query evaluation

The main database problem is query evaluation

@ Data D: what we know

2/35

Query evaluation

The main database problem is query evaluation

@ Data D: what we know

Q) Query Q: question asked about the data

2/35

Query evaluation

The main database problem is query evaluation

@ Data D: what we know

Q) Query Q: question asked about the data

Q Result: all results of the query Q on the data D

2/35

Query evaluation

The main database problem is query evaluation

()
hN— Data D: what we know
"/

Q) Query Q: question asked about the data

Q Result: all results of the query Q on the data D

Measure of efficiency: computational complexity:

» Combined complexity: D and Q are inputs
» Data complexity: Q is fixed, D is the input

2/35

Structured data: trees

e Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

- Important special case: text

3/35

Structured data: trees

e Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

- Important special case: text

e On this kind of data, we can use more efficient
query evaluation techniques

3/35

Structured data: trees

e Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

- Important special case: text

e On this kind of data, we can use more efficient
query evaluation techniques

e Natural query language: monadic second-order
logic (MSO)
- Very expressive
- Corresponds to tree automata
- Data complexity is in linear time

3/35

Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

4/35

Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

Query Q: a Boolean formula in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Is there both a pink
and a blue node?”

Ixy Po(x) A Po(y)

4/35

Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

Query Q: a Boolean formula in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Is there both a pink
and a blue node?”

Ixy Po(x) A Po(y)

Q Result: YES/NO indicating if the tree T satisfies the query Q

4/35

Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

Query Q: a Boolean formula in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Is there both a pink
and a blue node?”

Ixy Po(x) A Po(y)

@ Result: YES/NO indicating if the tree T satisfies the query Q

e Data complexity: linearin T

e Combined complexity: cannot be elementary

4/35

Beyond Boolean queries

e Boolean queries only gives YES/NO answers
— YES, there is both a pink and a blue node

5/35

Beyond Boolean queries

e Boolean queries only gives YES/NO answers
— YES, there is both a pink and a blue node

» Better idea: non-Boolean queries
— eg, Q(x,y): “xis a pink node and y is a blue node”

5/35

Beyond Boolean queries

e Boolean queries only gives YES/NO answers
— YES, there is both a pink and a blue node

» Better idea: non-Boolean queries
— eg, Q(x,y): “xis a pink node and y is a blue node”

e Challenge: how to define complexity for non-Boolean queries?

5/35

Beyond Boolean queries

e Boolean queries only gives YES/NO answers
— YES, there is both a pink and a blue node

» Better idea: non-Boolean queries
— eg, Q(x,y): “xis a pink node and y is a blue node”

e Challenge: how to define complexity for non-Boolean queries?
- Just writing the output is slow in the worst case

5/35

Beyond Boolean queries

e Boolean queries only gives YES/NO answers
— YES, there is both a pink and a blue node

» Better idea: non-Boolean queries
— eg, Q(x,y): “xis a pink node and y is a blue node”

e Challenge: how to define complexity for non-Boolean queries?

- Just writing the output is slow in the worst case
- Easy solution: the naive algorithm that tests all pairs

5/35

Beyond Boolean queries

e Boolean queries only gives YES/NO answers
— YES, there is both a pink and a blue node

» Better idea: non-Boolean queries
— eg, Q(x,y): “xis a pink node and y is a blue node”

e Challenge: how to define complexity for non-Boolean queries?

- Just writing the output is slow in the worst case
- Easy solution: the naive algorithm that tests all pairs
— We need a new definition of complexity

5/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

Q how to find patterns | searcn |

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

Q how to find patterns | searcn |

Results 1 - 20 of 10,514

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

Q how to find patterns | searcn |

Results 1 - 20 of 10,514

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

Q how to find patterns | searcn |

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

6/35

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

Q how to find patterns | searcn |

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Formalization: enumeration algorithms

6/35

Formalizing an enumeration algorithm

& 2

Input

Formalizing an enumeration algorithm

Step 1
— Indexing

Input | in O(input)

Formalizing an enumeration algorithm

Step 1 t.
— Indexing |»
in O(input Indexed
Input (input) input

Formalizing an enumeration algorithm

Step 1: t. Step 2:
— Indexing |» — Enumeration
in O(input)| Indexed in O(result
|nput (p) input ()

Formalizing an enumeration algorithm

A B C
Step 1: t. Step 2: a b ¢
— Indexing |» —| Enumeration ——
in O(input)| Indexed in O(result
|nput (p) mput ()

Results

Formalizing an enumeration algorithm

A B C
Step 1: m Step 2: a b ¢
— Indexing |» — Enumeration >
in O(input)| Indexed in O(result
|nput (p) mput ()
Results
0011
i
" _

