Structurally Tractable Uncertain Data

Antoine Amarilli
Supervisor: Pierre Senellart Expected graduation: August 2016

Télécom ParisTech, France

May 31st, 2015

Uncertain data management

Is data always complete and certain?

Uncertain data management

Is data always complete and certain?

- Unreliable sources
\rightarrow Crowdsourcing
\rightarrow Massive collaborations: Wikidata, etc.

Uncertain data management

Is data always complete and certain?

- Unreliable sources
\rightarrow Crowdsourcing
\rightarrow Massive collaborations: Wikidata, etc.
- Error-prone processing
\rightarrow Unsupervised information extraction
\rightarrow OCR, speech recognition, etc.

Uncertain data management

Is data always complete and certain?

- Unreliable sources
\rightarrow Crowdsourcing
\rightarrow Massive collaborations: Wikidata, etc.
- Error-prone processing
\rightarrow Unsupervised information extraction
\rightarrow OCR, speech recognition, etc.
- Outdated or stale data

Uncertain data management

Is data always complete and certain?

- Unreliable sources
\rightarrow Crowdsourcing
\rightarrow Massive collaborations: Wikidata, etc.
- Error-prone processing
\rightarrow Unsupervised information extraction
\rightarrow OCR, speech recognition, etc.
- Outdated or stale data
\rightarrow We need uncertain data management

Example model: TID

- Consider a relational instance

Date	Animal
Wed 3rd	Kangaroo
Wed 3rd	Tasmanian devil
Thu 4th	Kangaroo
Thu 4th	Tasmanian devil
Fri 5th	Kangaroo
Fri 5th	Tasmanian devil

Example model: TID

- Consider a relational instance

Date	Animal
Wed 3rd	Kangaroo
Wed 3rd	Tasmanian devil
Thu 4th	Kangaroo
Thu 4th	Tasmanian devil
Fri 5th	Kangaroo
Fri 5th	Tasmanian devil

- Add probabilities to facts

Example model: TID

- Consider a relational instance

Date	Animal	Probability
Wed 3rd	Kangaroo	5%
Wed 3rd	Tasmanian devil	0%
Thu 4th	Kangaroo	6%
Thu 4th	Tasmanian devil	2%
Fri 5th	Kangaroo	20%
Fri 5th	Tasmanian devil	15%

- Add probabilities to facts

Example model: TID

- Consider a relational instance

Date	Animal	Probability
Wed 3rd	Kangaroo	5%
Wed 3rd	Tasmanian devil	0%
Thu 4th	Kangaroo	6%
Thu 4th	Tasmanian devil	2%
Fri 5th	Kangaroo	20%
Fri 5th	Tasmanian devil	15%

- Add probabilities to facts
- Assume independence between facts

Example model: TID

- Consider a relational instance

Date	Animal	Probability
Wed 3rd	Kangaroo	5%
Wed 3rd	Tasmanian devil	0%
Thu 4th	Kangaroo	6%
Thu 4th	Tasmanian devil	2%
Fri 5th	Kangaroo	20%
Fri 5th	Tasmanian devil	15%

- Add probabilities to facts
- Assume independence between facts
\rightarrow Semantics: a probability distribution on regular instances

Example model: TID

- Consider a relational instance

Date	Animal	Probability
Wed 3rd	Kangaroo	5%
Wed 3rd	Tasmanian devil	0%
Thu 4th	Kangaroo	6%
Thu 4th	Tasmanian devil	2%
Fri 5th	Kangaroo	20%
Fri 5th	Tasmanian devil	15%

- Add probabilities to facts
- Assume independence between facts
\rightarrow Semantics: a probability distribution on regular instances
- What about queries? (Boolean CQs)

Example model: TID

- Consider a relational instance

Date	Animal	Probability
Wed 3rd	Kangaroo	5%
Wed 3rd	Tasmanian devil	0%
Thu 4th	Kangaroo	6%
Thu 4th	Tasmanian devil	2%
Fri 5th	Kangaroo	20%
Fri 5th	Tasmanian devil	15%

- Add probabilities to facts
- Assume independence between facts
\rightarrow Semantics: a probability distribution on regular instances
- What about queries? (Boolean CQs)
\rightarrow Semantics: compute the probability that the query holds

