
Introduction Trees Treelike instances Future work

Structurally Tractable Uncertain Data

Antoine Amarilli
Supervisor: Pierre Senellart

Expected graduation: August 2016

Télécom ParisTech, France

May 31st, 2015

1/21



Introduction Trees Treelike instances Future work

Uncertain data management

Is data always complete and certain?

Unreliable sources
→ Crowdsourcing
→ Massive collaborations: Wikidata, etc.

Error-prone processing
→ Unsupervised information extraction
→ OCR, speech recognition, etc.

Outdated or stale data

→ We need uncertain data management

2/21



Introduction Trees Treelike instances Future work

Uncertain data management

Is data always complete and certain?
Unreliable sources
→ Crowdsourcing
→ Massive collaborations: Wikidata, etc.

Error-prone processing
→ Unsupervised information extraction
→ OCR, speech recognition, etc.

Outdated or stale data

→ We need uncertain data management

2/21



Introduction Trees Treelike instances Future work

Uncertain data management

Is data always complete and certain?
Unreliable sources
→ Crowdsourcing
→ Massive collaborations: Wikidata, etc.

Error-prone processing
→ Unsupervised information extraction
→ OCR, speech recognition, etc.

Outdated or stale data

→ We need uncertain data management

2/21



Introduction Trees Treelike instances Future work

Uncertain data management

Is data always complete and certain?
Unreliable sources
→ Crowdsourcing
→ Massive collaborations: Wikidata, etc.

Error-prone processing
→ Unsupervised information extraction
→ OCR, speech recognition, etc.

Outdated or stale data

→ We need uncertain data management

2/21



Introduction Trees Treelike instances Future work

Uncertain data management

Is data always complete and certain?
Unreliable sources
→ Crowdsourcing
→ Massive collaborations: Wikidata, etc.

Error-prone processing
→ Unsupervised information extraction
→ OCR, speech recognition, etc.

Outdated or stale data

→ We need uncertain data management

2/21



Introduction Trees Treelike instances Future work

Example model: TID

Consider a relational instance

Date Animal
Wed 3rd Kangaroo
Wed 3rd Tasmanian devil
Thu 4th Kangaroo
Thu 4th Tasmanian devil
Fri 5th Kangaroo
Fri 5th Tasmanian devil

Add probabilities to facts
Assume independence between facts
→ Semantics: a probability distribution on regular instances

What about queries? (Boolean CQs)
→ Semantics: compute the probability that the query holds

3/21



Introduction Trees Treelike instances Future work

Example model: TID

Consider a relational instance

Date Animal
Wed 3rd Kangaroo
Wed 3rd Tasmanian devil
Thu 4th Kangaroo
Thu 4th Tasmanian devil
Fri 5th Kangaroo
Fri 5th Tasmanian devil

Add probabilities to facts

Assume independence between facts
→ Semantics: a probability distribution on regular instances

What about queries? (Boolean CQs)
→ Semantics: compute the probability that the query holds

3/21



Introduction Trees Treelike instances Future work

Example model: TID

Consider a relational instance

Date Animal Probability
Wed 3rd Kangaroo 5%
Wed 3rd Tasmanian devil 0%
Thu 4th Kangaroo 6%
Thu 4th Tasmanian devil 2%
Fri 5th Kangaroo 20%
Fri 5th Tasmanian devil 15%

Add probabilities to facts

Assume independence between facts
→ Semantics: a probability distribution on regular instances

What about queries? (Boolean CQs)
→ Semantics: compute the probability that the query holds

3/21



Introduction Trees Treelike instances Future work

Example model: TID

Consider a relational instance

Date Animal Probability
Wed 3rd Kangaroo 5%
Wed 3rd Tasmanian devil 0%
Thu 4th Kangaroo 6%
Thu 4th Tasmanian devil 2%
Fri 5th Kangaroo 20%
Fri 5th Tasmanian devil 15%

Add probabilities to facts
Assume independence between facts

→ Semantics: a probability distribution on regular instances
What about queries? (Boolean CQs)
→ Semantics: compute the probability that the query holds

