Bac	kground	
000	00000	

Preliminaries

Crowd complexity

Computational complexity

Conclusion O

On the Complexity of Mining Itemsets from the Crowd Using Taxonomies

Antoine Amarilli^{1,2} Yael Amsterdamer¹ Tova Milo¹

¹Tel Aviv University, Tel Aviv, Israel

²École normale supérieure, Paris, France

Background •000000	Preliminaries 00000	Crowd complexity	Computational complexity	Conclusion O
Data minir	ıg			

Data mining – discovering interesting patterns in large databases
 Database – a (multi)set of transactions
 Transaction – a set of items (aka. an itemset)

A simple kind of pattern to identify are frequent itemsets.

```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

- An itemset is frequent if it occurs in at least $\Theta = 50\%$ of transactions.
- {salad} is not frequent.
- {beer, diapers} is frequent. Thus, {beer} is also frequent.

Crowd complexity

Computational complexity

Conclusion O

Human knowledge mining

• What if the database doesn't really exist?

Things to do in Athens:

Traditional medicine:

This data only exists in the minds of people!

Background 00●0000	Preliminaries 00000	Crowd complexity	Computational complexity	Conclusion O
Harvesting	this data			

- We cannot collect such data in a centralized database:
 - **1** It's impractical to ask all users to surrender their data.

"Everyone please tell us all that you did the last three months."

2 People do not remember the information.

"What were you doing on August 23th, 2013?"

- However, people remember summaries that we could access. "Do you often play tennis on weekends?"
- We can just ask people if an itemset is frequent.

Background 000●000	Preliminaries 00000	Crowd complexity	Computational complexity	Conclusion O
Crowdsour	rcing			

- Crowdsourcing solving hard problems through elementary queries to a crowd of users.
- Find out if an itemset is frequent with the crowd:
 - Oraw a sample of users from the crowd. (black box)
 Ask: is this itemset frequent? ("Do you often play tennis?")
 - Orroborate the answers to eliminate bad answers. (black box)
 - Reward the users.
 (e.g., monetary incentive)
- ⇒ An oracle that takes an itemset and finds out if it is frequent or not by asking crowd queries.

Background 0000●00	Preliminaries 00000	Crowd complexity	Computational complexity	Conclusion O
Taxonomie	es			

Having a taxonomy over the items can save us work!

- If {sickness, sport} is infrequent then all itemsets such as {cough, biking} are also infrequent.
- Without the taxonomy, we need to test all combinations!
- Also avoids redundant itemsets like {sport, tennis}.

ackground 00000●0	Preliminaries 00000	Crowd complexity	Computational complexity	Conclusion O
Cost				

How to evaluate the performance of a strategy to identify the frequent itemsets?

Crowd complexity: The number of itemsets we ask about (monetary cost, latency...)

Computational complexity: The complexity of computing the next question to ask

There is a tradeoff between the two:

- Asking random questions is computationally inexpensive but the crowd complexity is bad.
- Asking clever questions to obtain optimal crowd complexity is computationally expensive.

Background 000000●	Preliminaries	Crowd complexity	Computational complexity	Conclusion O
The prob	lem			

We can now describe the problem:

- We have:
 - A known item domain \mathcal{I} (set of items).
 - A known taxonomy Ψ on \mathcal{I} (is-a relation, partial order).
 - A crowd oracle freq to decide if an itemset is frequent or not.
- Choose interactively questions based on past answers.
- Balance crowd complexity and computational complexity.
- \Rightarrow Find out the status of all itemsets (learn freq exactly).

What is a good algorithm to solve this problem?

Preliminaries

Crowd complexity

Computational complexity

Conclusion O

Table of contents

3 Crowd complexity

4 Computational complexity

5 Conclusion

Background	Preliminaries ●0000	Crowd complexity	Computational complexity	Conclusion O
Itemset ta	xonomy			

- Itemsets I(Ψ) the sets of pairwise incomparable items.
 (e.g. {coffee, tennis} but not {coffee, drink})
- If an itemset is frequent then its subsets are also frequent.
- If an itemset is frequent then itemsets with more general items are also frequent.
- We define an order relation ≤ on itemsets: A ≤ B for "A is more general than B".
- Formally, $\forall i \in A, \exists j \in B \text{ s.t. } i \text{ is more general than } j$.
- freq is monotone: if $A \leq B$ and B is frequent then A also is.

Preliminaries

Crowd complexity

Computational complexity

Conclusion O

Maximal frequent itemsets

- Maximal frequent itemset (MFI): a frequent itemset with no frequent descendants.
- Minimal infrequent itemset (MII).
- The MFIs (or MIIs) concisely represent freq.
- ⇒ We can study complexity as a function of the size of the output.

Background	Preliminaries 000●0	Crowd complexity	Computational complexity	Conclusion O
Solution ta	axonomy			

- Conversely, (we can show) any set of pairwise incomparable itemsets is a possible MFI representation.
- Hence, the set of all possible solutions has a similar structure to the "itemsets" over the itemset taxonomy I(Ψ).
- \Rightarrow We call this the solution taxonomy $S(\Psi) = I(I(\Psi))$.

Identifying the freq predicate amounts to finding the correct node in $S(\Psi)$ through itemset frequency queries.

