
Background Preliminaries Crowd complexity Computational complexity Conclusion

On the Complexity of Mining Itemsets
from the Crowd Using Taxonomies

Antoine Amarilli1,2 Yael Amsterdamer1 Tova Milo1

1Tel Aviv University, Tel Aviv, Israel

2École normale supérieure, Paris, France

1/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Data mining

Data mining – discovering interesting patterns in large databases

Database – a (multi)set of transactions

Transaction – a set of items (aka. an itemset)

A simple kind of pattern to identify are frequent itemsets.

D =
{
{beer, diapers},
{beer, bread, butter},
{beer, bread, diapers},
{salad, tomato}}

An itemset is frequent if it
occurs in at least Θ = 50%
of transactions.

{salad} is not frequent.

{beer, diapers} is
frequent. Thus, {beer} is
also frequent.

2/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Human knowledge mining

What if the database doesn’t really exist?

Things to do in Athens:

D =
{
{icdt, monday, laptop},
{acropolis, sunglasses},
. . .}

Traditional medicine:

D =
{
{hangover, coffee},
{cough, honey},
. . .}

This data only exists in the minds of people!

3/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Harvesting this data

We cannot collect such data in a centralized database:
1 It’s impractical to ask all users to surrender their data.

“Everyone please tell us all that you did the last three months.”

2 People do not remember the information.

“What were you doing on August 23th, 2013?”

However, people remember summaries that we could access.

“Do you often play tennis on weekends?”

We can just ask people if an itemset is frequent.

4/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Crowdsourcing

Crowdsourcing – solving hard problems through elementary
queries to a crowd of users.

Find out if an itemset is frequent with the crowd:
1 Draw a sample of users from the crowd. (black box)

2 Ask: is this itemset frequent? (“Do you often play tennis?”)

3 Corroborate the answers to eliminate bad answers. (black box)

4 Reward the users. (e.g., monetary incentive)

⇒ An oracle that takes an itemset and finds out if it is frequent
or not by asking crowd queries.

5/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Taxonomies

Having a taxonomy over the items can save us work!

item

sickness

cough fever back pain

sport

tennis running biking

If {sickness, sport} is infrequent then all itemsets such as
{cough, biking} are also infrequent.

Without the taxonomy, we need to test all combinations!

Also avoids redundant itemsets like {sport, tennis}.

6/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Cost

How to evaluate the performance of a strategy to identify the
frequent itemsets?

Crowd complexity: The number of itemsets we ask about
(monetary cost, latency...)

Computational complexity: The complexity of computing the next
question to ask

There is a tradeoff between the two:

Asking random questions is computationally inexpensive but
the crowd complexity is bad.

Asking clever questions to obtain optimal crowd complexity is
computationally expensive.

7/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

The problem

We can now describe the problem:

We have:

A known item domain I (set of items).
A known taxonomy Ψ on I (is-a relation, partial order).
A crowd oracle freq to decide if an itemset is frequent or not.

Choose interactively questions based on past answers.

Balance crowd complexity and computational complexity.

⇒ Find out the status of all itemsets (learn freq exactly).

What is a good algorithm to solve this problem?

8/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Table of contents

1 Background

2 Preliminaries

3 Crowd complexity

4 Computational complexity

5 Conclusion

9/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Itemset taxonomy

Itemsets I(Ψ) – the sets of pairwise incomparable items.
(e.g. {coffee, tennis} but not {coffee, drink})
If an itemset is frequent then its subsets are also frequent.

If an itemset is frequent then itemsets with more general
items are also frequent.

We define an order relation 6 on itemsets: A 6 B for “A is
more general than B”.

Formally, ∀i ∈ A, ∃j ∈ B s.t. i is more general than j .

freq is monotone: if A 6 B and B is frequent then A also is.

