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Query evaluation

The main database problem is query evaluation

()
hN— Data D: what we know
"/

Q) Query Q: question asked about the data

Q Result: all results of the query Q on the data D

Measure of efficiency: computational complexity:

» Combined complexity: D and Q are inputs
» Data complexity: Q is fixed, D is the input
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Structured data: trees

e Several kinds of data are structured as a tree
(HTML pages, XML, folder hierarchies...)

- Important special case: text

e On this kind of data, we can use more efficient
query evaluation techniques

e Natural query language: monadic second-order
logic (MSO)
- Very expressive
- Corresponds to tree automata
- Data complexity is in linear time
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Query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

Query Q: a Boolean formula in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Is there both a pink
and a blue node?”

Ixy Po(x) A Po(y)

@ Result: YES/NO indicating if the tree T satisfies the query Q

e Data complexity: linearin T

e Combined complexity: cannot be elementary
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Beyond Boolean queries

e Boolean queries only gives YES/NO answers
— YES, there is both a pink and a blue node

» Better idea: non-Boolean queries
— eg, Q(x,y): “xis a pink node and y is a blue node”

e Challenge: how to define complexity for non-Boolean queries?

- Just writing the output is slow in the worst case
- Easy solution: the naive algorithm that tests all pairs
— We need a new definition of complexity

5/35
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Idea: Enumeration algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

Q how to find patterns | searcn |

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Formalization: enumeration algorithms
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Formalizing an enumeration algorithm

A B C
Step 1: m Step 2:
— Indexing |» » Enumeration >
in O(input)| Indexed in O(result a b ¢
|nput ( p ) mput ( )
Results
01100111
i
o
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A B C

Step 1: m Step 2:

— Indexing |» » Enumeration >

in O(input)| Indexed in O(result
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Results
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« We are given: the tree T, a non-Boolean query Q in MSO
— Example: Q(x,y) asks for pairs of a blue node x and a pink node y
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Main results

« We are given: the tree T, a non-Boolean query Q in MSO
— Example: Q(x,y) asks for pairs of a blue node x and a pink node y

e We want: enumerate the results of the query
— Here, the pairs of a pink node and blue node

For any fixed MSO query Q, given a tree T,
we can preprocess T in linear time in T and then
enumerate each result in linear time in the result

This was already known, so what's new?

» Modular proof based on a notion of set circuits

e Tractable in combined complexity for Q given as an automaton
 Efficiently update the preprocessing when the tree changes

8/35
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Structure of the talk

* Building a set circuit: given a tree T and automaton A,
we can build a set circuit C that represents the results

e Enumeration on set circuits: given a set circuit C,
we can enumerate efficiently the results that it captures
(under some assumptions on C)

¢ New stuff:

- Tractability in the automaton and application to text
- Efficient updates of the index

9/35
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Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Pg(x), Po(x)

* X — y means “x is the parent of y"

 Propositional logic: formulas with AND A, OR Vv, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

* First-order logic: adds existential quantifier 3 and
universal quantifier vV
- 3xy Po(x) A Po(y) means “There is both a pink and a blue node”

» Monadic second-order logic (MSO): adds quantifiers over sets
- 3S Vx S(x) means “there is a set S containing every element x”
- Can express transitive closure x —* y, i.e,, “x is an ancestor of y”
- VXPo(x) = 3y Po(y) AXx —*y

means “There is a blue node below every pink node”
10/35
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Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees

— Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

— Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree

12/35
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A small hack for non-Boolean queries

Data: A-tree—F
A tree T with more colors to select nodes

Query: ArenBoetean-MSO-Qbgformula apmkhandbiterode
A Boolean MSO formula Q' “Are the two selected
nodes pink and blue?”

Result: At-the-asteh-thatQfarhotds
All the ways v to color T such that Q" holds on v(T)

For technical reasons it will be simpler to:

e Write the choice for variables as colors on the tree
» Replace the non-Boolean query Q by a Boolean query Q'
e Enumerate the ways to color the tree 13/35
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Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

e e Valuation: {2,7 — 1, %+~ 0}
A: “Is there both a pink and a blue node?”

