

Enumeration for MSO Queries on Trees via Circuits

Antoine Amarilli ${ }^{1}$ Pierre Bourhis ${ }^{2}$, Louis Jachiet ${ }^{2}$, Stefan Mengel ${ }^{3}$, Matthias Niewerth ${ }^{4}$

July 14, 2019
${ }^{1}$ Télécom Paris, Institut Polytechnique de Paris
${ }^{2}$ CNRS CRIStAL
${ }^{3}$ CNRS CRIL
4Universität Bayreuth

Enumeration for MSO Queries on Trees via Circuits

Antoine Amarilli ${ }^{1}$ Pierre Bourhis ${ }^{2}$, Louis Jachiet ${ }^{2}$, Stefan Mengel ${ }^{3}$, Matthias Niewerth ${ }^{4}$

July $\mathbb{C l}_{3}, 2019$

```
\({ }^{1}\) Télécom Paris, Institut Polytechnique de Paris
\({ }^{2}\) CNRS CRIStAL
\({ }^{3}\) CNRS CRIL
\({ }^{4}\) Universität Bayreuth
```


Circuits pour l'énumération de MSO sur des arbres

Antoine Amarilli ${ }^{1}$ Pierre Bourhis ${ }^{2}$, Louis Jachiet ${ }^{2}$, Stefan Mengel ${ }^{3}$, Matthias Niewerth ${ }^{4}$
July $\mathbb{R}_{2}, 2019$
${ }^{1}$ Télécom Paris, Institut Polytechnique de Paris
${ }^{2}$ CNRS CRIStAL
${ }^{3}$ CNRS CRIL

4Universität Bayreuth

Query evaluation

The main database problem is query evaluation

Data D : what we know

Query evaluation

The main database problem is query evaluation

Data D : what we know
? Query Q: question asked about the data

Query evaluation

The main database problem is query evaluation

Data D : what we know
? Query Q: question asked about the data
1 Result: all results of the query Q on the data D

Query evaluation

The main database problem is query evaluation

Data D: what we know

? Query Q: question asked about the data
(i) Result: all results of the query Q on the data D

Measure of efficiency: computational complexity:

- Combined complexity: D and Q are inputs
- Data complexity: Q is fixed, D is the input

Structured data: trees

- Several kinds of data are structured as a tree (HTML pages, XML, folder hierarchies...)
- Important special case: text

Structured data: trees

- Several kinds of data are structured as a tree (HTML pages, XML, folder hierarchies...)
- Important special case: text
- On this kind of data, we can use more efficient query evaluation techniques

Structured data: trees

- Several kinds of data are structured as a tree (HTML pages, XML, folder hierarchies...)
- Important special case: text
- On this kind of data, we can use more efficient query evaluation techniques
- Natural query language: monadic second-order logic (MSO)
- Very expressive
- Corresponds to tree automata
- Data complexity is in linear time

Query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a Boolean formula in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "
"Is there both a pink and a blue node?"
$\exists x$ y $P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a Boolean formula in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "
"Is there both a pink and a blue node?" $\exists x$ y $P_{\bigcirc}(x) \wedge P_{\circ}(y)$

1 Result: YES/NO indicating if the tree T satisfies the query Q

Query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$
? Query Q: a Boolean formula in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "
"Is there both a pink and a blue node?" $\exists x$ y $P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Beyond Boolean queries

- Boolean queries only gives YES/NO answers
\rightarrow YES, there is both a pink and a blue node

Beyond Boolean queries

- Boolean queries only gives YES/NO answers
\rightarrow YES, there is both a pink and a blue node
- Better idea: non-Boolean queries
\rightarrow e.g., $Q(x, y)$: " x is a pink node and y is a blue node"

Beyond Boolean queries

- Boolean queries only gives YES/NO answers
\rightarrow YES, there is both a pink and a blue node
- Better idea: non-Boolean queries
\rightarrow e.g., $Q(x, y)$: " x is a pink node and y is a blue node"
- Challenge: how to define complexity for non-Boolean queries?