State

Formalizing an enumeration algorithm

A B C
Step 1: m Step 2: a b ¢
— Indexing |» » Enumeration >
in O(input)| Indexed in O(result
|nput (p) input ()
Results
0011
il
e

State

7/35

Formalizing an enumeration algorithm

A B C
Step 1: m Step 2:
— Indexing |» » Enumeration y @ b ¢
in O(input)| Indexed in O(result
|nput (p) mput ()
Results
010001
i
o

State

7/35

Formalizing an enumeration algorithm

A B C
Step 1: m Step 2:
— Indexing |» » Enumeration >
in O(input)| Indexed in O(result a b ¢
|nput (p) mput ()
Results
01100111
i
o

State

7/35

Formalizing an enumeration algorithm

A B C

Step 1: m Step 2:

— Indexing |» » Enumeration >

in O(input)| Indexed in O(result
|nput (p) input () 7 b oc
Results

1L
il
e

State

7/35

« We are given: the tree T, a non-Boolean query Q in MSO
— Example: Q(x,y) asks for pairs of a blue node x and a pink node y

8/35

« We are given: the tree T, a non-Boolean query Q in MSO
— Example: Q(x,y) asks for pairs of a blue node x and a pink node y

e We want: enumerate the results of the query
— Here, the pairs of a pink node and blue node

8/35

Main results

« We are given: the tree T, a non-Boolean query Q in MSO
— Example: Q(x,y) asks for pairs of a blue node x and a pink node y

e We want: enumerate the results of the query
— Here, the pairs of a pink node and blue node

Theorem

For any fixed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

8/35

Main results

« We are given: the tree T, a non-Boolean query Q in MSO
— Example: Q(x,y) asks for pairs of a blue node x and a pink node y

e We want: enumerate the results of the query
— Here, the pairs of a pink node and blue node

For any fixed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what's new?

8/35

Main results

« We are given: the tree T, a non-Boolean query Q in MSO
— Example: Q(x,y) asks for pairs of a blue node x and a pink node y

e We want: enumerate the results of the query
— Here, the pairs of a pink node and blue node

For any fixed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what's new?

» Modular proof based on a notion of set circuits

e Tractable in combined complexity for Q given as an automaton
 Efficiently update the preprocessing when the tree changes

8/35

Structure of the talk

* Building a set circuit: given a tree T and automaton A,
we can build a set circuit C that represents the results

9/35

Structure of the talk

* Building a set circuit: given a tree T and automaton A,
we can build a set circuit C that represents the results

e Enumeration on set circuits: given a set circuit C,

we can enumerate efficiently the results that it captures
(under some assumptions on C)

9/35

Structure of the talk

* Building a set circuit: given a tree T and automaton A,
we can build a set circuit C that represents the results

e Enumeration on set circuits: given a set circuit C,
we can enumerate efficiently the results that it captures
(under some assumptions on C)

¢ New stuff:

- Tractability in the automaton and application to text
- Efficient updates of the index

9/35

Building a set circuit

Monadic second-order logic (MSO)

* Pg(x) means “x is blue”; also Pg(x), Po(x)

* X — y means “x is the parent of y"

10/35

Monadic second-order logic (MSO)

* Pg(x) means “x is blue”; also Pg(x), Po(x)

* X — y means “x is the parent of y"

 Propositional logic: formulas with AND A, OR Vv, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

10/35

Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Pg(x), Po(x)
* X — y means “x is the parent of y"

 Propositional logic: formulas with AND A, OR Vv, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

* First-order logic: adds existential quantifier 3 and
universal quantifier vV
- 3xy Po(x) A Po(y) means “There is both a pink and a blue node”

10/35

Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Pg(x), Po(x)

* X — y means “x is the parent of y"

 Propositional logic: formulas with AND A, OR Vv, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

* First-order logic: adds existential quantifier 3 and
universal quantifier vV
- 3xy Po(x) A Po(y) means “There is both a pink and a blue node”

» Monadic second-order logic (MSO): adds quantifiers over sets
- 3S Vx S(x) means “there is a set S containing every element x”
- Can express transitive closure x —* y, i.e,, “x is an ancestor of y”
- VXPo(x) = 3y Po(y) AXx —*y

means “There is a blue node below every pink node”
10/35

Tree automata

Tree alphabet:

00O

1/35

Tree automata

Tree alphabet: « Bottom-up deterministic tree automaton

00O

e “Is there both a pink and a blue node?”