14/24

Preliminaries 00000 Crowd complexity

Computational complexity

Conclusion O

Table of contents

Background

2 Preliminaries

Orowd complexity

4 Computational complexity

5 Conclusion

Background	Preliminaries	Crowd complexity •000	Computational complexity	Conclusion O
Lower bo	Ind			

- Each query yields one bit of information.
- Information-theoretic lower bound: we need at least $\Omega(\log |S(\Psi)|)$ queries.
- This is bad in general, because $|S(\Psi)|$ can be doubly exponential in Ψ .
- As a function of the original taxonomy Ψ , we can write: $\Omega\left(2^{\text{width}[\Psi]}/\sqrt{\text{width}[\Psi]}\right).$

Background	Preliminaries	Crowd complexity	Computational complexity	Conclusion O
Upper bou	Ind			

- We can achieve the information-theoretic bound if is there always an unknown itemset that is frequent in about half of the possible solutions.
- A result from order theory shows that there is a constant $\delta_0 \approx 1/5$ such that some element always achieves a split of at least δ_0 .
- Hence, the previous bound is tight: we need $\Theta(\log |S(\Psi)|)$ queries.

nil	6/7
a1	5/7
a2	4/7
a3	3/7
a4	2/7
a5	1/7

Preliminaries

Background

Crowd complexity 0000

Computational complexity

Lower bound, MFI/MII

- To describe the solution, we need the MFIs or the MIIs.
- However, we need to guery both the MFIs and the MIIs to identify the result uniquely: $\Omega(|MFI| + |MII|)$ queries.
- We can have $|MFI| = \Omega(2^{|MII|})$ and vice-versa.
- This bound is not tight (e.g., chain).

Preliminaries

Crowd complexity

Computational complexity

Conclusion O

Upper bound, MFI/MII

- There is an explicit algorithm to find a new MFI or MII in ≤ |*I*| queries.
- Intuition: starting with any frequent itemset, add items until you cannot add any more without becoming infrequent.
- The number of queries is thus $O(|\mathcal{I}| \cdot (|\mathsf{MFI}| + |\mathsf{MII}|)).$

Preliminaries 00000 Crowd complexity

Computational complexity

Conclusion O

Table of contents

Background

2 Preliminaries

3 Crowd complexity

4 Computational complexity

5 Conclusion

- We want an unknown itemset of I(Ψ) that is frequent for about half of the possible solutions of S(Ψ).
- We can count over $S(\Psi)$ but it may be exponential in $|I(\Psi)|$.
- Counting the antichains of $I(\Psi)$ is $FP^{\#P}$ -complete.
- Finding the best-split element in $I(\Psi)$ is FP^{#P}-hard in $|I(\Psi)|$?
- Problem: I(Ψ) is not a general DAG, so we only show hardness in |Ψ| for restricted (fixed-size) itemsets.
- Intuition: count antichains by comparing to a known poset; use a best-split oracle to compare; perform a binary search.

Preliminaries

Crowd complexity

Computational complexity

Conclusion O

Hardness for output complexity

- In the incremental algorithm, materializing I(Ψ) is expensive. Do we need to?
- Actually, how to decide if we can stop with our MFIs and MIIs?
- Proved EQ-hardness for problem EQ (exact complexity open).

Preliminaries 00000 Crowd complexity

Computational complexity

Conclusion O

Table of contents

Background

2 Preliminaries

3 Crowd complexity

4 Computational complexity

Background Prelimi

eliminaries

Crowd complexity

Computational complexity

Conclusion

Summary and further work

We have studied the crowd and computational complexity of crowd mining under a taxonomy. What now?

- Improve the bounds and close gaps.
- Benchmark heuristics (chain partitioning, random, etc.).
- Integrate prior knowledge.
- Manage uncertainty (black box for now).
- Guide exploration with a query (under review).
- Work with numerical values for support.
- Mine more expressive patterns.
- Focus on top-k itemsets (work in progress).

Background Prelimin 0000000 00000 Crow 000 Computational complexity

Conclusion

Summary and further work

We have studied the crowd and computational complexity of crowd mining under a taxonomy. What now?

- Improve the bounds and close gaps.
- Benchmark heuristics (chain partitioning, random, etc.).
- Integrate prior knowledge.
- Manage uncertainty (black box for now).
- Guide exploration with a query (under review).
- Work with numerical values for support.
- Mine more expressive patterns.
- Focus on top-k itemsets (work in progress).

Thanks for your attention!

Additional material

Greedy algorithms

	nil
• Querying an element of the chain may remove $< 1/2$ possible solutions.	a1
 Querying the isolated element b will remove exactly 1/2 solution. 	a2
• However, querying <i>b</i> classifies far less itemsets.	
\Rightarrow Classifying many itemsets isn't the same as	
eliminating many solutions.	 a4
Finding the greedy-best-split item is FP ^{#P} -hard.	
	1

b

a5

Restricted itemsets

• Asking about large itemsets is irrelevant.

"Do you often go cycling and running while drinking coffee and having lunch with orange juice on alternate Wednesdays?"

- If the itemset size is bounded by a constant, $I(\Psi)$ is tractable.
- ⇒ The crowd complexity $\Theta(\log |S(\Psi)|)$ is tractable too.

Chain partitioning

- Optimal strategy for chain taxonomies: binary search.
- We can determine a chain decomposition of the itemset taxonomy and perform binary searches on the chains.
- Optimal crowd complexity for a chain, performance in general is unclear.
- Computational complexity is polynomial in the size of I(Ψ) (which is still exponential in Ψ).