3/21



Introduction Trees Treelike instances Future work

Example model: TID

Consider a relational instance

Date Animal Probability
Wed 3rd Kangaroo 5%
Wed 3rd Tasmanian devil 0%
Thu 4th Kangaroo 6%
Thu 4th Tasmanian devil 2%
Fri 5th Kangaroo 20%
Fri 5th Tasmanian devil 15%

Add probabilities to facts
Assume independence between facts
→ Semantics: a probability distribution on regular instances

What about queries? (Boolean CQs)
→ Semantics: compute the probability that the query holds

3/21



Introduction Trees Treelike instances Future work

Example model: TID

Consider a relational instance

Date Animal Probability
Wed 3rd Kangaroo 5%
Wed 3rd Tasmanian devil 0%
Thu 4th Kangaroo 6%
Thu 4th Tasmanian devil 2%
Fri 5th Kangaroo 20%
Fri 5th Tasmanian devil 15%

Add probabilities to facts
Assume independence between facts
→ Semantics: a probability distribution on regular instances

What about queries? (Boolean CQs)

→ Semantics: compute the probability that the query holds

3/21



Introduction Trees Treelike instances Future work

Example model: TID

Consider a relational instance

Date Animal Probability
Wed 3rd Kangaroo 5%
Wed 3rd Tasmanian devil 0%
Thu 4th Kangaroo 6%
Thu 4th Tasmanian devil 2%
Fri 5th Kangaroo 20%
Fri 5th Tasmanian devil 15%

Add probabilities to facts
Assume independence between facts
→ Semantics: a probability distribution on regular instances

What about queries? (Boolean CQs)
→ Semantics: compute the probability that the query holds

3/21



Introduction Trees Treelike instances Future work

Big problem: Tractability

Evaluate the fixed Boolean CQ: ∃xy R(x)S(x, y)T(y)
Measure data complexity, i.e., as a function of the instance

→ #P-hard [Dalvi and Suciu, 2007] (instead of AC0)
Existing approaches:

Avoid hard queries [Dalvi and Suciu, 2012]
Use sampling to get approximate answers

4/21



Introduction Trees Treelike instances Future work

Big problem: Tractability

Evaluate the fixed Boolean CQ: ∃xy R(x)S(x, y)T(y)
Measure data complexity, i.e., as a function of the instance

→ #P-hard [Dalvi and Suciu, 2007] (instead of AC0)

Existing approaches:
Avoid hard queries [Dalvi and Suciu, 2012]
Use sampling to get approximate answers

4/21



Introduction Trees Treelike instances Future work

Big problem: Tractability

Evaluate the fixed Boolean CQ: ∃xy R(x)S(x, y)T(y)
Measure data complexity, i.e., as a function of the instance

→ #P-hard [Dalvi and Suciu, 2007] (instead of AC0)
Existing approaches:

Avoid hard queries [Dalvi and Suciu, 2012]
Use sampling to get approximate answers

4/21



Introduction Trees Treelike instances Future work

The general idea

Input instances are not arbitrary!
→ Impose structural restrictions on instances
→ Prove fixed-parameter tractability results

5/21



Introduction Trees Treelike instances Future work

This talk

Parameter: instance treewidth
Bound it by a constant

→ MSO queries have linear data complexity [Courcelle, 1990]

→ Also holds on TID instances (with unit cost arithmetics)
(joint work with Pierre Bourhis and Pierre Senellart)

6/21



Introduction Trees Treelike instances Future work

This talk

Parameter: instance treewidth
Bound it by a constant

→ MSO queries have linear data complexity [Courcelle, 1990]
→ Also holds on TID instances (with unit cost arithmetics)

(joint work with Pierre Bourhis and Pierre Senellart)

6/21



Introduction Trees Treelike instances Future work

Table of contents

1 Introduction

2 Trees

3 Treelike instances

4 Future work

7/21



Introduction Trees Treelike instances Future work

Uncertain tree example

A possible PrXML tree, from Wikidata facts:

