Efficient Enumeration Algorithms via Circuits

Antoine Amarilli
October 18, 2023
Télécom Paris

General motivation (for database people)

- Intensional query evaluation: given a query Q and a database D

General motivation (for database people)

- Intensional query evaluation: given a query Q and a database D
- Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
- Other names: grounding Q on D, computing the provenance of Q on D...

General motivation (for database people)

- Intensional query evaluation: given a query Q and a database D
- Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
- Other names: grounding Q on D, computing the provenance of Q on D...
- Use the circuit C to retrieve the answer of Q on D

General motivation (for database people)

- Intensional query evaluation: given a query Q and a database D
- Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
- Other names: grounding Q on D, computing the provenance of Q on D...
- Use the circuit C to retrieve the answer of Q on D
- Monday: intensional query evaluation for counting and probability computation

General motivation (for database people)

- Intensional query evaluation: given a query Q and a database D
- Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
- Other names: grounding Q on D, computing the provenance of Q on D...
- Use the circuit C to retrieve the answer of Q on D
- Monday: intensional query evaluation for counting and probability computation
- Today: can we use the intensional approach to enumerate query answers?

General motivation (for database people)

- Intensional query evaluation: given a query Q and a database D
- Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
- Other names: grounding Q on D, computing the provenance of Q on D...
- Use the circuit C to retrieve the answer of Q on D
- Monday: intensional query evaluation for counting and probability computation
- Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

- Preliminaries and problem statement

General motivation (for database people)

- Intensional query evaluation: given a query Q and a database D
- Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
- Other names: grounding Q on D, computing the provenance of Q on D...
- Use the circuit C to retrieve the answer of Q on D
- Monday: intensional query evaluation for counting and probability computation
- Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

- Preliminaries and problem statement
- Efficient enumeration for d-DNNF set circuits

General motivation (for database people)

- Intensional query evaluation: given a query Q and a database D
- Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
- Other names: grounding Q on D, computing the provenance of Q on D...
- Use the circuit C to retrieve the answer of Q on D
- Monday: intensional query evaluation for counting and probability computation
- Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

- Preliminaries and problem statement
- Efficient enumeration for d-DNNF set circuits
- Applications: Using enumeration on circuits for query evaluation

Dramatis Personae

Antoine Amarilli

Pierre Bourhis

Florent Capelli

Louis Jachiet

Stefan Mengel

Mikaël Monet

Martín Muñoz

Matthias Niewerth

Cristian Riveros

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S.
A Circuit-Based Approach to Efficient Enumeration. ICALP 2017.
Amarilli, A., Bourhis, P., and Mengel, S.
Enumeration on Trees under Relabelings. ICDT 2018.Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. ICDT 2019.Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019.
埥 Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. TODS 2020.
Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C.
Efficient Enumeration for Annotated Grammars. PODS 2022.Amarilli, A., Bourhis, P., Capelli, F., Monet, M.
Ranked Enumeration for MSO on Trees via Knowledge Compilation. Under review.

Preliminaries

Input \rightarrow| Step 1: |
| :---: |
| Indexing |
| in O(input\|) |

Enumeration algorithms

Enumeration algorithms

Enumeration algorithms

Results

Enumeration algorithms

WITHOUT knowledge compilation:

Knowledge compilation

WITHOUT knowledge compilation:

Knowledge compilation

WITHOUT knowledge compilation:

Knowledge compilation

(see Guy and YooJung's talks, Boot camp)

WITHOUT knowledge compilation:

WITH knowledge compilation:

Knowledge compilation

(see Guy and YooJung's talks, Boot camp)

WITHOUT knowledge compilation:

WITH knowledge compilation:

Knowledge compilation

(see Guy and YooJung's talks, Boot camp)

WITHOUT knowledge compilation:

WITH knowledge compilation:

Knowledge compilation

(see Guy and YooJung's talks, Boot camp)

WITHOUT knowledge compilation:

WITH knowledge compilation:

Set circuits

- Directed acyclic graph of gates

Set circuits

- Directed acyclic graph of gates
- Output gate:

Set circuits

- Directed acyclic graph of gates
- Output gate:
- Variable gates: x

Set circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Constant gates: $ナ \perp$

Set circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Constant gates:

- Internal gates:

Set circuits

Factorized database fans may find these eerily familiar

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :
$S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :
$S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}$
- \cup-gate with children g_{1}, g_{2} :
$S(g):=S\left(g_{1}\right) \cup S\left(g_{2}\right)$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :
$S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}$
- \cup-gate with children g_{1}, g_{2} :
$S(g):=S\left(g_{1}\right) \cup S\left(g_{2}\right)$
Arithmetic circuit aficionados may see a connection

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :
$S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}$
- \cup-gate with children g_{1}, g_{2} :
$S(g):=S\left(g_{1}\right) \cup S\left(g_{2}\right)$
Arithmetic circuit aficionados may see a connection Semiring supporters may have recognized Why $[X]$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $\mathrm{S}(\mathrm{g})=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :

$$
S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}
$$

- \cup-gate with children g_{1}, g_{2} :

$$
S(g):=S\left(g_{1}\right) \cup S\left(g_{2}\right)
$$

Arithmetic circuit aficionados may see a connection Semiring supporters may have recognized Why $[X]$

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g \rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Circuit restrictions

d-DNNF set circuit:

- (U) are all deterministic:

The inputs are disjoint
(= no assignment is captured by two inputs)

Circuit restrictions

d-DNNF set circuit:

- (U) are all deterministic:

The inputs are disjoint
(= no assignment is captured by two inputs)

- × are all decomposable:

The inputs are independent
(= no variable x has a path to two different inputs)

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP' 17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay

But where do set circuits come from?

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay

But where do set circuits come from?

- Directly when doing intensional query evaluation (see later)

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay

But where do set circuits come from?

- Directly when doing intensional query evaluation (see later)
- From Boolean circuits: you can obtain a d-DNNF set circuit:

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay

But where do set circuits come from?

- Directly when doing intensional query evaluation (see later)
- From Boolean circuits: you can obtain a d-DNNF set circuit:
- From a d-DNNF, in quadratic time (smoothing)

Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay

But where do set circuits come from?

- Directly when doing intensional query evaluation (see later)
- From Boolean circuits: you can obtain a d-DNNF set circuit:
- From a d-DNNF, in quadratic time (smoothing)
- From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)

Proof techniques

Proof overview

Preprocessing phase:

d-DNNF
set circuit

Proof overview

Preprocessing phase:

Proof overview

Preprocessing phase:

Proof overview

Preprocessing phase:

Enumeration phase:

Indexed
normalized circuit

Proof overview

Preprocessing phase:

Enumeration phase:

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x :

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$ Determinism: no duplicates

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Determinism: no duplicates

Lexicographic product: enumerate $S(g)$ and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$ Determinism: no duplicates

Lexicographic product: enumerate $S(g)$ and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Decomposability: no duplicates

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$
- then get rid of the gate

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1
\rightarrow Now, when traversing a \times-gate we make progress: non-trivial split of each set

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

Applications

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

"Find the pairs of a pink node and a blue node?" $Q(x, y):=P_{\circ}(x) \wedge P_{\circ}(y)$

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

"Find the pairs of a pink node and a blue node?" $Q(x, y):=P_{\circ}(x) \wedge P_{\circ}(y)$
$\cdot x \rightarrow y$ means " x is the parent of y "
$(1$ Result: Enumerate all pairs (a, b) of nodes of T such that $Q(a, b)$ holds

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

"Find the pairs of a pink node and a blue node?" $Q(x, y):=P_{\circ}(x) \wedge P_{\circ}(y)$
results: $(2,7),(3,7)$

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

We can prove this with our methods:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP' 17)
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit capturing the results of A on T in $O(|A| \times|T|)$