Beyond Boolean queries

- Boolean queries only gives YES/NO answers
\rightarrow YES, there is both a pink and a blue node
- Better idea: non-Boolean queries
\rightarrow e.g., $Q(x, y)$: "x is a pink node and y is a blue node"
- Challenge: how to define complexity for non-Boolean queries?
- Just writing the output is slow in the worst case

Beyond Boolean queries

- Boolean queries only gives YES/NO answers
\rightarrow YES, there is both a pink and a blue node
- Better idea: non-Boolean queries
\rightarrow e.g., $Q(x, y)$: "x is a pink node and y is a blue node"
- Challenge: how to define complexity for non-Boolean queries?
- Just writing the output is slow in the worst case
- Easy solution: the naive algorithm that tests all pairs

Beyond Boolean queries

- Boolean queries only gives YES/NO answers
\rightarrow YES, there is both a pink and a blue node
- Better idea: non-Boolean queries
\rightarrow e.g., $Q(x, y)$: "x is a pink node and y is a blue node"
- Challenge: how to define complexity for non-Boolean queries?
- Just writing the output is slow in the worst case
- Easy solution: the naive algorithm that tests all pairs
\rightarrow We need a new definition of complexity

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches we just need to be able to enumerate matches quickly

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches we just need to be able to enumerate matches quickly

Q how to find patterns

Search

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches we just need to be able to enumerate matches quickly

Q how to find patterns
 Search

Results 1-20 of 10,514

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches we just need to be able to enumerate matches quickly

Q how to find patterns
 Search

Results 1-20 of 10,514

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches we just need to be able to enumerate matches quickly

Q how to find patterns

Search

Results 1-20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches we just need to be able to enumerate matches quickly

Q how to find patterns

Search

Results 1-20 of 10,514

View (previous 20 | next 20) (20 | 50 | $100|250| 500)$
\rightarrow Formalization: enumeration algorithms

Input

Formalizing an enumeration algorithm

Results

Formalizing an enumeration algorithm

Main results

- We are given: the tree T, a non-Boolean query Q in MSO
\rightarrow Example: $Q(x, y)$ asks for pairs of a blue node x and a pink node y

Main results

- We are given: the tree T, a non-Boolean query Q in MSO
\rightarrow Example: $Q(x, y)$ asks for pairs of a blue node x and a pink node y
- We want: enumerate the results of the query
\rightarrow Here, the pairs of a pink node and blue node

Main results

- We are given: the tree T, a non-Boolean query Q in MSO
\rightarrow Example: $Q(x, y)$ asks for pairs of a blue node x and a pink node y
- We want: enumerate the results of the query
\rightarrow Here, the pairs of a pink node and blue node

Theorem
 For any fixed MSO query Q, given a tree T, we can preprocess T in linear time in T and then enumerate each result in linear time in the result

Main results

- We are given: the tree T, a non-Boolean query Q in MSO
\rightarrow Example: $Q(x, y)$ asks for pairs of a blue node x and a pink node y
- We want: enumerate the results of the query
\rightarrow Here, the pairs of a pink node and blue node

> Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
> For any fixed MSO query Q, given a tree T, we can preprocess T in linear time in T and then enumerate each result in linear time in the result

This was already known, so what's new?

Main results

- We are given: the tree T, a non-Boolean query Q in MSO
\rightarrow Example: $Q(x, y)$ asks for pairs of a blue node x and a pink node y
- We want: enumerate the results of the query
\rightarrow Here, the pairs of a pink node and blue node

> Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
> For any fixed MSO query Q, given a tree T, we can preprocess T in linear time in T and then enumerate each result in linear time in the result

This was already known, so what's new?

- Modular proof based on a notion of set circuits
- Tractable in combined complexity for Q given as an automaton
- Efficiently update the preprocessing when the tree changes

Structure of the talk

- Building a set circuit: given a tree T and automaton A, we can build a set circuit C that represents the results

Structure of the talk

- Building a set circuit: given a tree T and automaton A, we can build a set circuit C that represents the results
- Enumeration on set circuits: given a set circuit C, we can enumerate efficiently the results that it captures (under some assumptions on C)

Structure of the talk

- Building a set circuit: given a tree T and automaton A, we can build a set circuit C that represents the results
- Enumeration on set circuits: given a set circuit C, we can enumerate efficiently the results that it captures (under some assumptions on C)
- New stuff:
- Tractability in the automaton and application to text
- Efficient updates of the index

Building a set circuit

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the parent of y "