Q298423

ind

occupation

musician

0.4
ind

place of birth

Crescent

0.7
ind

surname

Manning

0.7
given name

mux

ChelseaBradley

0.4 0.6

→ Probabilities reflect contributor trustworthiness

8/21



Introduction Trees Treelike instances Future work

Formalizing uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep or discard node labels.
Example query:
“Is there both a red and green node?”
Valuation: {1, 2, 3, 4, 5, 6, 7}

The query is true

9/21



Introduction Trees Treelike instances Future work

Formalizing uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep or discard node labels.
Example query:
“Is there both a red and green node?”
Valuation: {1, 2, 5, 6}

The query is false

9/21



Introduction Trees Treelike instances Future work

Formalizing uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep or discard node labels.
Example query:
“Is there both a red and green node?”
Valuation: {2, 7}

The query is true

9/21



Introduction Trees Treelike instances Future work

Provenance formulae and circuits

1

5

76

2

43

Which valuations satisfy the query?

→ Provenance formula of a query q
on an uncertain tree T:

Boolean formula ϕ
on variables x1 . . . x7

→ ν(T) satisfies q iff ν(ϕ) is true

Provenance circuit of q on T
[Deutch et al., 2014]

Boolean circuit C
with input gates g1 . . . g7

→ ν(T) satisfies q iff ν(C) is true

10/21



Introduction Trees Treelike instances Future work

Provenance formulae and circuits

1

5

76

2

43

Which valuations satisfy the query?
→ Provenance formula of a query q

on an uncertain tree T:
Boolean formula ϕ
on variables x1 . . . x7

→ ν(T) satisfies q iff ν(ϕ) is true

Provenance circuit of q on T
[Deutch et al., 2014]

Boolean circuit C
with input gates g1 . . . g7

→ ν(T) satisfies q iff ν(C) is true

10/21



Introduction Trees Treelike instances Future work

Provenance formulae and circuits

1

5

76

2

43

Which valuations satisfy the query?
→ Provenance formula of a query q

on an uncertain tree T:
Boolean formula ϕ
on variables x1 . . . x7

→ ν(T) satisfies q iff ν(ϕ) is true

Provenance circuit of q on T
[Deutch et al., 2014]

Boolean circuit C
with input gates g1 . . . g7

→ ν(T) satisfies q iff ν(C) is true

10/21



Introduction Trees Treelike instances Future work

Example

1

5

76

2

43

Is there both a red and a green node?

Provenance formula: (x2 ∨ x3) ∧ x7
Provenance circuit:

∧

∨ g7

g2 g3

11/21



Introduction Trees Treelike instances Future work

Example

1

5

76

2

43

Is there both a red and a green node?
Provenance formula: (x2 ∨ x3) ∧ x7

Provenance circuit:
∧

∨ g7

g2 g3

11/21



Introduction Trees Treelike instances Future work

Example

1

5

76

2

43

Is there both a red and a green node?
Provenance formula: (x2 ∨ x3) ∧ x7
Provenance circuit:

∧

∨ g7

g2 g3

11/21



Introduction Trees Treelike instances Future work

Our main result on trees

Theorem
For any fixed MSO query q (first order + quantify on sets)
we can compute a provenance circuit C for any input tree T
in linear time in the input T.

→ Key ideas:
Compile q to a tree automaton [Thatcher and Wright, 1968]
Write the possible transitions of the automaton on T in C

Corollary
If tree nodes have a probability of being independently kept, we
can compute the query probability in linear time.

→ Relates to message passing [Lauritzen and Spiegelhalter, 1988]
→ Already known [Cohen et al., 2009]

12/21



Introduction Trees Treelike instances Future work

Our main result on trees

Theorem
For any fixed MSO query q (first order + quantify on sets)
we can compute a provenance circuit C for any input tree T
in linear time in the input T.

→ Key ideas:
Compile q to a tree automaton [Thatcher and Wright, 1968]
Write the possible transitions of the automaton on T in C

Corollary
If tree nodes have a probability of being independently kept, we
can compute the query probability in linear time.