10/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Itemset taxonomy example

Taxonomy Ψ

item

drink chess

coffee tea

Itemset taxonomy I(Ψ)

item

chess drink

nil

chess
drink coffee tea

chess
coffee

chess
tea

coffee
tea

chess
coffee
tea

Solution taxonomy S(Ψ)

{nil}

{item}

nil

{chess} {drink}

{chess}
{drink} {coffee} {tea}

{chess}
{coffee}

{chess}
{tea}{chess, drink} {coffee}

{tea}

{chess}
{coffee}
{tea}

{chess, drink}
{coffee} {coffee, tea}

{chess}
{coffee, tea}

{chess, drink}
{coffee}
{tea}

{chess, drink}
{coffee, tea}

{chess, coffee}
{coffee, tea}

{chess, tea}
{coffee, tea}

{chess, coffee}

{chess, coffee}
{tea}

{chess, tea}
{coffee}

{chess, drink}
{tea}

{chess, coffee}
{chess, tea}

{chess, coffee}
{chess, tea}
{coffee, tea}

{chess, tea}

{chess, coffee, tea}

11/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Maximal frequent itemsets

Maximal frequent itemset (MFI): a
frequent itemset with no frequent
descendants.

Minimal infrequent itemset (MII).

The MFIs (or MIIs) concisely
represent freq.

⇒ We can study complexity as a
function of the size of the output.

nil

item

chess drink

chess
drink coffee tea

chess
coffee

chess
tea

coffee
tea

chess
coffee
tea

12/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Solution taxonomy

Conversely, (we can show) any set of pairwise incomparable
itemsets is a possible MFI representation.

Hence, the set of all possible solutions has a similar structure
to the “itemsets” over the itemset taxonomy I(Ψ).

⇒ We call this the solution taxonomy S(Ψ) = I(I(Ψ)).

Identifying the freq predicate amounts to finding the correct node
in S(Ψ) through itemset frequency queries.

13/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Solution taxonomy example

Taxonomy Ψ

item

drink chess

coffee tea

Itemset taxonomy I(Ψ)

item

chess drink

nil

chess
drink coffee tea

chess
coffee

chess
tea

coffee
tea

chess
coffee
tea

Solution taxonomy S(Ψ)

{nil}

{item}

nil

{chess} {drink}

{chess}
{drink} {coffee} {tea}

{chess}
{coffee}

{chess}
{tea}{chess, drink} {coffee}

{tea}

{chess}
{coffee}
{tea}

{chess, drink}
{coffee} {coffee, tea}

{chess}
{coffee, tea}

{chess, drink}
{coffee}
{tea}

{chess, drink}
{coffee, tea}

{chess, coffee}
{coffee, tea}

{chess, tea}
{coffee, tea}

{chess, coffee}

{chess, coffee}
{tea}

{chess, tea}
{coffee}

{chess, drink}
{tea}

{chess, coffee}
{chess, tea}

{chess, coffee}
{chess, tea}
{coffee, tea}

{chess, tea}

{chess, coffee, tea}

14/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Table of contents

1 Background

2 Preliminaries

3 Crowd complexity

4 Computational complexity

5 Conclusion

15/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Lower bound

Each query yields one bit of information.

Information-theoretic lower bound: we need at least
Ω(log |S(Ψ)|) queries.

This is bad in general, because |S(Ψ)| can be doubly
exponential in Ψ.

As a function of the original taxonomy Ψ, we can write:

Ω
(

2width[Ψ]/
√

width[Ψ]
)

.

16/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Upper bound

We can achieve the information-theoretic
bound if is there always an unknown itemset
that is frequent in about half of the possible
solutions.

A result from order theory shows that there
is a constant δ0 ≈ 1/5 such that some
element always achieves a split of at least δ0.

Hence, the previous bound is tight: we need
Θ(log |S(Ψ)|) queries.

nil

a1

a2

a3

a4

a5

6/7

5/7

4/7

3/7

2/7

1/7

17/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Lower bound, MFI/MII

To describe the solution, we need the MFIs or the MIIs.

However, we need to query both the MFIs and the MIIs to
identify the result uniquely: Ω(|MFI|+ |MII|) queries.