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the parent of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the parent of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the parent of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x$ y $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"
- Monadic second-order logic (MSO): adds quantifiers over sets
- $\exists S \forall x S(x)$ means "there is a set S containing every element x "
- Can express transitive closure $x \rightarrow^{*} y$, i.e., "x is an ancestor of y "
- $\forall x P_{\bigcirc}(x) \Rightarrow \exists y P_{\bigcirc}(y) \wedge x \rightarrow^{*} y$ means "There is a blue node below every pink node"

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$
- Initial function: $O \perp \bigcirc P \quad \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{T\}$
- Initial function: $O \perp \bigcirc P \quad \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$
- Initial function: $O \perp \bigcirc P \quad \bigcirc B$
- Transitions (examples):

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees
\rightarrow Given a Boolean MSO query, we can compute a tree automaton that accepts precisely the trees on which the query holds

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees
\rightarrow Given a Boolean MSO query, we can compute a tree automaton that accepts precisely the trees on which the query holds
\rightarrow Complexity (in the query) is generally nonelementary

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees
\rightarrow Given a Boolean MSO query, we can compute a tree automaton that accepts precisely the trees on which the query holds
\rightarrow Complexity (in the query) is generally nonelementary

Corollary

Evaluating a Boolean MSO query on a tree is in linear time in the tree

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:
Data: A tree T

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:
Data: A tree T
"What are the pairs of
Query: A non-Boolean MSO Q(x) formula a pink and blue node?"

A small hack for non-Boolean queries

Remember our problem on non-Boolean queries:
Data: A tree T
"What are the pairs of
? Query: A non-Boolean MSO Q(x) formula a pink and blue node?"

(1)Result: All the a such that $Q(\mathbf{a})$ holds

A small hack for non-Boolean queries

Data: A tree T
"What are the pairs of
Query: A non-Boolean MSO Q(x) formula a pink and blue node?"
(1)

Result: All the a such that $Q(\mathbf{a})$ holds

For technical reasons it will be simpler to:

- Write the choice for variables as colors on the tree

A small hack for non-Boolean queries

©
Data: A tree-干
A tree T with more colors to select nodes
"What are the pairs of
Query: A non-Boolean MSO Q(x) formula a pink and blue node?"

(1)
Result: All the a such that $Q(\mathbf{a})$ holds

For technical reasons it will be simpler to:

- Write the choice for variables as colors on the tree

A small hack for non-Boolean queries

家
Data: A tree- T
A tree T with more colors to select nodes
"What are the pairs of
Query: A non-Boolean MSO Q(x) formula a pink and blue node?"
i
Result: All the a such that $Q(\mathbf{a})$ holds

For technical reasons it will be simpler to:

- Write the choice for variables as colors on the tree
- Replace the non-Boolean query Q by a Boolean query Q^{\prime}

A small hack for non-Boolean queries

家
Data: A tree- -
A tree T with more colors to select nodes
"What are the pairs of
Query: A non Bootean MSO Q(x) formula A Boolean MSO formula Q^{\prime} a pink and blue node?"
"Are the two selected
nodes pink and blue?" Result: All the a such that $Q(\mathbf{a})$ holds

For technical reasons it will be simpler to:

- Write the choice for variables as colors on the tree
- Replace the non-Boolean query Q by a Boolean query Q^{\prime}

A small hack for non-Boolean queries

家Data: A tree- A tree T with more colors to select nodes
"What are the pairs of
Query: A non Bootean MSO Q(x) formula A Boolean MSO formula Q^{\prime} a pink and blue node?"
"Are the two selected
nodes pink and blue?" Result: All the a such that $Q(\mathbf{a})$ holds

For technical reasons it will be simpler to:

- Write the choice for variables as colors on the tree
- Replace the non-Boolean query Q by a Boolean query Q^{\prime}
- Enumerate the ways to color the tree

A small hack for non-Boolean queries

家Data: A tree- A tree T with more colors to select nodes
"What are the pairs of a pink and blue node?"

(2)Query: A non Bootean MSO Q(x) formuta A Boolean MSO formula Q^{\prime}
"Are the two selected
nodes pink and blue?"