→ Relates to message passing [Lauritzen and Spiegelhalter, 1988]
→ Already known [Cohen et al., 2009]

12/21



Introduction Trees Treelike instances Future work

Our main result on trees

Theorem
For any fixed MSO query q (first order + quantify on sets)
we can compute a provenance circuit C for any input tree T
in linear time in the input T.

→ Key ideas:
Compile q to a tree automaton [Thatcher and Wright, 1968]
Write the possible transitions of the automaton on T in C

Corollary
If tree nodes have a probability of being independently kept, we
can compute the query probability in linear time.

→ Relates to message passing [Lauritzen and Spiegelhalter, 1988]
→ Already known [Cohen et al., 2009]

12/21



Introduction Trees Treelike instances Future work

Our main result on trees

Theorem
For any fixed MSO query q (first order + quantify on sets)
we can compute a provenance circuit C for any input tree T
in linear time in the input T.

→ Key ideas:
Compile q to a tree automaton [Thatcher and Wright, 1968]
Write the possible transitions of the automaton on T in C

Corollary
If tree nodes have a probability of being independently kept, we
can compute the query probability in linear time.

→ Relates to message passing [Lauritzen and Spiegelhalter, 1988]
→ Already known [Cohen et al., 2009]

12/21



Introduction Trees Treelike instances Future work

Table of contents

1 Introduction

2 Trees

3 Treelike instances

4 Future work

13/21



Introduction Trees Treelike instances Future work

Treewidth intuition

Generalize from trees to treelike instances:

Treewidth: measure on instances
Trees have treewidth 1
Cycles have treewidth 2
k-cliques and k-grids have treewidth k − 1

Treelike: the treewidth is bounded by a constant
→ Treelike instances can be encoded to trees

14/21



Introduction Trees Treelike instances Future work

Treewidth intuition

Generalize from trees to treelike instances:
Treewidth: measure on instances

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and k-grids have treewidth k − 1

Treelike: the treewidth is bounded by a constant

→ Treelike instances can be encoded to trees

14/21



Introduction Trees Treelike instances Future work

Treewidth intuition

Generalize from trees to treelike instances:
Treewidth: measure on instances

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and k-grids have treewidth k − 1

Treelike: the treewidth is bounded by a constant
→ Treelike instances can be encoded to trees

14/21



Introduction Trees Treelike instances Future work

Treewidth formal definition

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:
a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

→ Treelike: constant bound on the maximal bag size

15/21



Introduction Trees Treelike instances Future work

Treewidth formal definition

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:
a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

→ Treelike: constant bound on the maximal bag size

15/21



Introduction Trees Treelike instances Future work

Treewidth formal definition

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:
a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

→ Treelike: constant bound on the maximal bag size

15/21



Introduction Trees Treelike instances Future work

Treewidth formal definition

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:
a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

→ Treelike: constant bound on the maximal bag size

15/21



Introduction Trees Treelike instances Future work

Treewidth formal definition

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:
a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

→ Treelike: constant bound on the maximal bag size

15/21



Introduction Trees Treelike instances Future work

Our main result on treelike instances

Theorem
For any fixed MSO query q and bound k ∈ N,
for any input instance I of treewidth ≤ k,
we can compute in linear time a provenance circuit of q on I.

→ Key ideas:
Compute tree decomposition and tree encoding in linear time
Compile q to an automaton on encodings [Flum et al., 2002]
Use the previous construction

→ Possible subinstances are possible valuations of the encoding

Corollary
MSO queries have linear data complexity on treelike TID instances.

16/21



Introduction Trees Treelike instances Future work

Our main result on treelike instances

Theorem
For any fixed MSO query q and bound k ∈ N,
for any input instance I of treewidth ≤ k,
we can compute in linear time a provenance circuit of q on I.

→ Key ideas:
Compute tree decomposition and tree encoding in linear time
Compile q to an automaton on encodings [Flum et al., 2002]
Use the previous construction

→ Possible subinstances are possible valuations of the encoding

Corollary
MSO queries have linear data complexity on treelike TID instances.

