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Uncertain data management

Is data always complete and certain?

Unreliable sources
→ Crowdsourcing
→ Massive collaborations: Wikidata, etc.

Error-prone processing
→ Unsupervised information extraction
→ OCR, speech recognition, etc.

Outdated or stale data

→ We need uncertain data management
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Example model: TID

Consider a relational instance

Date Animal
Wed 3rd Kangaroo
Wed 3rd Tasmanian devil
Thu 4th Kangaroo
Thu 4th Tasmanian devil
Fri 5th Kangaroo
Fri 5th Tasmanian devil

Add probabilities to facts
Assume independence between facts
→ Semantics: a probability distribution on regular instances

What about queries? (Boolean CQs)
→ Semantics: compute the probability that the query holds
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Example model: TID

Consider a relational instance

Date Animal Probability
Wed 3rd Kangaroo 5%
Wed 3rd Tasmanian devil 0%
Thu 4th Kangaroo 6%
Thu 4th Tasmanian devil 2%
Fri 5th Kangaroo 20%
Fri 5th Tasmanian devil 15%

Add probabilities to facts

Assume independence between facts
→ Semantics: a probability distribution on regular instances

What about queries? (Boolean CQs)
→ Semantics: compute the probability that the query holds
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Big problem: Tractability

Evaluate the fixed Boolean CQ: ∃xy R(x)S(x, y)T(y)
Measure data complexity, i.e., as a function of the instance

→ #P-hard [Dalvi and Suciu, 2007] (instead of AC0)
Existing approaches:

Avoid hard queries [Dalvi and Suciu, 2012]
Use sampling to get approximate answers
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The general idea

Input instances are not arbitrary!
→ Impose structural restrictions on instances
→ Prove fixed-parameter tractability results
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This talk

Parameter: instance treewidth
Bound it by a constant

→ MSO queries have linear data complexity [Courcelle, 1990]

→ Also holds on TID instances (with unit cost arithmetics)
(joint work with Pierre Bourhis and Pierre Senellart)
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Uncertain tree example

A possible PrXML tree, from Wikidata facts:

Q298423

ind

occupation

musician

0.4
ind

place of birth

Crescent

0.7
ind

surname

Manning

0.7
given name

mux

ChelseaBradley

0.4 0.6

→ Probabilities reflect contributor trustworthiness
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Formalizing uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep or discard node labels.
Example query:
“Is there both a red and green node?”
Valuation: {1, 2, 3, 4, 5, 6, 7}

The query is true
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Formalizing uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep or discard node labels.
Example query:
“Is there both a red and green node?”
Valuation: {2, 7}

The query is true
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Provenance formulae and circuits

1

5

76

2

43

Which valuations satisfy the query?

→ Provenance formula of a query q
on an uncertain tree T:

Boolean formula ϕ
on variables x1 . . . x7

→ ν(T) satisfies q iff ν(ϕ) is true

Provenance circuit of q on T
[Deutch et al., 2014]

Boolean circuit C
with input gates g1 . . . g7

→ ν(T) satisfies q iff ν(C) is true
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Example

1

5

76

2

43

Is there both a red and a green node?

Provenance formula: (x2 ∨ x3) ∧ x7
Provenance circuit:

∧

∨ g7

g2 g3
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Our main result on trees

Theorem
For any fixed MSO query q (first order + quantify on sets)
we can compute a provenance circuit C for any input tree T
in linear time in the input T.

→ Key ideas:
Compile q to a tree automaton [Thatcher and Wright, 1968]
Write the possible transitions of the automaton on T in C

Corollary
If tree nodes have a probability of being independently kept, we
can compute the query probability in linear time.

→ Relates to message passing [Lauritzen and Spiegelhalter, 1988]
→ Already known [Cohen et al., 2009]
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Treewidth intuition

Generalize from trees to treelike instances:

Treewidth: measure on instances
Trees have treewidth 1
Cycles have treewidth 2
k-cliques and k-grids have treewidth k − 1

Treelike: the treewidth is bounded by a constant
→ Treelike instances can be encoded to trees
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Treewidth formal definition

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:
a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)

→ Treelike: constant bound on the maximal bag size
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Our main result on treelike instances

Theorem
For any fixed MSO query q and bound k ∈ N,
for any input instance I of treewidth ≤ k,
we can compute in linear time a provenance circuit of q on I.

→ Key ideas:
Compute tree decomposition and tree encoding in linear time
Compile q to an automaton on encodings [Flum et al., 2002]
Use the previous construction

→ Possible subinstances are possible valuations of the encoding

Corollary
MSO queries have linear data complexity on treelike TID instances.
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Further results

Support other models with dependencies between facts:
Block-independent disjoint (BID): mutually exclusive facts
pc-tables: events and Boolean annotations

Support other tasks:
Counting query results encodes to probabilistic evaluation
General connection to semiring provenance [Green et al., 2007]
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Extending the provenance connection

Negation:
Semiring provenance usually defined for positive queries
Yet our provenance circuits work fine with negation

→ Relate this to provenance for queries with negation?