Result: All the a-such that Q(a) holds
All the ways ν to color T such that Q^{\prime} holds on $\nu(T)$
For technical reasons it will be simpler to:

- Write the choice for variables as colors on the tree
- Replace the non-Boolean query Q by a Boolean query Q^{\prime}
- Enumerate the ways to color the tree

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2 \mapsto 1, * \mapsto \mathrm{O}\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto 0\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"
The tree automaton A accepts

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$
A: "Is there both a pink and a blue node?"
The tree automaton A rejects

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"
The tree automaton A accepts
\rightarrow The results that we want to enumerate are all valuations of T that make A accept

Set circuits

We want to represent these results as a set circuit:

- Directed acyclic graph of gates

Set circuits

We want to represent these results as a set circuit:

- Directed acyclic graph of gates
- Output gate:

Set circuits

We want to represent these results as a set circuit:

- Directed acyclic graph of gates
- Output gate:
- Variable gates:

Set circuits

We want to represent these results as a set circuit:

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Constant gates:

(x)
$\oplus \perp$

Set circuits

We want to represent these results as a set circuit:

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Constant gates:

- Internal gates:

(x ○○

Semantics of set circuits

Every gate g captures a set $S(g)$

Semantics of set circuits

Every gate g captures a set $S(g)$

- Variable gate with label $x: S(g):=\{\{x\}\}$

Semantics of set circuits

Every gate g captures a set $S(g)$

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$

Semantics of set circuits

Every gate g captures a set $S(g)$

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$

Semantics of set circuits

Every gate g captures a set $S(g)$

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :

$$
S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}
$$

Semantics of set circuits

Every gate g captures a set $S(g)$

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :

$$
S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}
$$

- \cup-gate with children g_{1}, g_{2} : $S(g):=S\left(g_{1}\right) \cup S\left(g_{2}\right)$

Set circuit for a query on a tree

Set circuit for a query on a tree

Set circuit for automaton A on uncertain tree T :

- Variable gates: nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S\left(g_{\circ}\right)$ of the output gate g_{\circ} contains $\{n \in T \mid \nu(n)=1\}$.

Set circuit for a query on a tree

Set circuit for automaton A on uncertain tree T :

- Variable gates: nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $\mathrm{S}\left(g_{\circ}\right)$ of the output gate g_{\circ} contains $\{n \in T \mid \nu(n)=1\}$.

Query: Is there both a pink and a blue node?

Set circuit for a query on a tree

Set circuit for automaton A on uncertain tree T :

- Variable gates: nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S\left(g_{\circ}\right)$ of the output gate g_{\circ} contains $\{n \in T \mid \nu(n)=1\}$.

Query: Is there both a pink and a blue node?

Set circuit for a query on a tree

Set circuit for automaton A on uncertain tree T :

- Variable gates: nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $\mathrm{S}\left(g_{\circ}\right)$ of the output gate g_{\circ} contains $\{n \in T \mid \nu(n)=1\}$.

Query: Is there both a pink and a blue node?

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a set circuit of A on T in $O(|A| \times|T|)$

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

(n)

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Set circuit restrictions

To have efficient enumeration, we need restrictions on the set circuit:

d-DNNF set circuit:

- (U) are all deterministic: The inputs are disjoint (= no set is captured by two inputs)

Set circuit restrictions

To have efficient enumeration, we need restrictions on the set circuit:

d-DNNF set circuit:

- (U) are all deterministic: The inputs are disjoint (= no set is captured by two inputs)
- \times are all decomposable: The inputs are independent (= no variable x has a path to two
 different inputs)

Building d-DNNF set circuits

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Meaning of the set circuit

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Meaning of the set circuit

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Meaning of the set circuit

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$
Data:

Meaning of the set circuit

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$
Data:

Meaning of the set circuit

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$
Data:

Results:	
X_{1}	X_{2}
1	2
1	3

Set circuit:

Meaning of the set circuit

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\circ}(x) \wedge P_{\circ}(y)$ Data:

Set circuit:

Meaning of the set circuit

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\circ}(x) \wedge P_{\circ}(y)$

Set circuit:

Enumeration for set circuits

The situation so far

- We started from our input tree T and query Q
- We have built a circuit C describing the results
- We know it is a d-DNNF
(X2) (2) We want to enumerate these results efficiently

The situation so far

- We started from our input tree T and query Q
- We have built a circuit C describing the results
- We know it is a d-DNNF
- We want to enumerate these results efficiently