1/35

Tree automata

Tree alphabet: « Bottom-up deterministic tree automaton
000

e “Is there both a pink and a blue node?”
 States: {L,B,P, T}

1/35

Tree automata

Tree alphabet:

00O

Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

1/35

Tree automata

Tree alphabet:

00O

Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

e Initial function: O L QP QOB

1/35

Tree automata

Tree alphabet:

00O

Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

1/35

Tree automata

Tree alphabet:

00O

Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

T S N AN Ay

1/35

Tree automata

Tree alphabet:

00O

Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

, VR A

1/35

Tree automata

Tree alphabet:

00O

Bottom-up deterministic tree automaton

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

, VR A

1/35

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees

— Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

12/35

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees

— Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

— Complexity (in the query) is generally nonelementary

12/35

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees

— Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

— Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree

12/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

g Data: Atree T

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

g Data: Atree T
“What are the pairs of

Q) Query: A non-Boolean MSO Q(x) formula a pink and blue node?”

13/35

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:

g Data: Atree T
“What are the pairs of

Q) Query: A non-Boolean MSO Q(x) formula a pink and blue node?”

Q Result: All the a such that Q(a) holds

13/35

A small hack for non-Boolean queries

g Data: Atree T
“What are the pairs of

Q) Query: A non-Boolean MSO Q(x) formula a pink and blue node?”

Q Result: All the a such that Q(a) holds

For technical reasons it will be simpler to:

* Write the choice for variables as colors on the tree

13/35

A small hack for non-Boolean queries

Data: A-tree—F
A tree T with more colors to select nodes
“What are the pairs of

Q) Query: A non-Boolean MSO Q(x) formula a pink and blue node?”

Q Result: All the a such that Q(a) holds

For technical reasons it will be simpler to:

* Write the choice for variables as colors on the tree

13/35

A small hack for non-Boolean queries

Data: A-tree—F
A tree T with more colors to select nodes
“What are the pairs of

Q) Query: A non-Boolean MSO Q(x) formula a pink and blue node?”

Q Result: All the a such that Q(a) holds

For technical reasons it will be simpler to:

* Write the choice for variables as colors on the tree
» Replace the non-Boolean query Q by a Boolean query Q'

13/35

A small hack for non-Boolean queries

Data: A-tree—F
A tree T with more colors to select nodes

Query: ArenBoetean-MSO-Qbgformula apmkhandbiterode
A Boolean MSO formula Q' “Are the two selected

nodes pink and blue?”

Q Result: All the a such that Q(a) holds

For technical reasons it will be simpler to:

* Write the choice for variables as colors on the tree
» Replace the non-Boolean query Q by a Boolean query Q'

13/35

A small hack for non-Boolean queries

Data: A-tree—F
A tree T with more colors to select nodes

Query: ArenBoetean-MSO-Qbgformula apmkhandbiterode
A Boolean MSO formula Q' “Are the two selected
nodes pink and blue?”

Q Result: All the a such that Q(a) holds

For technical reasons it will be simpler to:

e Write the choice for variables as colors on the tree
» Replace the non-Boolean query Q by a Boolean query Q'
e Enumerate the ways to color the tree 13/35

A small hack for non-Boolean queries

Data: A-tree—F
A tree T with more colors to select nodes

Query: ArenBoetean-MSO-Qbgformula apmkhandbiterode
A Boolean MSO formula Q' “Are the two selected
nodes pink and blue?”

Result: At-the-asteh-thatQfarhotds
All the ways v to color T such that Q" holds on v(T)

For technical reasons it will be simpler to:

e Write the choice for variables as colors on the tree
» Replace the non-Boolean query Q by a Boolean query Q'
e Enumerate the ways to color the tree 13/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

e e Valuation: {2,3,7 — 1, *+— 0}

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

e e Valuation: {2 — 1, *+— 0}

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

e e Valuation: {2,7 — 1, %+~ 0}

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

e e Valuation: {2,7 — 1, %+~ 0}

A: “Is there both a pink and a blue node?”

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

e e Valuation: {2,3,7 — 1, *+— 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

e e Valuation: {2 — 1, *+— 0}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects

14/35

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

e e Valuation: {2,7 — 1, %+~ 0}
A: “Is there both a pink and a blue node?”

The tree automaton A accepts

— The results that we want to enumerate are
all valuations of T that make A accept

14/35

We want to represent these results as a set circuit:

@ Directed acyclic graph of gates

15/35

We want to represent these results as a set circuit:

@ Directed acyclic graph of gates

e Qutput gate: @
)

15/35

We want to represent these results as a set circuit:

@ Directed acyclic graph of gates

e Qutput gate: @
° ° Variable gates: @

15/35

We want to represent these results as a set circuit:

O,

Directed acyclic graph of gates

Output gate: @
Variable gates: @
Constant gates: @ @

15/35

We want to represent these results as a set circuit:

O,

Directed acyclic graph of gates

Output gate: @

Variable gates: @
Constant gates: @ @
Internal gates: @ @

15/35

Semantics of set circuits

@ Every gate g captures a set 5(g)