Big problem: Tractability

- Evaluate the fixed Boolean CQ: $\exists x y R(x) S(x, y) T(y)$
- Measure data complexity, i.e., as a function of the instance

Big problem: Tractability

- Evaluate the fixed Boolean CQ: $\exists x y R(x) S(x, y) T(y)$
- Measure data complexity, i.e., as a function of the instance \rightarrow \#P-hard [Dalvi and Suciu, 2007] (instead of AC^{0})

Big problem: Tractability

- Evaluate the fixed Boolean CQ: $\exists x y R(x) S(x, y) T(y)$
- Measure data complexity, i.e., as a function of the instance \rightarrow \#P-hard [Dalvi and Suciu, 2007] (instead of AC^{0})

Existing approaches:

- Avoid hard queries [Dalvi and Suciu, 2012]
- Use sampling to get approximate answers

The general idea

Input instances are not arbitrary!
\rightarrow Impose structural restrictions on instances
\rightarrow Prove fixed-parameter tractability results

This talk

- Parameter: instance treewidth
- Bound it by a constant
\rightarrow MSO queries have linear data complexity [Courcelle, 1990]

This talk

- Parameter: instance treewidth
- Bound it by a constant
\rightarrow MSO queries have linear data complexity [Courcelle, 1990]
\rightarrow Also holds on TID instances (with unit cost arithmetics) (joint work with Pierre Bourhis and Pierre Senellart)

Table of contents

(1) Introduction

(2) Trees
(3) Treelike instances
4. Future work

Uncertain tree example

- A possible PrXML tree, from Wikidata facts:

\rightarrow Probabilities reflect contributor trustworthiness

Formalizing uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
"Is there both a red and green node?"
Valuation: $\{1,2,3,4,5,6,7\}$
The query is true

Formalizing uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
"Is there both a red and green node?"
Valuation: $\{1,2,5,6\}$
The query is false

Formalizing uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
"Is there both a red and green node?"
Valuation: $\{2,7\}$
The query is true

Provenance formulae and circuits

- Which valuations satisfy the query?

Provenance formulae and circuits

- Which valuations satisfy the query?
\rightarrow Provenance formula of a query q on an uncertain tree T :
- Boolean formula ϕ
- on variables $x_{1} \ldots x_{7}$
$\rightarrow \nu(T)$ satisfies q iff $\nu(\phi)$ is true

Provenance formulae and circuits

- Which valuations satisfy the query?
\rightarrow Provenance formula of a query q on an uncertain tree T :
- Boolean formula ϕ
- on variables $x_{1} \ldots x_{7}$
$\rightarrow \nu(T)$ satisfies q iff $\nu(\phi)$ is true
- Provenance circuit of q on T
[Deutch et al., 2014]
- Boolean circuit C
- with input gates $g_{1} \ldots g_{7}$
$\rightarrow \nu(T)$ satisfies q iff $\nu(C)$ is true

Example

Is there both a red and a green node?

Example

Is there both a red and a green node?

- Provenance formula: $\left(x_{2} \vee x_{3}\right) \wedge x_{7}$

Example

Is there both a red and a green node?

- Provenance formula: $\left(x_{2} \vee x_{3}\right) \wedge x_{7}$
- Provenance circuit:

Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets) we can compute a provenance circuit C for any input tree T in linear time in the input T.

Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets) we can compute a provenance circuit C for any input tree T in linear time in the input T.
\rightarrow Key ideas:

- Compile q to a tree automaton [Thatcher and Wright, 1968]
- Write the possible transitions of the automaton on T in C

Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets) we can compute a provenance circuit C for any input tree T in linear time in the input T.
\rightarrow Key ideas:

- Compile q to a tree automaton [Thatcher and Wright, 1968]
- Write the possible transitions of the automaton on T in C

Corollary

If tree nodes have a probability of being independently kept, we can compute the query probability in linear time.

Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets) we can compute a provenance circuit C for any input tree T in linear time in the input T.
\rightarrow Key ideas:

- Compile q to a tree automaton [Thatcher and Wright, 1968]
- Write the possible transitions of the automaton on T in C

Corollary

If tree nodes have a probability of being independently kept, we can compute the query probability in linear time.
\rightarrow Relates to message passing [Lauritzen and Spiegelhalter, 1988]
\rightarrow Already known [Cohen et al., 2009]

Table of contents

(1) Introduction

(2) Trees
(3) Treelike instances
(4) Future work

Treewidth intuition

Generalize from trees to treelike instances:

Treewidth intuition

Generalize from trees to treelike instances:

- Treewidth: measure on instances
- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and k-grids have treewidth $k-1$
- Treelike: the treewidth is bounded by a constant

Treewidth intuition

Generalize from trees to treelike instances:

- Treewidth: measure on instances
- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and k-grids have treewidth $k-1$
- Treelike: the treewidth is bounded by a constant
\rightarrow Treelike instances can be encoded to trees

Treewidth formal definition

Instance:

\mathbf{N}	
a	b
b	c
c	d
d	e
e	f
\mathbf{S}	
a	c
b	e

Treewidth formal definition

Instance:
Gaifman graph:

Treewidth formal definition

Instance:

Gaifman graph: Tree decomp.:

Treewidth formal definition

Instance:

Gaifman graph: Tree decomp.:

Tree encoding:

$$
\begin{gathered}
\begin{array}{c}
N\left(a_{1}, a_{2}\right) \vdots \\
1 \\
N\left(a_{2}, a_{3}\right) \\
1 \\
S\left(a_{1}, a_{3}\right) \\
1 \\
S\left(a_{2}, a_{4}\right) \\
7 \\
N\left(a_{3}, a_{1}\right) \\
\quad N\left(a_{4}, a_{1}\right)
\end{array}
\end{gathered}
$$

$$
N\left(a_{1}, a_{4}\right)
$$

Treewidth formal definition

Instance:

\mathbf{N}	
a	b
b	c
c	d
d	e
e	f
\mathbf{S}	
a	c
b	e

Gaifman graph: Tree decomp.:

Tree encoding:

$$
\begin{gathered}
\begin{array}{c}
N\left(a_{1}, a_{2}\right) \\
\mid \\
N\left(a_{2}, a_{3}\right) \\
\mid \\
S\left(a_{1}, a_{3}\right) \\
\vdots \\
S\left(a_{2}, a_{4}\right) \\
Y \\
N\left(a_{3}, a_{1}\right) \\
\hline N\left(a_{4}, a_{1}\right)
\end{array}
\end{gathered}
$$

$$
N\left(a_{1}, a_{4}\right)
$$

\rightarrow Treelike: constant bound on the maximal bag size

Our main result on treelike instances

Abstract

Theorem For any fixed MSO query q and bound $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can compute in linear time a provenance circuit of q on I.

Our main result on treelike instances

Theorem

For any fixed MSO query q and bound $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can compute in linear time a provenance circuit of q on l.
\rightarrow Key ideas:

- Compute tree decomposition and tree encoding in linear time
- Compile q to an automaton on encodings [Flum et al., 2002]
- Use the previous construction
\rightarrow Possible subinstances are possible valuations of the encoding

Our main result on treelike instances

Theorem

For any fixed MSO query q and bound $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can compute in linear time a provenance circuit of q on l.
\rightarrow Key ideas:

- Compute tree decomposition and tree encoding in linear time
- Compile q to an automaton on encodings [Flum et al., 2002]
- Use the previous construction
\rightarrow Possible subinstances are possible valuations of the encoding

Corollary

MSO queries have linear data complexity on treelike TID instances.

Further results

- Support other models with dependencies between facts:
- Block-independent disjoint (BID): mutually exclusive facts
- pc-tables: events and Boolean annotations

Further results

- Support other models with dependencies between facts:
- Block-independent disjoint (BID): mutually exclusive facts
- pc-tables: events and Boolean annotations
- Support other tasks:
- Counting query results encodes to probabilistic evaluation
- General connection to semiring provenance [Green et al., 2007]

Table of contents

(1) Introduction

(2) Trees

3 Treelike instances
(4) Future work

Extending the provenance connection

- Negation:
- Semiring provenance usually defined for positive queries
- Yet our provenance circuits work fine with negation
\rightarrow Relate this to provenance for queries with negation?

