
Efficient Enumeration Algorithms via Circuits

Antoine Amarilli
October 18, 2023

Télécom Paris

1/24

General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D

• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
• Other names: grounding Q on D, computing the provenance of Q on D...

• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation

2/24

General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D
• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)

• Other names: grounding Q on D, computing the provenance of Q on D...

• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation

2/24

General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D
• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)

• Other names: grounding Q on D, computing the provenance of Q on D...
• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation

2/24

General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D
• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)

• Other names: grounding Q on D, computing the provenance of Q on D...
• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation

2/24

General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D
• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)

• Other names: grounding Q on D, computing the provenance of Q on D...
• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation

2/24

General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D
• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)

• Other names: grounding Q on D, computing the provenance of Q on D...
• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation

2/24

General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D
• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)

• Other names: grounding Q on D, computing the provenance of Q on D...
• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation

2/24

General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D
• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)

• Other names: grounding Q on D, computing the provenance of Q on D...
• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation
2/24

Dramatis Personae

Antoine Amarilli Pierre Bourhis Florent Capelli Louis Jachiet Stefan Mengel

Mikaël Monet Martín Muñoz Matthias Niewerth Cristian Riveros 3/24

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S.
A Circuit-Based Approach to Efficient Enumeration. ICALP 2017.

Amarilli, A., Bourhis, P., and Mengel, S.
Enumeration on Trees under Relabelings. ICDT 2018.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. ICDT 2019.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. TODS 2020.

Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C.
Efficient Enumeration for Annotated Grammars. PODS 2022.
Amarilli, A., Bourhis, P., Capelli, F., Monet, M.
Ranked Enumeration for MSO on Trees via Knowledge Compilation. Under review.

4/24

https://arxiv.org/abs/1709.06185
https://arxiv.org/abs/1709.06185

Preliminaries

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|)

Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c

a’ b c

a b’ c
a’ b’ c

Results

State

010001

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c

a b’ c

a’ b’ c

Results

State

01100111

5/24

Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c

a’ b’ c

Results

State

⊥

5/24

Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24

Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24

Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24

Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24

Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24

Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24

Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results
6/24

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

Factorized database fans may find these eerily familiar

7/24

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

Factorized database fans may find these eerily familiar

7/24

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

Factorized database fans may find these eerily familiar

7/24

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

Factorized database fans may find these eerily familiar

7/24

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

Factorized database fans may find these eerily familiar

7/24

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

Factorized database fans may find these eerily familiar

7/24

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}

{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}} Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}} Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection

Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}} Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}} Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

8/24

Circuit restrictions

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no assignment is captured by two inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

9/24

Circuit restrictions

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no assignment is captured by two inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

9/24

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)
• From Boolean circuits: you can obtain a d-DNNF set circuit:

• From a d-DNNF, in quadratic time (smoothing)
• From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)

10/24

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)
• From Boolean circuits: you can obtain a d-DNNF set circuit:

• From a d-DNNF, in quadratic time (smoothing)
• From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)

10/24

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)
• From Boolean circuits: you can obtain a d-DNNF set circuit:

• From a d-DNNF, in quadratic time (smoothing)
• From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)

10/24

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)

• From Boolean circuits: you can obtain a d-DNNF set circuit:
• From a d-DNNF, in quadratic time (smoothing)
• From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)

10/24

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)
• From Boolean circuits: you can obtain a d-DNNF set circuit:

• From a d-DNNF, in quadratic time (smoothing)
• From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)

10/24

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)
• From Boolean circuits: you can obtain a d-DNNF set circuit:

• From a d-DNNF, in quadratic time (smoothing)

• From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)

10/24

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)
• From Boolean circuits: you can obtain a d-DNNF set circuit:

• From a d-DNNF, in quadratic time (smoothing)
• From a d-SDNNF, in linear time when allowing special gates (implicit smoothing) 10/24

Proof techniques

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/24

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/24

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/24

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/24

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results
11/24

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x :

enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates
12/24

Normalization: handling ∅

×

×

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/24

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/24

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/24

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/24

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/24

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅

• then get rid of the gate

13/24

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:

• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/24

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

15/24

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

15/24

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

15/24

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

15/24

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g
15/24

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g
15/24

Applications

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

16/24

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

16/24

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

16/24

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)
16/24

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]

17/24

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]

17/24

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]

17/24

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]

17/24

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)

18/24

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)

18/24

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)

18/24

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)
18/24

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width nOBDDs
→ Generalizes to trees with polynomial dependency in the tree automaton

19/24

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width nOBDDs
→ Generalizes to trees with polynomial dependency in the tree automaton

19/24

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width nOBDDs

→ Generalizes to trees with polynomial dependency in the tree automaton

19/24

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width nOBDDs
→ Generalizes to trees with polynomial dependency in the tree automaton

19/24

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on an earlier quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators)

20/24

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on an earlier quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators)

20/24

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on an earlier quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators)

20/24

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on an earlier quintic preprocessing result [Peterfreund, 2021]

• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic
pushdown annotators)

20/24

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on an earlier quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators) 20/24

Other applications

• Using enumerable compact sets, a fully-persistent version of enumerable d-DNNFs:
• For visibly pushdown transducers on nested documents in a streaming setting

[Muñoz and Riveros, 2022]
• For annotated automata on SLP-compressed documents, with updates

[Muñoz and Riveros, 2023]

• Query evaluation beyond MSO and variants on words and trees:
• For first-order queries on bounded expansion databases [Toruńczyk, 2020]
• For ranked direct access for some CQs with negation, see Florent’s talk this afternoon

• Can also be used to enumerate homomorphisms between structures
[Berkholz and Vinall-Smeeth, 2023]

21/24

Other applications

• Using enumerable compact sets, a fully-persistent version of enumerable d-DNNFs:
• For visibly pushdown transducers on nested documents in a streaming setting

[Muñoz and Riveros, 2022]
• For annotated automata on SLP-compressed documents, with updates

[Muñoz and Riveros, 2023]

• Query evaluation beyond MSO and variants on words and trees:
• For first-order queries on bounded expansion databases [Toruńczyk, 2020]
• For ranked direct access for some CQs with negation, see Florent’s talk this afternoon

• Can also be used to enumerate homomorphisms between structures
[Berkholz and Vinall-Smeeth, 2023]

21/24

Other applications

• Using enumerable compact sets, a fully-persistent version of enumerable d-DNNFs:
• For visibly pushdown transducers on nested documents in a streaming setting

[Muñoz and Riveros, 2022]
• For annotated automata on SLP-compressed documents, with updates

[Muñoz and Riveros, 2023]

• Query evaluation beyond MSO and variants on words and trees:
• For first-order queries on bounded expansion databases [Toruńczyk, 2020]
• For ranked direct access for some CQs with negation, see Florent’s talk this afternoon

• Can also be used to enumerate homomorphisms between structures
[Berkholz and Vinall-Smeeth, 2023]

21/24

What about ranked enumeration?

Enumeration algorithms typically give results in an arbitrary (non-controllable) order!

• For MSO queries, ranked enumeration is possible with logarithmic delay:
• First shown for queries on words [Bourhis et al., 2021]
• Recent preprint (A., Bourhis, Capelli, Monet) for queries on trees under

subset-monotone ranking functions
• (Very) high-level idea: use one priority queue for each gate

• For CQs, results for ranked access: [Tziavelis et al., 2022], [Deep et al., 2022],
[Carmeli et al., 2023]

• Also: see Florent’s talk

22/24

What about ranked enumeration?

Enumeration algorithms typically give results in an arbitrary (non-controllable) order!

• For MSO queries, ranked enumeration is possible with logarithmic delay:
• First shown for queries on words [Bourhis et al., 2021]
• Recent preprint (A., Bourhis, Capelli, Monet) for queries on trees under

subset-monotone ranking functions
• (Very) high-level idea: use one priority queue for each gate

• For CQs, results for ranked access: [Tziavelis et al., 2022], [Deep et al., 2022],
[Carmeli et al., 2023]

• Also: see Florent’s talk

22/24

What about ranked enumeration?

Enumeration algorithms typically give results in an arbitrary (non-controllable) order!

• For MSO queries, ranked enumeration is possible with logarithmic delay:
• First shown for queries on words [Bourhis et al., 2021]
• Recent preprint (A., Bourhis, Capelli, Monet) for queries on trees under

subset-monotone ranking functions
• (Very) high-level idea: use one priority queue for each gate

• For CQs, results for ranked access: [Tziavelis et al., 2022], [Deep et al., 2022],
[Carmeli et al., 2023]

• Also: see Florent’s talk

22/24

Conclusion

Summary and conclusion

• We can enumerate the captured assignments of d-DNNF set circuits
→ with preprocessing linear in the d-DNNF
→ in delay linear in each assignment
→ in constant delay for constant Hamming weight

→ Applies to MSO enumeration on words and trees

→ Applies to enumerate of the matches of annotated context-free grammars (with
more expensive preprocessing)

→ Can be used for other applications

→ In particular: incremental maintenance under updates, ranked enumeration, etc.

23/24

Questions for future work

• What about negation gates?

• What can we do without determinism? (enumeration for DNNF?)

• Connect results on updates to finer bounds on incremental maintenance
(A., Jachiet, Paperman, ICALP’21)

• Enumerate satisfying assignments via edits on previous results (A., Monet, STACS’23)
to achieve constant delay even on linear-sized assignments

• For MSO queries: understand better the connection between automata classes and
circuit classes (e.g., alternating automata, two-way automata...)

• More broadly, following the intensional approach for enumeration: classify
enumeration tasks depending on the circuit class to which they can be compiled?

Thanks for your attention!

24/24

Questions for future work

• What about negation gates?

• What can we do without determinism? (enumeration for DNNF?)