16/35

Semantics of set circuits

@ Every gate g captures a set 5(g)
* Variable gate with label x: 5(g) := {{x}}

Xy v

16/35

Semantics of set circuits

Every gate g captures a set 5(g)
* Variable gate with label x: 5(g) := {{x}}

+ T-gates: S(g) = {{}}

16/35

Semantics of set circuits

Every gate g captures a set 5(g)
* Variable gate with label x: 5(g) := {{x}}
« T-gates: 5(g) = {{}}
» l-gates: S(g) =0

16/35

Semantics of set circuits

Every gate g captures a set 5(g)
* Variable gate with label x: 5(g) := {{x}}
- T-gates: S(g) = {{}}
e |-gates: S(g) =10
e x-gate with children g4, g-:
5(g) == {s1Usz | 51 € 5(91). 52 € 5(92)}

16/35

Semantics of set circuits

{{x}, {x v}

Every gate g captures a set 5(g)
* Variable gate with label x: 5(g) := {{x}}
- T-gates: S(g) = {{}}
e |-gates: S(g) =10
e x-gate with children g4, g-:
5(g) == {s1Usz | 51 € 5(91). 52 € 5(92)}
» U-gate with children gy, g»:
5(9) :==5(91) U 5(92)

16/35

Set circuit for a query on a tree

0 Set circuit for automaton A on uncertain tree T:

 Variable gates: nodes of T

17135

Set circuit for a query on a tree

0 Set circuit for automaton A on uncertain tree T:
 Variable gates: nodes of T
Q e Condition: Let v be a valuation of T, then A

accepts v(T) iff the set S(go) of the output
a @ G 0 gate go contains {n € T | v(n) = 1}.

17135

Set circuit for a query on a tree

0 Set circuit for automaton A on uncertain tree T:
 Variable gates: nodes of T
Q e Condition: Let v be a valuation of T, then A

accepts v(T) iff the set S(go) of the output
a @ G 0 gate go contains {n € T | v(n) = 1}.

Query: Is there both a pink and a blue node?

17135

Set circuit for a query on a tree

0 Set circuit for automaton A on uncertain tree T:
 Variable gates: nodes of T
Q e Condition: Let v be a valuation of T, then A

accepts v(T) iff the set S(go) of the output
a @ G 0 gate go contains {n € T | v(n) = 1}.
Query: Is there both a pink and a blue node?

17135

Set circuit for a query on a tree

0 Set circuit for automaton A on uncertain tree T:
 Variable gates: nodes of T
Q e Condition: Let v be a valuation of T, then A

accepts v(T) iff the set S(go) of the output
a @ G 0 gate go contains {n € T | v(n) = 1}.

Query: Is there both a pink and a blue node?

Building set circuits

For any bottom-up tree automaton A and input tree T,
we can build a set circuit of Aon T in O(|A| x |T|)

18/35

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T,

we can build a set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:

« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?” Final: {T} P 1L P L

18/35

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T,

we can build a set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:

« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?” Final: {T} P 1L P L

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T,

we can build a set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:

« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?” Final: {T} P 1L P L

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T,

we can build a set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:

« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?” Final: {T} P 1L P L

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T,

we can build a set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:

« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?” Final: {T} P 1L P L

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T,

we can build a set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:

« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?” Final: {T} P 1L P L

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T,

we can build a set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:

« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?” Final: {T} P 1L P L

18/35

Set circuit restrictions

To have efficient enumeration, we need restrictions on the set circuit:

d-DNNF set circuit: {{x},{x,y}}

. @ are all deterministic:

The inputs are disjoint
(= no set is captured by two
inputs)

U gy v

19/35

Set circuit restrictions

To have efficient enumeration, we need restrictions on the set circuit:

d-DNNF set circuit:

. @ are all deterministic:

The inputs are disjoint
(= no set is captured by two
inputs)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

{

{{x}, i v}

PGy vl

19/35

Building d-DNNF set circuits

For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:
« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?” Final: {T} P 1L P L

20/35

Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

21/35

Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : Po(x) A Po(y)

21/35

Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : Po(x) A Po(y)

Data:

SNO

21/35

Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : Po(x) A Po(y)

Data: Results:

X X
@ O 1 2
13

21/35

Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query: Set circuit:
Q(X1,X2) : Po(x) A Po(y)

Data: Results:
=G
1 2
L T@@

21/35

Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query: Set circuit:
Q(X1,X2) : Po(x) A Po(y)

Data: Results: @@0 {X2(2),X2(3) }

X1 X2
1 2
@0 1L Gk

21/35

Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query: Set circuit:

Q(X1,X2) : Po(x) A Po(y) {(X1(1), X2(2)), (X1(1), X2(3)) }

Data: Results: 0 {X2(2), X2(3)}

X X
@ O 1 2
13

21/35

Enumeration for set circuits

The situation so far

We started from our input tree T and query Q

We have built a circuit C describing the results

M e We know it is a d-DNNF
@ @ e We want to enumerate these results efficiently

22/35

The situation so far

e We started from our input tree T and query Q

@ 0 » We have built a circuit C describing the results
e We know it is a d-DNNF
@ @ e We want to enumerate these results efficiently

Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

22/35

The situation so far

We started from our input tree T and query Q

We have built a circuit C describing the results
We know it is a d-DNNF

()
ORO
) ()

Theorem

We want to enumerate these results efficiently

Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

— This is a generic result (does not talk about MSO or trees)

— Any problems whose solutions can be coded as a d-DNNF
can be efficiently enumerated via this method

22/35

Enumeration proof overview

Preprocessing phase:
O
®

® @
d-DNNF
set circuit

Enumeration proof overview

Preprocessing phase:
O

©
Q
Normalization
_)

®» @ ,. .]
(linear-time) | Normalized

d-DNNF L

circuit

set circuit

Enumeration proof overview

Preprocessing phase:

©

)
© @ —H

d-DNNF

Normalization
(linear-time)

set circuit

ONO
Y —_

Normalized
circuit

® @

Indexing
(linear-time)

—>Indexed

normalized

circuit

23/35

Enumeration proof overview

Preprocessing phase:

©

)
© @ —H

d-DNNF

Normalization
(linear-time)

set circuit

Enueration phase:

Indexed
normalized
circuit

ONO
Y —_

Normalized
circuit

® @

Indexing
(linear-time)

—>Indexed

normalized

circuit

Enumeration proof overview

Preprocessing phase:

d-DNNF
set circuit

Normalization
(linear-time)

Enueration phase:

ONO
Y —_

Normalized
circuit

® @

Indexing
(linear-time)

—>ndexed

normalized

Indexed
normalized
circuit

~

Enumeration
(linear delay
in each result)

circuit

>
w
o

o o
o o
o 0

L 2

Results

23/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

— Eg, for S(g) = {{x},{x,y}}, enumerate {x} and then {x,y}

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

— Eg, for S(g) = {{x},{x,y}}, enumerate {x} and then {x,y}

Base case: variable @ :

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

— Eg, for S(g) = {{x},{x,y}}, enumerate {x} and then {x,y}

Base case: variable @ : enumerate {x} and stop

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

— Eg, for S(g) = {{x},{x,y}}, enumerate {x} and then {x,y}

Base case: variable @ : enumerate {x} and stop

U-gate

Jo

g g’
Concatenation: enumerate S(g)
and then enumerate S(g’)

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

— Eg, for S(g) = {{x},{x,y}}, enumerate {x} and then {x,y}

Base case: variable @ : enumerate {x} and stop
U-gate
g g’

Concatenation: enumerate S(g)
and then enumerate S(g’)

Determinism: no duplicates

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

— Eg, for S(g) = {{x},{x,y}}, enumerate {x} and then {x,y}

Base case: variable @ : enumerate {x} and stop

U-gate x -gate

yol Jol

g g g g
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)

and then enumerate S(g’) and for each result t enumerate S(g’)

Determinism: no duplicates and concatenate t with each result

24/35

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

— Eg, for S(g) = {{x},{x,y}}, enumerate {x} and then {x,y}

Base case: variable @ : enumerate {x} and stop

U-gate x -gate
g g g g
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)
and then enumerate S(g’) and for each result t enumerate S(g’)

Determinism: no duplicates and concatenate t with each result

Decomposability: no duplicates

24/35

Normalization: handling ()

Normalization: handling ()

()
MONNS
010

25/35

Normalization: handling ()

25/35

Normalization: handling ()

25/35

Normalization: handling ()

* Problem: if S(g) = 0 we waste time

25/35

Normalization: handling ()

* Problem: if S(g) = 0 we waste time
e Solution: in preprocessing
- compute bottom-up if S(g) = 0

25/35

Normalization: handling ()

* Problem: if S(g) = 0 we waste time
e Solution: in preprocessing

- compute bottom-up if S(g) = 0
- then get rid of the gate

25/35

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

26/35

Normalization: handling empty sets

26/35

Normalization: handling empty sets

26/35

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

26/35

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

e Solution:

26/35

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

26/35

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)
- remove inputs with S(g) = {{}} for x-gates

26/35

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)
- remove inputs with S(g) = {{}} for x-gates

26/35

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

* Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X - remove inputs with S(g) = {{}} for x-gates
- collapse x-chains with fan-in 1

26/35

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

* Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X - remove inputs with S(g) = {{}} for x-gates
- collapse x-chains with fan-in 1

26/35

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

e Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
{3} - remove inputs with S(g) = {{}} for x-gates
- collapse x-chains with fan-in 1