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured sets with preprocessing linear in $|C|$ and delay linear in each set

The situation so far

- We started from our input tree T and query Q
- We have built a circuit C describing the results
- We know it is a d-DNNF
(X2 (2) $X_{2}(3)$ - We want to enumerate these results efficiently

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured sets with preprocessing linear in $|C|$ and delay linear in each set
\rightarrow This is a generic result (does not talk about MSO or trees)
\rightarrow Any problems whose solutions can be coded as a d-DNNF can be efficiently enumerated via this method

Enumeration proof overview

Preprocessing phase:

set circuit

Enumeration proof overview

Preprocessing phase:

set circuit

Enumeration proof overview

Preprocessing phase:

Enumeration proof overview

Preprocessing phase:

Enumeration phase:

Indexed
normalized
circuit

Enumeration proof overview

Preprocessing phase:

Enumeration phase:

circuit

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x :

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : en umerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$
and then enumerate $S\left(g^{\prime}\right)$

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$
and then enumerate $S\left(g^{\prime}\right)$
Determinism: no duplicates

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : en umerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ Lexicographic product: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Determinism: no duplicates
 and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ Lexicographic product: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Determinism: no duplicates and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result Decomposability: no duplicates

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$
- then get rid of the gate

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates

Normalization: handling empty sets

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty sets

- Problem: if $S(g)$ contains $\}$ we waste time in chains of x-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for x-gates
- collapse x-chains with fan-in 1
\rightarrow Now, traversing a \times-gate ensures that we make progress: it splits the sets non-trivially

Indexing: handling U-hierarchies

Indexing: handling \cup-hierarchies

Indexing: handling \cup-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees
- For MSO query evaluation: upwards-deterministic circuit
 so we have a tree: simpler constant-memory index

Summary of results

We have shown:

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured sets with preprocessing linear in $|C|$ and delay linear in each set

Summary of results

We have shown:

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured sets with preprocessing linear in $|C|$ and delay linear in each set

And for any fixed MSO query Q, given a tree T, we can...

- Construct a d-DNNF C representing the results in $O(T)$
- Apply to C the scheme above

Summary of results

We have shown:

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured sets with preprocessing linear in $|C|$ and delay linear in each set

And for any fixed MSO query Q, given a tree T, we can...

- Construct a d-DNNF C representing the results in $O(T)$
- Apply to C the scheme above

So we have re-proved:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

For any fixed MSO query Q, given a tree T, we can preprocess T in linear time in T and then enumerate each result in linear time in the result

Application to text and combined complexity

Problem statement: Pattern matching in texts

```
Data: a text \(T\)
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
```


Problem statement: Pattern matching in texts

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017 . Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016 . Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git...
? Query: a pattern P given as a regular expression

$$
P:=~ \sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \text { ப }
$$

Problem statement: Pattern matching in texts

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017 . Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016 . Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git...
? Query: a pattern P given as a regular expression

$$
P:=~ \sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \text { ப }
$$

(i) Output: the list of substrings of T that match P :
$[186,200\rangle,[483,500), \ldots$

Problem statement: Pattern matching in texts

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017 . Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016 . Former student of the Ecole normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git...

? Query: a pattern P given as a regular expression

$$
P:=~ \sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \text { ப }
$$

(i) Output: the list of substrings of T that match P :

$$
[186,200\rangle, \quad[483,500\rangle, \ldots
$$

Goal:

- be very efficient in T (constant-delay)
- be reasonably efficient in P (polynomial-time)

Reducing to MSO

- A text is just a tree with a simpler shape

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO
\rightarrow More generally: regular expressions with variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta b^{*} \gamma \bullet *$
- Translate to a word automaton (with capture variables)

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO
\rightarrow More generally: regular expressions with variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta b^{*} \gamma \bullet *$
- Translate to a word automaton (with capture variables)

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO
\rightarrow More generally: regular expressions with variables
\rightarrow Example: $\mathbf{P}:=\bullet^{*} \alpha a^{*} \beta b^{*} \gamma \bullet *$
- Translate to a word automaton (with capture variables)

\rightarrow The MSO result implies:

Theorem [Florenzano et al., 2018]