16/21



Introduction Trees Treelike instances Future work

Our main result on treelike instances

Theorem
For any fixed MSO query q and bound k ∈ N,
for any input instance I of treewidth ≤ k,
we can compute in linear time a provenance circuit of q on I.

→ Key ideas:
Compute tree decomposition and tree encoding in linear time
Compile q to an automaton on encodings [Flum et al., 2002]
Use the previous construction

→ Possible subinstances are possible valuations of the encoding

Corollary
MSO queries have linear data complexity on treelike TID instances.

16/21



Introduction Trees Treelike instances Future work

Further results

Support other models with dependencies between facts:
Block-independent disjoint (BID): mutually exclusive facts
pc-tables: events and Boolean annotations

Support other tasks:
Counting query results encodes to probabilistic evaluation
General connection to semiring provenance [Green et al., 2007]

17/21



Introduction Trees Treelike instances Future work

Further results

Support other models with dependencies between facts:
Block-independent disjoint (BID): mutually exclusive facts
pc-tables: events and Boolean annotations

Support other tasks:
Counting query results encodes to probabilistic evaluation
General connection to semiring provenance [Green et al., 2007]

17/21



Introduction Trees Treelike instances Future work

Table of contents

1 Introduction

2 Trees

3 Treelike instances

4 Future work

18/21



Introduction Trees Treelike instances Future work

Extending the provenance connection

Negation:
Semiring provenance usually defined for positive queries
Yet our provenance circuits work fine with negation

→ Relate this to provenance for queries with negation?

Multiplicities:
Our works connects to the universal semiring N[X]...
... but only for UCQs, not arbitrary MSO
Missing: notion of multiplicity for MSO (multisets?)

Structural restrictions:
Are real-world instances tree-like?
Are there other possible restrictions?
Experiments?

19/21



Introduction Trees Treelike instances Future work

Extending the provenance connection

Negation:
Semiring provenance usually defined for positive queries
Yet our provenance circuits work fine with negation

→ Relate this to provenance for queries with negation?
Multiplicities:

Our works connects to the universal semiring N[X]...
... but only for UCQs, not arbitrary MSO
Missing: notion of multiplicity for MSO (multisets?)

Structural restrictions:
Are real-world instances tree-like?
Are there other possible restrictions?
Experiments?

19/21



Introduction Trees Treelike instances Future work

Extending the provenance connection

Negation:
Semiring provenance usually defined for positive queries
Yet our provenance circuits work fine with negation

→ Relate this to provenance for queries with negation?
Multiplicities:

Our works connects to the universal semiring N[X]...
... but only for UCQs, not arbitrary MSO
Missing: notion of multiplicity for MSO (multisets?)

Structural restrictions:
Are real-world instances tree-like?
Are there other possible restrictions?
Experiments?

19/21



Introduction Trees Treelike instances Future work

Connect to other frameworks

Compiling to automata has high combined complexity
→ Investigate Monadic Datalog approaches [Gottlob et al., 2010]

Uncertainty on facts not values
→ Connect to work on nulls [Libkin, 2014]

What about reasoning on uncertain data and its implications?
→ Connect to tractable languages (e.g., guarded Datalog)

What about incorporating new evidence?
→ Connect to work on conditioning [Tang et al., 2012]

20/21



Introduction Trees Treelike instances Future work

Connect to other frameworks

Compiling to automata has high combined complexity
→ Investigate Monadic Datalog approaches [Gottlob et al., 2010]

Uncertainty on facts not values
→ Connect to work on nulls [Libkin, 2014]

What about reasoning on uncertain data and its implications?
→ Connect to tractable languages (e.g., guarded Datalog)

What about incorporating new evidence?
→ Connect to work on conditioning [Tang et al., 2012]

20/21



Introduction Trees Treelike instances Future work

Connect to other frameworks

Compiling to automata has high combined complexity
→ Investigate Monadic Datalog approaches [Gottlob et al., 2010]

Uncertainty on facts not values
→ Connect to work on nulls [Libkin, 2014]

What about reasoning on uncertain data and its implications?
→ Connect to tractable languages (e.g., guarded Datalog)