— Now, traversing a x-gate ensures that we make progress:
it splits the sets non-trivially

26/35

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies

g
! to find a reachable exit (non-uU gate)

94

92 g3

27/35

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies

g
! to find a reachable exit (non-uU gate)

9. Solution: compute reachability index

92 g3

27/35

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-uU gate)

 Solution: compute reachability index

27/35

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-uU gate)

 Solution: compute reachability index
e Problem: must be done in linear time

27/35

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-uU gate)

 Solution: compute reachability index
e Problem: must be done in linear time

e Solution: Determinism ensures we have a multitree @
(we cannot have the pattern at the right) ~

27/35

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-uU gate)

 Solution: compute reachability index
e Problem: must be done in linear time

e Solution: Determinism ensures we have a multitree @
(we cannot have the pattern at the right) ~

e Custom constant-delay reachability index for multitrees

27/35

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-uU gate)

 Solution: compute reachability index
* Problem: must be done in linear time

e Solution: Determinism ensures we have a multitree @
(we cannot have the pattern at the right) R

e Custom constant-delay reachability index for multitrees :

\ ’

e For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

27/35

Summary of results

We have shown:

Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

28/35

Summary of results

We have shown:

Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

And for any fixed MSO query Q, given a tree T, we can...

» Construct a d-DNNF C representing the results in O(T)
e Apply to C the scheme above

28/35

Summary of results

We have shown:

Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

And for any fixed MSO query Q, given a tree T, we can...

» Construct a d-DNNF C representing the results in O(T)
e Apply to C the scheme above

So we have re-proved:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
For any fixed MSO query Q, given a tree T,

we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

28/35

Application to text
and combined complexity

Problem statement: Pattern matching in texts

Data: atext T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId.

Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France.

Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016.

Former student of the Ecole normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

29/35

Problem statement: Pattern matching in texts

) Data:atextT

X\ g Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm.
S French national. Appearance as of 2017.

Identity Born 1990-02-07.

Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France.

Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016.

Former student of the Ecole normale supérieure.
test@example.com More Résumé Location Other sites Blogging:

a3nm.net/blog Git: a3nm.net/git ...

@ Query: a pattern P given as a regular expression

P.= , [a-z0-9.]1* @ [a-z0-9.1"

29/35

Problem statement: Pattern matching in texts

) Data:atextT
‘, Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
v French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP

a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of

Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science

awarded by Télécom ParisTech on March 14, 2016. Former student of the Ecole normale supérieure.

test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

@ Query: a pattern P given as a regular expression
P:= _ [a-z0-9.1* @ [a-z0-9.1*
@ Output: the list of substrings of T that match P:
[186,200), [483,500),

29/35

Problem statement: Pattern matching in texts

) Data:atextT
‘, Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
v French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP

a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of

Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science

awarded by Télécom ParisTech on March 14, 2016. Former student of the Ecole normale supérieure.

test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

Q) Query: a pattern P given as a regular expression
P:= _ [a-z0-9.1* @ [a-z0-9.1*
Q Output: the list of substrings of T that match P:
[186,200), [483,500), ...

Goal:

« be very efficient in T (constant-delay)
 be reasonably efficient in P (polynomial-time)

29/35

Reducing to MSO

e Atextisjust atree with a simpler shape

30/35

Reducing to MSO

e Atextisjust atree with a simpler shape
» Aregular expression pattern can be expressed in MSO

30/35

Reducing to MSO

e Atextisjust atree with a simpler shape

» Aregular expression pattern can be expressed in MSO
— More generally: regular expressions with variables
— Example: P:=e* o a* B b* ~ e*

« Translate to a word automaton (with capture variables)

30/35

Reducing to MSO

e Atextisjust atree with a simpler shape
» Aregular expression pattern can be expressed in MSO
— More generally: regular expressions with variables
— Example: P:=e* o a* B b* ~ e*
« Translate to a word automaton (with capture variables)
° a

30/35

Reducing to MSO

e Atextisjust atree with a simpler shape

» Aregular expression pattern can be expressed in MSO
— More generally: regular expressions with variables
— Example: P:=e* o a* 3 b* ~ e*

« Translate to a word automaton (with capture variables)

a b °
@)

— The MSO result implies:

Theorem [Florenzano et al., 2018]

We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

30/35

Reducing to MSO

e Atextisjust atree with a simpler shape

» Aregular expression pattern can be expressed in MSO
— More generally: regular expressions with variables
— Example: P:=e* o a* 3 b* ~ e*

« Translate to a word automaton (with capture variables)

a b °
@)

— The MSO result implies:

Theorem [Florenzano et al., 2018]

We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

— The resulting set circuit is a binary decision diagram,
i.e., each x-gate has only one input which is not a variable