Extending the provenance connection

- Negation:
- Semiring provenance usually defined for positive queries
- Yet our provenance circuits work fine with negation
\rightarrow Relate this to provenance for queries with negation?
- Multiplicities:
- Our works connects to the universal semiring $\mathbb{N}[X]$...
- ... but only for UCQs, not arbitrary MSO
- Missing: notion of multiplicity for MSO (multisets?)

Extending the provenance connection

- Negation:
- Semiring provenance usually defined for positive queries
- Yet our provenance circuits work fine with negation
\rightarrow Relate this to provenance for queries with negation?
- Multiplicities:
- Our works connects to the universal semiring $\mathbb{N}[X] \ldots$
- ... but only for UCQs, not arbitrary MSO
- Missing: notion of multiplicity for MSO (multisets?)
- Structural restrictions:
- Are real-world instances tree-like?
- Are there other possible restrictions?
- Experiments?

Connect to other frameworks

- Compiling to automata has high combined complexity
\rightarrow Investigate Monadic Datalog approaches [Gottlob et al., 2010]

Connect to other frameworks

- Compiling to automata has high combined complexity
\rightarrow Investigate Monadic Datalog approaches [Gottlob et al., 2010]
- Uncertainty on facts not values
\rightarrow Connect to work on nulls [Libkin, 2014]

Connect to other frameworks

- Compiling to automata has high combined complexity
\rightarrow Investigate Monadic Datalog approaches [Gottlob et al., 2010]
- Uncertainty on facts not values
\rightarrow Connect to work on nulls [Libkin, 2014]
- What about reasoning on uncertain data and its implications?
\rightarrow Connect to tractable languages (e.g., guarded Datalog)

Connect to other frameworks

- Compiling to automata has high combined complexity
\rightarrow Investigate Monadic Datalog approaches [Gottlob et al., 2010]
- Uncertainty on facts not values
\rightarrow Connect to work on nulls [Libkin, 2014]
- What about reasoning on uncertain data and its implications?
\rightarrow Connect to tractable languages (e.g., guarded Datalog)
- What about incorporating new evidence?
\rightarrow Connect to work on conditioning [Tang et al., 2012]

Other projects and directions

- Open-world query answering (with Michael Benedikt)
- Certainty of a Boolean CQ when completing under constraints
- Which constraint languages are decidable?
- What is the impact of assuming finiteness?

Other projects and directions

- Open-world query answering (with Michael Benedikt)
- Certainty of a Boolean CQ when completing under constraints
- Which constraint languages are decidable?
- What is the impact of assuming finiteness?
- Uncertain ordered data
- Bag semantics for the relational algebra (with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
- Interpolation schemes for partially ordered numerical values (with Yael Amsterdamer, Tova Milo, Pierre Senellart)

Other projects and directions

- Open-world query answering (with Michael Benedikt)
- Certainty of a Boolean CQ when completing under constraints
- Which constraint languages are decidable?
- What is the impact of assuming finiteness?
- Uncertain ordered data
- Bag semantics for the relational algebra (with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
- Interpolation schemes for partially ordered numerical values (with Yael Amsterdamer, Tova Milo, Pierre Senellart)
- Problem of instance possibility
- On uncertain orders (labeled posets)
- On probabilistic XML

Other projects and directions

- Open-world query answering (with Michael Benedikt)
- Certainty of a Boolean CQ when completing under constraints
- Which constraint languages are decidable?
- What is the impact of assuming finiteness?
- Uncertain ordered data
- Bag semantics for the relational algebra (with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
- Interpolation schemes for partially ordered numerical values (with Yael Amsterdamer, Tova Milo, Pierre Senellart)
- Problem of instance possibility
- On uncertain orders (labeled posets)
- On probabilistic XML

Thanks for your attention!

References I

R Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic XML.
In PODS.

- Courcelle, B. (1990).

The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1).
R Dalvi, N. and Suciu, D. (2007).
Efficient query evaluation on probabilistic databases.
VLDBJ, 16(4):523-544.

References II

E- Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries.
JACM, 59(6):30.
Ei Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014).
Circuits for datalog provenance.
In ICDT.
囯 Flum, J., Frick, M., and Grohe, M. (2002).
Query evaluation via tree-decompositions. JACM, 49(6):716-752.