The tree automaton A accepts

— The results that we want to enumerate are
all valuations of T that make A accept

14/35
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O,

Directed acyclic graph of gates

Output gate: @

Variable gates: @
Constant gates: @ @
Internal gates: @ @
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Semantics of set circuits

{{x}, {x v}

Every gate g captures a set 5(g)
* Variable gate with label x: 5(g) := {{x}}
- T-gates: S(g) = {{}}
e |-gates: S(g) =10
e x-gate with children g4, g-:
5(g) == {s1Usz | 51 € 5(91). 52 € 5(92)}
» U-gate with children gy, g»:
5(9) :==5(91) U 5(92)
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Set circuit for a query on a tree
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 Variable gates: nodes of T
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Set circuit restrictions

To have efficient enumeration, we need restrictions on the set circuit:

d-DNNF set circuit:

. @ are all deterministic:

The inputs are disjoint
(= no set is captured by two
inputs)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

{

{{x}, i v}

PGy vl
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Building d-DNNF set circuits

For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of Aon T in O(|A| x |T|)

+ Alphabet: OO O « States: « Transitions:
« Automaton: “Is there both {L,B,P, T} RT RP
a pink and a blue node?”  Final: {T} P 1L P L
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Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query: Set circuit:
Q(X1,X2) : Po(x) A Po(y)

Data: Results: @@0 {X2(2),X2(3) }

X1 X2
1 2
@0 1L Gk

21/35



Meaning of the set circuit

— The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query: Set circuit:

Q(X1,X2) : Po(x) A Po(y) {(X1(1), X2(2)), (X1(1), X2(3)) }

Data: Results: 0 {X2(2), X2(3)}

X X
@ O 1 2
13
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The situation so far

We started from our input tree T and query Q

We have built a circuit C describing the results
We know it is a d-DNNF

()
ORO
) ()

Theorem

We want to enumerate these results efficiently

Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

— This is a generic result (does not talk about MSO or trees)

— Any problems whose solutions can be coded as a d-DNNF
can be efficiently enumerated via this method
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Enumeration proof overview

Preprocessing phase:

d-DNNF
set circuit

Normalization
(linear-time)

Enueration phase:

ONO
Y —_

Normalized
circuit
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Indexing
(linear-time)

—>ndexed

normalized

Indexed
normalized
circuit
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Enumeration
(linear delay
in each result)
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Enumerating captured sets of d-DNNF set circuits

Task: Enumerate the elements of the set S(g) captured by a gate g

— Eg, for S(g) = {{x},{x,y}}, enumerate {x} and then {x,y}

Base case: variable @ : enumerate {x} and stop

U-gate x -gate
g g g g
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)
and then enumerate S(g’) and for each result t enumerate S(g’)

Determinism: no duplicates and concatenate t with each result

Decomposability: no duplicates
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* Problem: if S(g) = 0 we waste time
e Solution: in preprocessing

- compute bottom-up if S(g) = 0
- then get rid of the gate
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Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

e Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
{3} - remove inputs with S(g) = {{}} for x-gates
- collapse x-chains with fan-in 1

— Now, traversing a x-gate ensures that we make progress:
it splits the sets non-trivially
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Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-uU gate)

 Solution: compute reachability index
* Problem: must be done in linear time

e Solution: Determinism ensures we have a multitree @
(we cannot have the pattern at the right) R

e Custom constant-delay reachability index for multitrees :

\ ’

e For MSO query evaluation: upwards-deterministic circuit
so we have a tree: simpler constant-memory index

27/35
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Summary of results

We have shown:

Given a d-DNNF set circuit C, we can enumerate its captured sets
with preprocessing linear in |C| and delay linear in each set

And for any fixed MSO query Q, given a tree T, we can...

» Construct a d-DNNF C representing the results in O(T)
e Apply to C the scheme above

So we have re-proved:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
For any fixed MSO query Q, given a tree T,

we can preprocess T in linear time in T and then
enumerate each result in linear time in the result
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Application to text
and combined complexity




Problem statement: Pattern matching in texts

Data: atext T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId.

Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France.

Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016.

Former student of the Ecole normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
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Problem statement: Pattern matching in texts

) Data:atextT
‘, Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
v French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP

a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of

Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science

awarded by Télécom ParisTech on March 14, 2016. Former student of the Ecole normale supérieure.

test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

Q) Query: a pattern P given as a regular expression
P:= _ [a-z0-9.1* @ [a-z0-9.1*
Q Output: the list of substrings of T that match P:
[186,200), [483,500), ...