What about incorporating new evidence?
→ Connect to work on conditioning [Tang et al., 2012]

20/21



Introduction Trees Treelike instances Future work

Connect to other frameworks

Compiling to automata has high combined complexity
→ Investigate Monadic Datalog approaches [Gottlob et al., 2010]

Uncertainty on facts not values
→ Connect to work on nulls [Libkin, 2014]

What about reasoning on uncertain data and its implications?
→ Connect to tractable languages (e.g., guarded Datalog)

What about incorporating new evidence?
→ Connect to work on conditioning [Tang et al., 2012]

20/21



Introduction Trees Treelike instances Future work

Other projects and directions

Open-world query answering (with Michael Benedikt)
Certainty of a Boolean CQ when completing under constraints
Which constraint languages are decidable?
What is the impact of assuming finiteness?

Uncertain ordered data
Bag semantics for the relational algebra
(with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
Interpolation schemes for partially ordered numerical values
(with Yael Amsterdamer, Tova Milo, Pierre Senellart)

Problem of instance possibility
On uncertain orders (labeled posets)
On probabilistic XML

Thanks for your attention!

21/21



Introduction Trees Treelike instances Future work

Other projects and directions

Open-world query answering (with Michael Benedikt)
Certainty of a Boolean CQ when completing under constraints
Which constraint languages are decidable?
What is the impact of assuming finiteness?

Uncertain ordered data
Bag semantics for the relational algebra
(with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
Interpolation schemes for partially ordered numerical values
(with Yael Amsterdamer, Tova Milo, Pierre Senellart)

Problem of instance possibility
On uncertain orders (labeled posets)
On probabilistic XML

Thanks for your attention!

21/21



Introduction Trees Treelike instances Future work

Other projects and directions

Open-world query answering (with Michael Benedikt)
Certainty of a Boolean CQ when completing under constraints
Which constraint languages are decidable?
What is the impact of assuming finiteness?

Uncertain ordered data
Bag semantics for the relational algebra
(with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
Interpolation schemes for partially ordered numerical values
(with Yael Amsterdamer, Tova Milo, Pierre Senellart)

Problem of instance possibility
On uncertain orders (labeled posets)
On probabilistic XML

Thanks for your attention!

21/21



Introduction Trees Treelike instances Future work

Other projects and directions

Open-world query answering (with Michael Benedikt)
Certainty of a Boolean CQ when completing under constraints
Which constraint languages are decidable?
What is the impact of assuming finiteness?

Uncertain ordered data
Bag semantics for the relational algebra
(with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
Interpolation schemes for partially ordered numerical values
(with Yael Amsterdamer, Tova Milo, Pierre Senellart)

Problem of instance possibility
On uncertain orders (labeled posets)
On probabilistic XML

Thanks for your attention!

21/21



References I

Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic XML.
In PODS.
Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs.
Inf. Comput., 85(1).

Dalvi, N. and Suciu, D. (2007).
Efficient query evaluation on probabilistic databases.
VLDBJ, 16(4):523–544.

1/10



References II

Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of
conjunctive queries.
JACM, 59(6):30.

Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014).
Circuits for datalog provenance.
In ICDT.
Flum, J., Frick, M., and Grohe, M. (2002).
Query evaluation via tree-decompositions.
JACM, 49(6):716–752.

Gottlob, G., Pichler, R., and Wei, F. (2010).
Monadic datalog over finite structures of bounded treewidth.
TOCL, 12(1):3.

2/10



References III

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In PODS.
Lauritzen, S. L. and Spiegelhalter, D. J. (1988).
Local computations with probabilities on graphical structures
and their application to expert systems.
J. Royal Statistical Society. Series B.
Libkin, L. (2014).
Incomplete data: what went wrong, and how to fix it.
In Proc. SIGMOD.
Tang, R., Cheng, R., Wu, H., and Bressan, S. (2012).
A framework for conditioning uncertain relational data.
In Database and Expert Systems Applications. Springer.

3/10



References IV

Thatcher, J. W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a
decision problem of second-order logic.
Mathematical systems theory, 2(1):57–81.