30/35

Efficiency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

e For general MSO queries: nonelementary complexity

31/35

Efficiency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

e For general MSO queries: nonelementary complexity
 For regular expressions: exponential (determinization)

31/35

Efficiency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

e For general MSO queries: nonelementary complexity
 For regular expressions: exponential (determinization)
* In fact: our methods adapt to nondeterministic automata

31/35

Efficiency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

e For general MSO queries: nonelementary complexity
 For regular expressions: exponential (determinization)
* In fact: our methods adapt to nondeterministic automata

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]

We can enumerate all matches of a nondeterministic tree
automaton on a tree with

Preprocessing linear in the tree and polynomial in the automaton
- Delay constant in the tree and polynomial in the automaton

31/35

Efficiency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

e For general MSO queries: nonelementary complexity
 For regular expressions: exponential (determinization)
* In fact: our methods adapt to nondeterministic automata

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]

We can enumerate all matches of a nondeterministic tree
automaton on a tree with

- Preprocessing linear in the tree and polynomial in the automaton
- Delay constant in the tree and polynomial in the automaton

Corollary

Given a regular expression pattern P and text T, we can enumerate

all matches of P on T with the complexity above N

Implementation (ongoing internship by Rémi Dupreé)

 Prototype to find matches of a regular expression in a text
* https://github.com/remi-dupre/enum-spanner-rs

» Work-in-progress

32/35

https://github.com/remi-dupre/enum-spanner-rs

Implementation (ongoing internship by Rémi Dupreé)

 Prototype to find matches of a regular expression in a text
* https://github.com/remi-dupre/enum-spanner-rs

» Work-in-progress

e Open questions / projects:

- What about memory usage? (we cannot keep the whole index)
- Output matches in streaming? (problem: duplicates)
- Can we enumerate other notions of matches?

— factors of maximal/minimal size

— distinct matching strings

— etc.

32/35

https://github.com/remi-dupre/enum-spanner-rs

Implementation (ongoing internship by Rémi Dupreé)

 Prototype to find matches of a regular expression in a text
* https://github.com/remi-dupre/enum-spanner-rs
» Work-in-progress
« Open questions / projects:
- What about memory usage? (we cannot keep the whole index)

- Output matches in streaming? (problem: duplicates)
- Can we enumerate other notions of matches?

— factors of maximal/minimal size

— distinct matching strings

— etc.
- Which application domains need this?
- Are there good benchmarks?

32/35

https://github.com/remi-dupre/enum-spanner-rs

Handling updates

<body>4
<div>; <section>3 o
/ \ Phase 1:
—_ N
<h2>, <p>s Preprocessing O
/ \ Data structure
s ,
Tree T

» The input data can be modified after the preprocessing

33/35

<body>4
<div>; <section>3 o
N Phase 1:
— e
<h2>, <p>s Preprocessing O
/ <>ideo> Data structure
e It
Tree T

» The input data can be modified after the preprocessing

33/35

<body>4
<div>; <section>3 o
N Phase 1:
— e
<h2>, <p>s Preprocessing O
/ <>ideo> Data structure
e It
Tree T

» The input data can be modified after the preprocessing

33/35

<body>4

N

<div>, <section>3

/ \ _ Phase 1: N

<h2>, <p>s Preprocessing O

/ <>ideo> Data structure
6

Tree T

O

» The input data can be modified after the preprocessing

« If this happen, we must rerun the preprocessing from scratch

33/35

<body>4

N

<div>, <section>3

/ \ . Phase 1: -,

<h2>, <p>s Preprocessing O

/ <>ideo> Data structure
6

Tree T

O

» The input data can be modified after the preprocessing
« If this happen, we must rerun the preprocessing from scratch

— Can we do better?

33/35

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006, trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

34135

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006, trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014] trees O(T) O(log®>T) O(log?T)

34/35

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006, trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®>T) O(log?T)

[Losemann and Martens, 2014] text

o(T)

O(logT) O(logT)

34/35

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006, trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®>T) O(log?T)
[Losemann and Martens, 2014] text — O(T) O(logT) O(logT)

[Niewerth and Segoufin, 2018] text O(T) 0(1) O(logT)

34/35

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006, trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®>T) O(log?T)
[Losemann and Martens, 2014] text — O(T) O(logT) O(logT)
[Niewerth and Segoufin, 2018] text O(T) 0(1) O(logT)
[Amarilli et al., 2019b] trees O(T) 0(1) O(logT)

34/35

Summary and open problems

Summary and conclusion

Given a deterministic tree automaton A and a tree T, we can build in
O(|A| x |T|) a d-DNNF set circuit capturing the results of Aon T.