Multiplicities:
Our works connects to the universal semiring N[X]...
... but only for UCQs, not arbitrary MSO
Missing: notion of multiplicity for MSO (multisets?)

Structural restrictions:
Are real-world instances tree-like?
Are there other possible restrictions?
Experiments?

19/21



Introduction Trees Treelike instances Future work

Extending the provenance connection

Negation:
Semiring provenance usually defined for positive queries
Yet our provenance circuits work fine with negation

→ Relate this to provenance for queries with negation?
Multiplicities:

Our works connects to the universal semiring N[X]...
... but only for UCQs, not arbitrary MSO
Missing: notion of multiplicity for MSO (multisets?)

Structural restrictions:
Are real-world instances tree-like?
Are there other possible restrictions?
Experiments?

19/21



Introduction Trees Treelike instances Future work

Extending the provenance connection

Negation:
Semiring provenance usually defined for positive queries
Yet our provenance circuits work fine with negation

→ Relate this to provenance for queries with negation?
Multiplicities:

Our works connects to the universal semiring N[X]...
... but only for UCQs, not arbitrary MSO
Missing: notion of multiplicity for MSO (multisets?)

Structural restrictions:
Are real-world instances tree-like?
Are there other possible restrictions?
Experiments?

19/21



Introduction Trees Treelike instances Future work

Connect to other frameworks

Compiling to automata has high combined complexity
→ Investigate Monadic Datalog approaches [Gottlob et al., 2010]

Uncertainty on facts not values
→ Connect to work on nulls [Libkin, 2014]

What about reasoning on uncertain data and its implications?
→ Connect to tractable languages (e.g., guarded Datalog)

What about incorporating new evidence?
→ Connect to work on conditioning [Tang et al., 2012]
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Other projects and directions

Open-world query answering (with Michael Benedikt)
Certainty of a Boolean CQ when completing under constraints
Which constraint languages are decidable?
What is the impact of assuming finiteness?

Uncertain ordered data
Bag semantics for the relational algebra
(with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
Interpolation schemes for partially ordered numerical values
(with Yael Amsterdamer, Tova Milo, Pierre Senellart)

Problem of instance possibility
On uncertain orders (labeled posets)
On probabilistic XML

Thanks for your attention!
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Semiring provenance [Green et al., 2007]

Semiring (K,⊕,⊗, 0, 1)

(K,⊕) commutative monoid with identity 0
(K,⊗) commutative monoid with identity 1
⊗ distributes over ⊕
0 absorptive for ⊗

Idea: Maintain annotations on tuples while evaluating:
Union: annotation is the sum of union tuples
Select: select as usual
Project: annotation is the sum of projected tuples
Product: annotation is the product
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Tree automata

Tree alphabet:

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”

States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}

Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}

Initial function:
⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:
bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:

G⊥⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:

G⊥⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:

G

G⊥

R

⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Tree automata

Tree alphabet:

⊤

G

G⊥

R

⊥R

bNTA: bottom-up nondeterministic
tree automaton
“Is there both a red and green
node?”
States: {⊥,G,R,⊤}
Final states: {⊤}
Initial function:

⊥ R G

Transitions (examples):
R

⊥R

⊤

GR

⊥

⊥⊥

6/10



Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

in in
... ... ... ...

... ...q1 q2

in
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Example: block-independent disjoint (BID) instances

name city iso p
pods melbourne au 0.8
pods sydney au 0.2
icalp tokyo jp 0.1
icalp kyoto jp 0.9

Evaluating a fixed CQ is #P-hard in general
→ For a treelike instance, linear time!
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Supporting coefficients

In the world of trees
The same valuation can be accepted multiple times

→ Number of accepting runs of the bNTA
In the world of treelike instances

The same match can be the image of multiple homomorphisms

→ Add assignment facts to represent possible assignments
→ Encode to a bNTA that guesses them
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Supporting exponents

In the world of trees
The same fact can be used multiple times
Annotate nodes with a multiplicity
The bNTA is monotone for that multiplicity
Use each input gate as many times as we read its fact

In the world of treelike instances
The same fact can be the image of multiple atoms
Maximal multiplicity is query-dependent but
instance-independent

→ Encodes CQs to bNTAs that read multiplicities
Consider all possible CQ self-homomorphisms
Count the multiplicities of identical atoms
Rewrite relations to add multiplicities
Usual compilation on the modified signature
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