4/10



Semiring provenance [Green et al., 2007]

Semiring (K,⊕,⊗, 0, 1)

(K,⊕) commutative monoid with identity 0
(K,⊗) commutative monoid with identity 1
⊗ distributes over ⊕
0 absorptive for ⊗

Idea: Maintain annotations on tuples while evaluating:
Union: annotation is the sum of union tuples
Select: select as usual
Project: annotation is the sum of projected tuples
Product: annotation is the product

5/10



Semiring provenance [Green et al., 2007]

Semiring (K,⊕,⊗, 0, 1)

(K,⊕) commutative monoid with identity 0
(K,⊗) commutative monoid with identity 1
⊗ distributes over ⊕
0 absorptive for ⊗

Idea: Maintain annotations on tuples while evaluating:
Union: annotation is the sum of union tuples
Select: select as usual
Project: annotation is the sum of projected tuples
Product: annotation is the product

5/10



Tree automata

Tree alphabet:

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”

States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}

Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}

Initial function:
⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:

G⊥⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:

G⊥⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:

G

G⊥

R

⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:

⊤

G

G⊥

R

⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

in in
... ... ... ...

... ...q1 q2

in

7/10



Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

q1 q2

∧ ...
in

whenever

q

q1 q2
in in

q
∨ ∨ ∨

... ... ... ...

...

7/10



Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

q1 q2

∧ ...
in

whenever

q

q1 q2
in in

q

¬

∨ ∨ ∨

... ... ... ...

...

7/10



Example: block-independent disjoint (BID) instances

name city iso p
pods melbourne au 0.8
pods sydney au 0.2
icalp tokyo jp 0.1
icalp kyoto jp 0.9

Evaluating a fixed CQ is #P-hard in general
→ For a treelike instance, linear time!

8/10



Example: block-independent disjoint (BID) instances

name city iso p
pods melbourne au 0.8
pods sydney au 0.2
icalp tokyo jp 0.1
icalp kyoto jp 0.9

Evaluating a fixed CQ is #P-hard in general

→ For a treelike instance, linear time!

8/10



Example: block-independent disjoint (BID) instances

name city iso p
pods melbourne au 0.8
pods sydney au 0.2
icalp tokyo jp 0.1
icalp kyoto jp 0.9

Evaluating a fixed CQ is #P-hard in general
→ For a treelike instance, linear time!

8/10



Supporting coefficients

In the world of trees
The same valuation can be accepted multiple times

→ Number of accepting runs of the bNTA
In the world of treelike instances

The same match can be the image of multiple homomorphisms

→ Add assignment facts to represent possible assignments
→ Encode to a bNTA that guesses them

9/10



Supporting coefficients

In the world of trees
The same valuation can be accepted multiple times

→ Number of accepting runs of the bNTA
In the world of treelike instances

The same match can be the image of multiple homomorphisms

→ Add assignment facts to represent possible assignments
→ Encode to a bNTA that guesses them

9/10



Supporting exponents

In the world of trees
The same fact can be used multiple times
Annotate nodes with a multiplicity
The bNTA is monotone for that multiplicity
Use each input gate as many times as we read its fact

In the world of treelike instances
The same fact can be the image of multiple atoms
Maximal multiplicity is query-dependent but
instance-independent

→ Encodes CQs to bNTAs that read multiplicities
Consider all possible CQ self-homomorphisms
Count the multiplicities of identical atoms
Rewrite relations to add multiplicities
Usual compilation on the modified signature

10/10



Supporting exponents

In the world of trees
The same fact can be used multiple times
Annotate nodes with a multiplicity
The bNTA is monotone for that multiplicity
Use each input gate as many times as we read its fact

In the world of treelike instances
The same fact can be the image of multiple atoms
Maximal multiplicity is query-dependent but
instance-independent

→ Encodes CQs to bNTAs that read multiplicities
Consider all possible CQ self-homomorphisms
Count the multiplicities of identical atoms
Rewrite relations to add multiplicities
Usual compilation on the modified signature

10/10


	Introduction
	Trees
	Treelike instances
	Future work