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

We can prove this with our methods:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP' 17)
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit capturing the results of A on T in $O(|A| \times|T|)$

- Can be extended to support relabeling updates to the tree in $O(\log n)$ time (A., Bourhis, Mengel, ICDT'18)

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP' 17)

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit capturing the results of A on T in $O(|A| \times|T|)$

- Can be extended to support relabeling updates to the tree in $O(\log n)$ time (A., Bourhis, Mengel, ICDT'18)
- Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS'19) up to fixing a buggy result [Niewerth, 2018]

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git

Query: a pattern P given as a regular expression

$$
P:=\sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*}
$$

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git

Query: a pattern P given as a regular expression

$$
P:=\sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*}
$$

1 Output: the list of substrings of T that match P :

$$
[186,200\rangle, \quad[483,500\rangle, \ldots
$$

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git

Query: a pattern P given as a regular expression

$$
P:=\sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*}
$$

1 Output: the list of substrings of T that match P :

$$
[186,200\rangle, \quad[483,500\rangle, \ldots
$$

Goal:

- be very efficient in T (constant-delay)
- be reasonably efficient in P (polynomial-time)

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton
\rightarrow Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton
\rightarrow Generalizes earlier result on deterministic automata [Florenzano et al., 2018]
- Does not really use d-DNNFs, but bounded-width nOBDDs

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton
\rightarrow Generalizes earlier result on deterministic automata [Florenzano et al., 2018]
- Does not really use d-DNNFs, but bounded-width nOBDDs
\rightarrow Generalizes to trees with polynomial dependency in the tree automaton

Application 3: Enumerating matches of annotated grammars

```
Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);
}
```


Application 3: Enumerating matches of annotated grammars

```
Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);
}
```

? Query: a pattern P given as a context-free grammar with annotated terminals

$$
P:=\text { "find all quoted strings in the program" }
$$

Application 3: Enumerating matches of annotated grammars

(1)
Query: a pattern P given as a context-free grammar with annotated terminals

$$
P:=\text { "find all quoted strings in the program" }
$$

Theorem (A., Jachiet, Muñoz, Riveros, PODS'22)

Given an unambiguous annotation grammar \mathcal{G} and input text w, we can enumerate the matches with preprocessing $O\left(|\mathcal{G}| \times|w|^{3}\right)$ and delay linear in each assignment

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);
}
```

Query: a pattern P given as a context-free grammar with annotated terminals

$$
P:=\text { "find all quoted strings in the program" }
$$

Theorem (A., Jachiet, Muñoz, Riveros, PODS'22)

Given an unambiguous annotation grammar \mathcal{G} and input text w, we can enumerate the matches with preprocessing $O\left(|\mathcal{G}| \times|w|^{3}\right)$ and delay linear in each assignment

- Improves on an earlier quintic preprocessing result [Peterfreund, 2021]

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);
}
```

Query: a pattern P given as a context-free grammar with annotated terminals

$$
P:=\text { "find all quoted strings in the program" }
$$

Theorem (A., Jachiet, Muñoz, Riveros, PODS'22)

Given an unambiguous annotation grammar \mathcal{G} and input text w, we can enumerate the matches with preprocessing $O\left(|\mathcal{G}| \times|w|^{3}\right)$ and delay linear in each assignment

- Improves on an earlier quintic preprocessing result [Peterfreund, 2021]
- Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic pushdown annotators)

Other applications

- Using enumerable compact sets, a fully-persistent version of enumerable d-DNNFs:
- For visibly pushdown transducers on nested documents in a streaming setting [Muñoz and Riveros, 2022]
- For annotated automata on SLP-compressed documents, with updates [Muñoz and Riveros, 2023]