• Connect results on updates to finer bounds on incremental maintenance
(A., Jachiet, Paperman, ICALP’21)

• Enumerate satisfying assignments via edits on previous results (A., Monet, STACS’23)
to achieve constant delay even on linear-sized assignments

• For MSO queries: understand better the connection between automata classes and
circuit classes (e.g., alternating automata, two-way automata...)

• More broadly, following the intensional approach for enumeration: classify
enumeration tasks depending on the circuit class to which they can be compiled?

Thanks for your attention!
24/24

References i

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017).
A circuit-based approach to efficient enumeration.
In ICALP.
Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on trees under relabelings.
In ICDT.
Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a).
Constant-delay enumeration for nondeterministic document spanners.
In ICDT.

https://arxiv.org/abs/1702.05589
http://icalp17.mimuw.edu.pl/
https://arxiv.org/abs/1709.06185
https://edbticdt2018.at/
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/

References ii

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).
Enumeration on trees with tractable combined complexity and efficient updates.
In PODS.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C. (2022).
Efficient enumeration for annotated grammars.
In PODS.

https://arxiv.org/abs/1812.09519
https://sigmod2019.org/
https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/2201.00549
https://2022.sigmod.org/

References iii

Amarilli, A., Jachiet, L., and Paperman, C. (2021).
Dynamic membership for regular languages.
In ICALP.
Amarilli, A. and Monet, M. (2023).
Enumerating regular languages with bounded delay.
In STACS.
Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.

http://arxiv.org/abs/2102.07728
https://easyconferences.eu/icalp2021/
https://arxiv.org/abs/2209.14878
https://www.univ-orleans.fr/lifo/stacs/

References iv

Berkholz, C. and Vinall-Smeeth, H. (2023).
A dichotomy for succinct representations of homomorphisms.
In ICALP.
Bourhis, P., Grez, A., Jachiet, L., and Riveros, C. (2021).
Ranked enumeration of MSO logic on words.
In ICDT.
Carmeli, N., Tziavelis, N., Gatterbauer, W., Kimelfeld, B., and Riedewald, M. (2023).
Tractable orders for direct access to ranked answers of conjunctive queries.
TODS, 48(1).

References v

Deep, S., Hu, X., and Koutris, P. (2022).
Ranked enumeration of join queries with projections.
PVLDB, 15(5).
Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).
Constant delay algorithms for regular document spanners.
In PODS.
Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).

https://arxiv.org/abs/1803.05277
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References vi

Muñoz, M. and Riveros, C. (2022).
Streaming enumeration on nested documents.
In ICDT.
Muñoz, M. and Riveros, C. (2023).
Constant-delay enumeration for SLP-compressed documents.
In ICDT.
Niewerth, M. (2018).
MSO queries on trees: Enumerating answers under updates using forest algebras.
In LICS.

References vii

Peterfreund, L. (2021).
Grammars for document spanners.
In ICDT.
Toruńczyk, S. (2020).
Aggregate queries on sparse databases.
In PODS.
Tziavelis, N., Gatterbauer, W., and Riedewald, M. (2022).
Any-k algorithms for enumerating ranked answers to conjunctive queries.
arXiv preprint arXiv:2205.05649.

https://drops.dagstuhl.de/opus/volltexte/2021/13715/pdf/LIPIcs-ICDT-2021-7.pdf

Set circuits vs factorized representations

A B C

a b c
a1 b′ c′

a2 b′ c′

∪

× ×

× ⟨C : c⟩

⟨A : a⟩ ⟨B : b⟩

∪

⟨A : a1⟩ ⟨A : a2⟩

×

⟨B : b′⟩ ⟨C : c′⟩

• Set circuits can be seen as factorized representations
→ Not necessarily well-typed, height and/or assignment size may be non-constant

• Determinism: unions are disjoint
• Decomposability: no duplicate attribute names in products
• Structuredness: always the same decomposition of the attributes

Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Tree automata

Tree alphabet:
⊤

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then A accepts ν(T)
iff the set S(g0) of the output gate g0 contains
{g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

⊤ 1 ⊤ 4 ⊤ 5 ⊤ 6

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then A accepts ν(T)
iff the set S(g0) of the output gate g0 contains
{g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

⊤ 1 ⊤ 4 ⊤ 5 ⊤ 6

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then A accepts ν(T)
iff the set S(g0) of the output gate g0 contains
{g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

⊤ 1 ⊤ 4 ⊤ 5 ⊤ 6

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then A accepts ν(T)
iff the set S(g0) of the output gate g0 contains
{g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

⊤ 1 ⊤ 4 ⊤ 5 ⊤ 6

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then A accepts ν(T)
iff the set S(g0) of the output gate g0 contains
{g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

⊤ 1 ⊤ 4 ⊤ 5 ⊤ 6

Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

×

×

Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

×

×

Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

×

×

Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

×

×

Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

×

×

Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

×

×

Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

×

×

Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

∪ ∪ ∪ ∪
⊥ B P ⊤

×

×

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

Semi-open question: what about memory usage?

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?

	Preliminaries
	Proof techniques
	Applications
	Conclusion
	Appendix