We can enumerate all matches of a regular expression pattern on a tree with linear preprocessing and constant delay

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO
\rightarrow More generally: regular expressions with variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta b^{*} \gamma \bullet *$
- Translate to a word automaton (with capture variables)

\rightarrow The MSO result implies:

Theorem [Florenzano et al., 2018]

We can enumerate all matches of a regular expression pattern on a tree with linear preprocessing and constant delay
\rightarrow The resulting set circuit is a binary decision diagram, i.e., each \times-gate has only one input which is not a variable

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity
- For regular expressions: exponential (determinization)

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity
- For regular expressions: exponential (determinization)
- In fact: our methods adapt to nondeterministic automata

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity
- For regular expressions: exponential (determinization)
- In fact: our methods adapt to nondeterministic automata

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]

We can enumerate all matches of a nondeterministic tree automaton on a tree with

- Preprocessing linear in the tree and polynomial in the automaton
- Delay constant in the tree and polynomial in the automaton

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity
- For regular expressions: exponential (determinization)
- In fact: our methods adapt to nondeterministic automata

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]

We can enumerate all matches of a nondeterministic tree automaton on a tree with

- Preprocessing linear in the tree and polynomial in the automaton
- Delay constant in the tree and polynomial in the automaton

Corollary

Given a regular expression pattern P and text T, we can enumerate all matches of P on T with the complexity above

Implementation (ongoing internship by Rémi Dupré)

- Prototype to find matches of a regular expression in a text
- https://github.com/remi-dupre/enum-spanner-rs
- Work-in-progress

Implementation (ongoing internship by Rémi Dupré)

- Prototype to find matches of a regular expression in a text
- https://github.com/remi-dupre/enum-spanner-rs
- Work-in-progress
- Open questions / projects:
- What about memory usage? (we cannot keep the whole index)
- Output matches in streaming? (problem: duplicates)
- Can we enumerate other notions of matches?
\rightarrow factors of maximal/minimal size
\rightarrow distinct matching strings
\rightarrow etc.

Implementation (ongoing internship by Rémi Dupré)

- Prototype to find matches of a regular expression in a text
- https://github.com/remi-dupre/enum-spanner-rs
- Work-in-progress
- Open questions / projects:
- What about memory usage? (we cannot keep the whole index)
- Output matches in streaming? (problem: duplicates)
- Can we enumerate other notions of matches?
\rightarrow factors of maximal/minimal size
\rightarrow distinct matching strings
\rightarrow etc.
- Which application domains need this?
- Are there good benchmarks?

Handling updates

Updates

Tree T

- The input data can be modified after the preprocessing

Updates

- The input data can be modified after the preprocessing

Updates

- The input data can be modified after the preprocessing

Updates

- The input data can be modified after the preprocessing
- If this happen, we must rerun the preprocessing from scratch

Updates

- The input data can be modified after the preprocessing
- If this happen, we must rerun the preprocessing from scratch
\rightarrow Can we do better?

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work

Data Preproc. Delay
Updates
[Bagan, 2006], trees $O(T) \quad O(1) \quad O(T)$
[Kazana and Segoufin, 2013]

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):
Work Data Preproc. Delay Updates
[Bagan, 2006], trees $O(T) \quad O(1) \quad O(T)$
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014] trees $O(T) \quad O\left(\log ^{2} T\right) \quad O\left(\log ^{2} T\right)$

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014] trees	$O(T)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$	
[Losemann and Martens, 2014]	text	$O(T)$	$O(\log T)$	$O(\log T)$

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014] trees	$O(T)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$	
[Losemann and Martens, 2014] text	$O(T)$	$O\left(\log ^{T} T\right)$	$O(\log T)$	
[Niewerth and Segoufin, 2018]	text	$O(T)$	$O(1)$	$O(\log T)$

Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	$O(T)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$
[Losemann and Martens, 2014]	text	$O(T)$	$O\left(\log ^{T} T\right)$	$O(\log T)$
[Niewerth and Segoufin, 2018]	text	$O(T)$	$O(1)$	$O(\log T)$
[Amarilli et al., 2019b]	trees	$O(T)$	$O(1)$	$O(\log T)$

Summary and open problems

Summary and conclusion

Theorem

Given a deterministic tree automaton A and a tree T, we can build in $O(|A| \times|T|)$ a d-DNNF set circuit capturing the results of A on T.