Other applications

- Using enumerable compact sets, a fully-persistent version of enumerable d-DNNFs:
- For visibly pushdown transducers on nested documents in a streaming setting [Muñoz and Riveros, 2022]
- For annotated automata on SLP-compressed documents, with updates [Muñoz and Riveros, 2023]
- Query evaluation beyond MSO and variants on words and trees:
- For first-order queries on bounded expansion databases [Toruńczyk, 2020]
- For ranked direct access for some CQs with negation, see Florent's talk this afternoon

Other applications

- Using enumerable compact sets, a fully-persistent version of enumerable d-DNNFs:
- For visibly pushdown transducers on nested documents in a streaming setting [Muñoz and Riveros, 2022]
- For annotated automata on SLP-compressed documents, with updates [Muñoz and Riveros, 2023]
- Query evaluation beyond MSO and variants on words and trees:
- For first-order queries on bounded expansion databases [Toruńczyk, 2020]
- For ranked direct access for some CQs with negation, see Florent's talk this afternoon
- Can also be used to enumerate homomorphisms between structures [Berkholz and Vinall-Smeeth, 2023]

What about ranked enumeration?

Enumeration algorithms typically give results in an arbitrary (non-controllable) order!

What about ranked enumeration?

Enumeration algorithms typically give results in an arbitrary (non-controllable) order!

- For MSO queries, ranked enumeration is possible with logarithmic delay:
- First shown for queries on words [Bourhis et al., 2021]
- Recent preprint (A., Bourhis, Capelli, Monet) for queries on trees under subset-monotone ranking functions
- (Very) high-level idea: use one priority queue for each gate

What about ranked enumeration?

Enumeration algorithms typically give results in an arbitrary (non-controllable) order!

- For MSO queries, ranked enumeration is possible with logarithmic delay:
- First shown for queries on words [Bourhis et al., 2021]
- Recent preprint (A., Bourhis, Capelli, Monet) for queries on trees under subset-monotone ranking functions
- (Very) high-level idea: use one priority queue for each gate
- For CQs, results for ranked access: [Tziavelis et al., 2022], [Deep et al., 2022], [Carmeli et al., 2023]
- Also: see Florent's talk

Conclusion

Summary and conclusion

- We can enumerate the captured assignments of d-DNNF set circuits
\rightarrow with preprocessing linear in the d-DNNF
\rightarrow in delay linear in each assignment
\rightarrow in constant delay for constant Hamming weight
\rightarrow Applies to MSO enumeration on words and trees
\rightarrow Applies to enumerate of the matches of annotated context-free grammars (with more expensive preprocessing)
\rightarrow Can be used for other applications
\rightarrow In particular: incremental maintenance under updates, ranked enumeration, etc.

Questions for future work

- What about negation gates?
- What can we do without determinism? (enumeration for DNNF?)
- Connect results on updates to finer bounds on incremental maintenance (A., Jachiet, Paperman, ICALP'21)
- Enumerate satisfying assignments via edits on previous results (A., Monet, STACS'23) to achieve constant delay even on linear-sized assignments
- For MSO queries: understand better the connection between automata classes and circuit classes (e.g., alternating automata, two-way automata...)
- More broadly, following the intensional approach for enumeration: classify enumeration tasks depending on the circuit class to which they can be compiled?

Questions for future work

- What about negation gates?
- What can we do without determinism? (enumeration for DNNF?)
- Connect results on updates to finer bounds on incremental maintenance (A., Jachiet, Paperman, ICALP'21)
- Enumerate satisfying assignments via edits on previous results (A., Monet, STACS'23) to achieve constant delay even on linear-sized assignments
- For MSO queries: understand better the connection between automata classes and circuit classes (e.g., alternating automata, two-way automata...)
- More broadly, following the intensional approach for enumeration: classify enumeration tasks depending on the circuit class to which they can be compiled?

Thanks for your attention!

References i

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017).
A circuit-based approach to efficient enumeration.
In ICALP.
(固 Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on trees under relabelings.
In ICDT.
(10 Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a).
Constant-delay enumeration for nondeterministic document spanners.
In ICDT.