Goal:

« be very efficient in T (constant-delay)
 be reasonably efficient in P (polynomial-time)
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Reducing to MSO

e Atextisjust atree with a simpler shape

» Aregular expression pattern can be expressed in MSO
— More generally: regular expressions with variables
— Example: P:=e* o a* 3 b* ~ e*

« Translate to a word automaton (with capture variables)

a b °
@)

— The MSO result implies:

Theorem [Florenzano et al., 2018]

We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

— The resulting set circuit is a binary decision diagram,
i.e., each x-gate has only one input which is not a variable
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Efficiency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

e For general MSO queries: nonelementary complexity
 For regular expressions: exponential (determinization)
* In fact: our methods adapt to nondeterministic automata

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]

We can enumerate all matches of a nondeterministic tree
automaton on a tree with

- Preprocessing linear in the tree and polynomial in the automaton
- Delay constant in the tree and polynomial in the automaton

Corollary

Given a regular expression pattern P and text T, we can enumerate

all matches of P on T with the complexity above N



Implementation (ongoing internship by Rémi Dupreé)

 Prototype to find matches of a regular expression in a text
* https://github.com/remi-dupre/enum-spanner-rs

» Work-in-progress
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Implementation (ongoing internship by Rémi Dupreé)

 Prototype to find matches of a regular expression in a text
* https://github.com/remi-dupre/enum-spanner-rs
» Work-in-progress
« Open questions / projects:
- What about memory usage? (we cannot keep the whole index)

- Output matches in streaming? (problem: duplicates)
- Can we enumerate other notions of matches?

— factors of maximal/minimal size

— distinct matching strings

— etc.
- Which application domains need this?
- Are there good benchmarks?
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<body>4

N

<div>, <section>3

/ \ . Phase 1: -,

<h2>, <p>s Preprocessing O

/ <>ideo> Data structure
<img>6

Tree T

O

» The input data can be modified after the preprocessing
« If this happen, we must rerun the preprocessing from scratch

— Can we do better?
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Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006, trees  O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

34135



Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006, trees  O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014] trees O(T) O(log®>T) O(log?T)

34/35



Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006, trees  O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®>T) O(log?T)

[Losemann and Martens, 2014] text

o(T)

O(logT) O(logT)

34/35



Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006, trees  O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®>T) O(log?T)
[Losemann and Martens, 2014] text — O(T) O(logT) O(logT)

[Niewerth and Segoufin, 2018] text  O(T) 0(1) O(logT)

34/35
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All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006, trees  O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®>T) O(log?T)
[Losemann and Martens, 2014] text — O(T) O(logT) O(logT)
[Niewerth and Segoufin, 2018] text  O(T) 0(1) O(logT)
[Amarilli et al., 2019b] trees O(T) 0(1) O(logT)
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Summary and conclusion

Given a deterministic tree automaton A and a tree T, we can build in
O(|A| x |T|) a d-DNNF set circuit capturing the results of Aon T.

Theorem

Given a d-DNNF set circuit C, we can enumerate its results with
linear preprocessing and delay linear in each result

 If Ais nondeterministic, this still works with O(Poly(A))
» If T is updated, we can handle the change in O(log |T|)

Open problems:

e Implementation use cases? e Memory usage?

e Lower bounds? e Connection to tuple testing?

e Enumeration with order? * Generic indexes?
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Hack: adding tree nodes to express the variable assignments

* Query: Q(X4,...,Xn) with free variables x,, ..., xp
e Goal: find all tuples a4, ..., a, such that Q(as, ..., ay) holds
— Add special nodes: for each node n and variable x;,
add a node n; which is colored red iff x; is the node n

@ © Ciom L
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» Rewrite the query to a Boolean query which
uses the new nodes n; to read the valuation of x;
e This can be done in linear time in the input tree
— Now, the results are all ways to color the special nodes red and
make the Boolean query true



Lower Bound

Existential Marked Ancestor Queries

Given: Tree t with some marked nodes
Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

log(n)
tquery € Q (lOg(tupdate IOg(n)))




Lower Bound

Reduction to Query Enumeration

Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special
2. Enumerate Q and return “yes”, iff Q produces some result

3. Mark v as non-special again

log(n
max(tdelaya tupdate) € Q (%)
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