Theorem

Given a d-DNNF set circuit C, we can enumerate its results with linear preprocessing and delay linear in each result

Summary and conclusion

Theorem

Given a deterministic tree automaton A and a tree T, we can build in $\mathbf{O}(|A| \times|T|)$ a d-DNNF set circuit capturing the results of A on T.

Theorem

Given a d-DNNF set circuit C, we can enumerate its results with linear preprocessing and delay linear in each result

- If A is nondeterministic, this still works with $O(\operatorname{Poly}(A))$
- If T is updated, we can handle the change in $O(\log |T|)$

Summary and conclusion

Theorem

Given a deterministic tree automaton A and a tree T, we can build in $\mathbf{O}(|A| \times|T|)$ a d-DNNF set circuit capturing the results of A on T.

Theorem

Given a d-DNNF set circuit C, we can enumerate its results with linear preprocessing and delay linear in each result

- If A is nondeterministic, this still works with $O(\operatorname{Poly}(A))$
- If T is updated, we can handle the change in $O(\log |T|)$

Open problems:

- Implementation use cases?
- Lower bounds?
- Enumeration with order?
- Memory usage?
- Connection to tuple testing?
- Generic indexes?

References i

囯 Amarilli，A．，Bourhis，P．，Mengel，S．，and Niewerth，M．（2019a）．
Constant－Delay Enumeration for Nondeterministic Document Spanners．
In ICDT．
围 Amarilli，A．，Bourhis，P．，Mengel，S．，and Niewerth，M．（2019b）． Enumeration on Trees with Tractable Combined Complexity and Efficient Updates．
In PODS．
目 Bagan，G．（2006）．
MSO queries on Tree Decomposable Structures Are Computable with Linear Delay．
In CSL．

References ii

[Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).

Constant Delay Algorithms for Regular Document Spanners.
In PODS.
Razana, W. and Segoufin, L. (2013).
Enumeration of Monadic Second-Order Queries on Trees.
TOCL, 14(4).
圕 Losemann, K. and Martens, W. (2014).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.

References iif

囯 Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and logarithmic updates.
In PODS.
To appear.
R Thatcher, J. W. and Wright, J. B. (1968).
Generalized Finite Automata Theory with an Application to a Decision Problem of Second-Order Logic.
Mathematical systems theory, 2(1):57-81.

Hack: adding tree nodes to express the variable assignments

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}

Hack: adding tree nodes to express the variable assignments

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds

Hack: adding tree nodes to express the variable assignments

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special nodes: for each node n and variable x_{i}, add a node n_{i} which is colored red iff x_{i} is the node n

Hack: adding tree nodes to express the variable assignments

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special nodes: for each node n and variable x_{i}, add a node n_{i} which is colored red iff x_{i} is the node n

- Rewrite the query to a Boolean query which uses the new nodes n_{i} to read the valuation of x_{i}
- This can be done in linear time in the input tree

Hack: adding tree nodes to express the variable assignments

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special nodes: for each node n and variable x_{i}, add a node n_{i} which is colored red iff x_{i} is the node n

- Rewrite the query to a Boolean query which uses the new nodes n_{i} to read the valuation of x_{i}
- This can be done in linear time in the input tree
\rightarrow Now, the results are all ways to color the special nodes red and make the Boolean query true

Lower Bound

Existential Marked Ancestor Queries

Given: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node
Theorem

$$
t_{\text {query }} \in \Omega\left(\frac{\log (n)}{\log \left(t_{\text {update }} \log (n)\right)}\right)
$$

Lower Bound

Reduction to Query Enumeration

Fixed Query Q: Return all special nodes with a marked ancestor For every marked ancestor query \mathbf{v} :

1. Mark node v special
2. Enumerate Q and return "yes", iff Q produces some result
3. Mark vas non-special again

Theorem

$$
\max \left(t_{\text {delay }}, t_{\text {update }}\right) \quad \in \quad \Omega\left(\frac{\log (n)}{\log \log (n)}\right)
$$

Image credits

Title slide: Eiffel tower image by Yann Caradec https:
//www.flickr.com/photos/la_bretagne_a_paris/35118647963, license CC-BY-SA 2.O.