References ii

围 Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).
Enumeration on trees with tractable combined complexity and efficient updates.
In PODS.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
E- Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C. (2022).
Efficient enumeration for annotated grammars.
In PODS.

References iif

: Amarilli, A., Jachiet, L., and Paperman, C. (2021).
Dynamic membership for regular languages.
In ICALP.
軎 Amarilli, A. and Monet, M. (2023).
Enumerating regular languages with bounded delay.
In STACS.
園 Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.

References iv

國 Berkholz，C．and Vinall－Smeeth，H．（2023）．
A dichotomy for succinct representations of homomorphisms．
In ICALP．
䡒 Bourhis，P．，Grez，A．，Jachiet，L．，and Riveros，C．（2021）．
Ranked enumeration of MSO logic on words．
In ICDT．
围 Carmeli，N．，Tziavelis，N．，Gatterbauer，W．，Kimelfeld，B．，and Riedewald，M．（2023）． Tractable orders for direct access to ranked answers of conjunctive queries． TODS，48（1）．

References v

Deep, S., Hu, X., and Koutris, P. (2022).
Ranked enumeration of join queries with projections.
PVLDB, 15(5).
Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).
Constant delay algorithms for regular document spanners.
In PODS.
國 Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).

References vi

國 Muñoz，M．and Riveros，C．（2022）．
Streaming enumeration on nested documents．
In ICDT．
國 Muñoz，M．and Riveros，C．（2023）．
Constant－delay enumeration for SLP－compressed documents．
In ICDT．
園 Niewerth，M．（2018）．
MSO queries on trees：Enumerating answers under updates using forest algebras．
In LICS．

References vii

國 Peterfreund, L. (2021).
Grammars for document spanners.
In ICDT.
固 Toruńczyk, S. (2020).
Aggregate queries on sparse databases.
In PODS.
Reiavelis, N., Gatterbauer, W., and Riedewald, M. (2022).
Any-k algorithms for enumerating ranked answers to conjunctive queries. arXiv preprint arXiv:2205.05649.

Set circuits vs factorized representations

- Set circuits can be seen as factorized representations
\rightarrow Not necessarily well-typed, height and/or assignment size may be non-constant
- Determinism: unions are disjoint
- Decomposability: no duplicate attribute names in products
- Structuredness: always the same decomposition of the attributes

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{2,3,7 \mapsto 1, * \leftrightarrow \mathrm{O}\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{\mathbf{2} \mapsto 1, * \mapsto \mathrm{O}\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{2,7 \mapsto 1, \quad * \mapsto \mathrm{O}\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{2,7 \mapsto 1, * \mapsto 0\}$
> A: "Is there both a pink and a blue node?"

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels
Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"
The tree automaton A accepts

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{\mathbf{2} \mapsto \mathbf{1}, * \mapsto \mathrm{O}\}$
> A: "Is there both a pink and a blue node?"
> The tree automaton A rejects

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels
Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"
The tree automaton A accepts

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S\left(g_{\circ}\right)$ of the output gate g_{0} contains $\{g \in C \mid \nu(g)=1\}$.

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S\left(g_{\circ}\right)$ of the output gate g_{0} contains $\{g \in C \mid \nu(g)=1\}$.
Query: Is there both a pink and a blue node?

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S\left(g_{\circ}\right)$ of the output gate g_{\circ} contains $\{g \in C \mid \nu(g)=1\}$.
Query: Is there both a pink and a blue node?

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then \boldsymbol{A} accepts $\nu(T)$ iff the set $S\left(g_{\circ}\right)$ of the output gate g_{0} contains

$$
\{g \in C \mid \nu(g)=1\} .
$$

Query: Is there both a pink and a blue node?

Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{\top\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$
Data:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Provenance circuit:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Provenance circuit:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query: $Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Provenance circuit:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Provenance circuit:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Provenance circuit:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.
Semi-open question: what about memory usage?