囯 Gottlob, G., Pichler, R., and Wei, F. (2010).
Monadic datalog over finite structures of bounded treewidth. TOCL, 12(1):3.

References III

戋 Green，T．J．，Karvounarakis，G．，and Tannen，V．（2007）． Provenance semirings．
In PODS．
目 Lauritzen，S．L．and Spiegelhalter，D．J．（1988）．
Local computations with probabilities on graphical structures and their application to expert systems．
J．Royal Statistical Society．Series B．
圊 Libkin，L．（2014）．
Incomplete data：what went wrong，and how to fix it．
In Proc．SIGMOD．
围 Tang，R．，Cheng，R．，Wu，H．，and Bressan，S．（2012）．
A framework for conditioning uncertain relational data．
In Database and Expert Systems Applications．Springer．

References IV

目
Thatcher, J. W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical systems theory, 2(1):57-81.

Semiring provenance [Green et al., 2007]

- Semiring $(K, \oplus, \otimes, 0,1)$
- (K, \oplus) commutative monoid with identity 0
- (K, \otimes) commutative monoid with identity 1
- \otimes distributes over \oplus
- 0 absorptive for \otimes

Semiring provenance [Green et al., 2007]

- Semiring $(K, \oplus, \otimes, 0,1)$
- (K, \oplus) commutative monoid with identity 0
- (K, \otimes) commutative monoid with identity 1
- \otimes distributes over \oplus
- 0 absorptive for \otimes
- Idea: Maintain annotations on tuples while evaluating:
- Union: annotation is the sum of union tuples
- Select: select as usual
- Project: annotation is the sum of projected tuples
- Product: annotation is the product

Tree automata

Tree alphabet:

Tree automata

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"

Tree automata

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\perp
- R

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\perp
-

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\perp
- R
- Transitions (examples):

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\perp
- R
- Transitions (examples):

Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{T\}$
- Initial function:
\perp
- R
- Transitions (examples):

Constructing the provenance circuit

\rightarrow Construct a Boolean provenance circuit bottom-up

Constructing the provenance circuit

\rightarrow Construct a Boolean provenance circuit bottom-up

whenever

Constructing the provenance circuit

\rightarrow Construct a Boolean provenance circuit bottom-up

whenever

Example: block-independent disjoint (BID) instances

name	city	iso	p
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jp	0.1
icalp	kyoto	jp	0.9

Example: block-independent disjoint (BID) instances

name	city	iso	p
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jp	0.1
icalp	kyoto	jp	0.9

- Evaluating a fixed CQ is \#P-hard in general

Example: block-independent disjoint (BID) instances

name	city	iso	p
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	jp	0.1
icalp	kyoto	jp	0.9

- Evaluating a fixed CQ is \#P-hard in general
\rightarrow For a treelike instance, linear time!

Supporting coefficients

- In the world of trees
- The same valuation can be accepted multiple times
\rightarrow Number of accepting runs of the bNTA
- In the world of treelike instances
- The same match can be the image of multiple homomorphisms

Supporting coefficients

- In the world of trees
- The same valuation can be accepted multiple times
\rightarrow Number of accepting runs of the bNTA
- In the world of treelike instances
- The same match can be the image of multiple homomorphisms
\rightarrow Add assignment facts to represent possible assignments
\rightarrow Encode to a bNTA that guesses them

Supporting exponents

- In the world of trees
- The same fact can be used multiple times
- Annotate nodes with a multiplicity
- The bNTA is monotone for that multiplicity
- Use each input gate as many times as we read its fact
- In the world of treelike instances
- The same fact can be the image of multiple atoms
- Maximal multiplicity is query-dependent but instance-independent

Supporting exponents

- In the world of trees
- The same fact can be used multiple times
- Annotate nodes with a multiplicity
- The bNTA is monotone for that multiplicity
- Use each input gate as many times as we read its fact
- In the world of treelike instances
- The same fact can be the image of multiple atoms
- Maximal multiplicity is query-dependent but instance-independent
\rightarrow Encodes CQs to bNTAs that read multiplicities
- Consider all possible CQ self-homomorphisms
- Count the multiplicities of identical atoms
- Rewrite relations to add multiplicities
- Usual compilation on the modified signature