We can have |MFI| = Ω
(
2|MII|) and vice-versa.

This bound is not tight (e.g., chain).

nil

a1

a2

a3

a4

a5

18/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Upper bound, MFI/MII

There is an explicit algorithm to
find a new MFI or MII in 6 |I|
queries.

Intuition: starting with any
frequent itemset, add items until
you cannot add any more without
becoming infrequent.

The number of queries is thus
O(|I| · (|MFI|+ |MII|)).

nil

item

chess drink

chess
drink coffee tea

chess
coffee

chess
tea

coffee
tea

chess
coffee
tea

19/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Table of contents

1 Background

2 Preliminaries

3 Crowd complexity

4 Computational complexity

5 Conclusion

20/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Hardness for standard (input) complexity

We want an unknown itemset of I(Ψ) that is frequent for
about half of the possible solutions of S(Ψ).

We can count over S(Ψ) but it may be exponential in | I(Ψ) |.
Counting the antichains of I(Ψ) is FP#P-complete.

Finding the best-split element in I(Ψ) is FP#P-hard in | I(Ψ) |?
Problem: I(Ψ) is not a general DAG, so we only show
hardness in |Ψ| for restricted (fixed-size) itemsets.

Intuition: count antichains by comparing to a known poset;
use a best-split oracle to compare; perform a binary search.

21/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Hardness for output complexity

In the incremental algorithm, materializing
I(Ψ) is expensive. Do we need to?

Actually, how to decide if we can stop with
our MFIs and MIIs?

Proved EQ-hardness for problem EQ
(exact complexity open).

nil

item

chess drink

chess
drink coffee tea

chess
coffee

chess
tea

coffee
tea

chess
coffee
tea

22/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Table of contents

1 Background

2 Preliminaries

3 Crowd complexity

4 Computational complexity

5 Conclusion

23/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Summary and further work

We have studied the crowd and computational complexity of crowd
mining under a taxonomy. What now?

Improve the bounds and close gaps.

Benchmark heuristics (chain partitioning, random, etc.).

Integrate prior knowledge.

Manage uncertainty (black box for now).

Guide exploration with a query (under review).

Work with numerical values for support.

Mine more expressive patterns.

Focus on top-k itemsets (work in progress).

Thanks for your attention!

24/24



Background Preliminaries Crowd complexity Computational complexity Conclusion

Summary and further work

We have studied the crowd and computational complexity of crowd
mining under a taxonomy. What now?

Improve the bounds and close gaps.

Benchmark heuristics (chain partitioning, random, etc.).

Integrate prior knowledge.

Manage uncertainty (black box for now).

Guide exploration with a query (under review).

Work with numerical values for support.

Mine more expressive patterns.

Focus on top-k itemsets (work in progress).

Thanks for your attention!

24/24



Additional material

Greedy algorithms

Querying an element of the chain may remove
< 1/2 possible solutions.

Querying the isolated element b will remove
exactly 1/2 solution.

However, querying b classifies far less itemsets.

⇒ Classifying many itemsets isn’t the same as
eliminating many solutions.

Finding the greedy-best-split item is FP#P-hard.

nil

a1

a2

a3

a4

a5

b

1/3



Additional material

Restricted itemsets

Asking about large itemsets is irrelevant.

“Do you often go cycling and running while drinking coffee
and having lunch with orange juice on alternate Wednesdays?”

If the itemset size is bounded by a constant, I(Ψ) is tractable.

⇒ The crowd complexity Θ(log |S(Ψ)|) is tractable too.

2/3



Additional material

Chain partitioning

Optimal strategy for chain taxonomies: binary search.

We can determine a chain decomposition of the itemset
taxonomy and perform binary searches on the chains.

Optimal crowd complexity for a chain, performance in
general is unclear.

Computational complexity is polynomial in the size of I(Ψ)
(which is still exponential in Ψ).

nil

a1

a2

a3

a4

a5

3/3


	Background
	Preliminaries
	Crowd complexity
	Computational complexity
	Conclusion