Theorem
Given a d-DNNF set circuit C, we can enumerate its results with
linear preprocessing and delay linear in each result

35/35

Summary and conclusion

Given a deterministic tree automaton A and a tree T, we can build in
O(|A| x |T|) a d-DNNF set circuit capturing the results of Aon T.

Theorem
Given a d-DNNF set circuit C, we can enumerate its results with
linear preprocessing and delay linear in each result

 If Ais nondeterministic, this still works with O(Poly(A))
» If T is updated, we can handle the change in O(log |T|)

35/35

Summary and conclusion

Given a deterministic tree automaton A and a tree T, we can build in
O(|A| x |T|) a d-DNNF set circuit capturing the results of Aon T.

Theorem

Given a d-DNNF set circuit C, we can enumerate its results with
linear preprocessing and delay linear in each result

 If Ais nondeterministic, this still works with O(Poly(A))
» If T is updated, we can handle the change in O(log |T|)

Open problems:

e Implementation use cases? e Memory usage?

e Lower bounds? e Connection to tuple testing?

e Enumeration with order? * Generic indexes?
35/35

References i

3 Amarilli, A, Bourhis, P, Mengel, S., and Niewerth, M. (2019a).
Constant-Delay Enumeration for Nondeterministic Document
Spanners.

In ICDT.

[§ Amarilli, A, Bourhis, P, Mengel, S., and Niewerth, M. (2019b).
Enumeration on Trees with Tractable Combined Complexity and
Efficient Updates.

In PODS.

[4 Bagan, G. (2006).

MSO queries on Tree Decomposable Structures Are Computable
with Linear Delay.
In CSL.

https://arxiv.org/abs/1807.09320
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/

References ii

[§ Florenzano, F, Riveros, C, Ugarte, M, Vansummeren, S., and Vrgoc,
D. (2018).
Constant Delay Algorithms for Regular Document Spanners.
In PODS.

[§ Kazana, W. and Segoufin, L. (2013).
Enumeration of Monadic Second-Order Queries on Trees.
TOCL, 14(4).

[Losemann, K. and Martens, W. (2014,).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.

https://arxiv.org/abs/1803.05277
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References iii

[§ Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
To appear.
[§ Thatcher,). W. and Wright, J. B. (1968).
Generalized Finite Automata Theory with an Application to a
Decision Problem of Second-Order Logic.
Mathematical systems theory, 2(1):57-81.

Hack: adding tree nodes to express the variable assignments

* Query: Q(X4,...,Xn) with free variables x,, ..., xp

Hack: adding tree nodes to express the variable assignments

* Query: Q(X4,...,Xn) with free variables x,, ..., xp
e Goal: find all tuples a4, ..., a, such that Q(as, ..., ay) holds

Hack: adding tree nodes to express the variable assignments

* Query: Q(X4,...,Xn) with free variables x,, ..., xp
e Goal: find all tuples a4, ..., a, such that Q(as, ..., ay) holds
— Add special nodes: for each node n and variable x;,
add a node n; which is colored red iff x; is the node n

@ © Ciom L
@@ ®

Hack: adding tree nodes to express the variable assignments

* Query: Q(X4,...,Xn) with free variables x,, ..., xp
e Goal: find all tuples a4, ..., a, such that Q(as, ..., ay) holds
— Add special nodes: for each node n and variable x;,
add a node n; which is colored red iff x; is the node n

@ © Ciom L
@@ ®

» Rewrite the query to a Boolean query which
uses the new nodes n; to read the valuation of x;
e This can be done in linear time in the input tree

Hack: adding tree nodes to express the variable assignments

* Query: Q(X4,...,Xn) with free variables x,, ..., xp
e Goal: find all tuples a4, ..., a, such that Q(as, ..., ay) holds
— Add special nodes: for each node n and variable x;,
add a node n; which is colored red iff x; is the node n

@ © Ciom L
@@ ®

» Rewrite the query to a Boolean query which
uses the new nodes n; to read the valuation of x;
e This can be done in linear time in the input tree
— Now, the results are all ways to color the special nodes red and
make the Boolean query true

Lower Bound

Existential Marked Ancestor Queries

Given: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

log(n)
tquery € Q (lOg(tupdate IOg(n)))

Lower Bound

Reduction to Query Enumeration

Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, iff Q produces some result

3. Mark v as non-special again

log(n
max(tdelaya tupdate) € Q (%)

Image credits

Title slide: Eiffel tower image by Yann Caradec https:
//www.flickr.com/photos/la_bretagne_a_paris/35118647963,
license CC-BY-SA 2.0.

https://www.flickr.com/photos/la_bretagne_a_paris/35118647963
https://www.flickr.com/photos/la_bretagne_a_paris/35118647963

	Building a set circuit
	Enumeration for set circuits
	Application to text and combined complexity
	Handling updates
	Summary and open problems
	Appendix

