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Tuple independent databases (TID)

- Probabilistic databases: model uncertainty about data

- Simplest model: tuple independent databases (TID)

- Arelational database /
- A probability valuation = mapping each fact of I to [0, 1]

- Semantics of a TID (I, 7): a probability distribution on I’ C I:

- Each fact F € I is either present or absent with probability 7(F)
- Assume independence across facts
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Probabilistic query evaluation (PQE)

Let us fix:

- Relational signature o
- Class T of relational instances on ¢ (e.g., acyclic, treelike)

- Class Q of Boolean queries (e.g., CQs, acyclic CQs)
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Probabilistic query evaluation (PQE)

Let us fix:

- Relational signature o
- Class T of relational instances on ¢ (e.g., acyclic, treelike)

- Class Q of Boolean queries (e.g., CQs, acyclic CQs)

Probabilistic query evaluation (PQE) problem for Q and Z:

- Fixaqueryge Q
- Read an instance | € Z and a probability valuation =
- Compute the probability that (I, 7) satisfies g

- Data complexity: measured as a function of (I, )
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Signature o, class Q of conjunctive queries, class Z of all instances.
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5/20



Signature o, class Q of conjunctive queries, class Z of all instances.

q: Xy R(X) AS(x,y) AT(y)

R S T
a a 1 v
b .4 b v 5 w

6 b w 2 b

- The query is true iff R(b) is here and one of:
- S(b,v) and T(v) are here

5/20



Signature o, class Q of conjunctive queries, class Z of all instances.

q: Xy R(X) AS(x,y) AT(y)

R S T
a a 1 %
b .4 b v 5

6 b 2 b

- The query is true iff R(b) is here and one of:
- S(b,v) and T(v) are here
- S(b,w) and T(w) are here

5/20



Signature o, class Q of conjunctive queries, class Z of all instances.

q: Xy R(X) AS(x,y) AT(y)

R S T
a a 1 %
b .4 b v 5 w

6 b 2 b

- The query is true iff R(b) is here and one of:
- S(b,v) and T(v) are here
- S(b,w) and T(w) are here
— Probability:

5/20



Signature o, class Q of conjunctive queries, class Z of all instances.

q: Xy R(X) AS(x,y) AT(y)

R S T
a a 1 %
b .4 b v 5 w

6 b 2 b

- The query is true iff R(b) is here and one of:
- S(b,v) and T(v) are here
- S(b,w) and T(w) are here
— Probability: .4 x

5/20



Signature o, class Q of conjunctive queries, class Z of all instances.

q: Xy R(X) AS(x,y) AT(y)

R S T
a a 1 %
b .4 b v 5 w

6 b 2 b

- The query is true iff R(b) is here and one of:
- S(b,v) and T(v) are here
- S(b,w) and T(w) are here
— Probability: .4 x (1 —

5/20



Signature o, class Q of conjunctive queries, class Z of all instances.

q: Xy R(X) AS(x,y) AT(y)

R S T
a a 1 v
b .4 b v 5 w

6 b w 2 b

- The query is true iff R(b) is here and one of:
- S(b,v) and T(v) are here
- S(b,w) and T(w) are here
— Probability: .4 x (1—(1—.5 % .3)

5/20



Signature o, class Q of conjunctive queries, class Z of all instances.

q: Xy R(X) AS(x,y) AT(y)

R S T
a a 1 %
b .4 b v 5

6 b 2 b

- The query is true iff R(b) is here and one of:
- S(b,v) and T(v) are here
- S(b,w) and T(w) are here
— Probability: 4 x (1—(1—5%x.3)x (1—.2x.7))

5/20



Signature o, class Q of conjunctive queries, class Z of all instances.

q: Xy R(X) AS(x,y) AT(y)

R S T
a a 1 %
b .4 b v 5 w

6 b 2 b

- The query is true iff R(b) is here and one of:
- S(b,v) and T(v) are here
- S(b,w) and T(w) are here

— Probability: 4 x (1—(1—.5%x.3) x (1—.2x.7)) =.1076
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Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of PQE
depending on the class Q of queries and class Z of instances?
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Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of PQE
depending on the class Q of queries and class Z of instances?

- Existing dichotomy result on @ [Dalvi and Suciu, 2012]
- Q are unions of CQs, Z is all instances
- Thereis aclass S C Q of safe queries
— PQE is PTIME for any g € S on all instances
— PQE is #P-hard for any g € Q\S on all instances
- g :3Ixy R(x) AS(x,y) AT(y) is unsafe!
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Instance-based dichotomy

— We show a dichotomy result on Z instead:
- Q are Boolean monadic second-order queries (includes all UCQs)
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Instance-based dichotomy

— We show a dichotomy result on Z instead:
- Q are Boolean monadic second-order queries (includes all UCQs)
— PQE is in linear time for @ on any bounded-treewidth class Z
up to arithmetic costs [Same authors, ICALP"15]
— This talk: PQE is intractable for Q
on any unbounded-treewidth class Z (under some assumptions)

— Treewidth measures how much data is close to a tree

- Trees have treewidth 1
- Cycles have treewidth 2
- R-cliques and (k — 1)-grids have treewidth k — 1
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Main result: hardness of PQE

Theorem

For any arity-2 signature o, there is a first-order query q such that
for any constructible unbounded-treewidth class Z,

the PQE problem for @ = {q} and T is #P-hard under RP reductions

- Arity-2: Relations have arity < 2 (and one has arity 2), i.e., graphs
- Unbounded-treewidth: for all k € N, there is I, € Z of treewidth > R
- Constructible: given R, we can compute such an instance I, in PTIME

- #P-hard under RP reductions: reduce in PTIME with high probability
from the problem of counting accepting paths of a PTIME machine
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Idea: Topological minors

- G is atopological minor of H if:
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Idea: Topological minors

- G is a topological minor of H if:

Embedding:

maps edges to
vertex-disjoint paths

maps vertices
to vertices
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Topological minor extraction results

Theorem [Robertson and Seymour, 1986]
For any planar graph G of degree < 3,

for any graph H of sufficiently high treewidth,
G is a topological minor of H.
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Topological minor extraction results

Theorem [Robertson and Seymour, 1986]

For any planar graph G of degree < 3,

for any graph H of sufficiently high treewidth,
G is a topological minor of H.

More recently:

Theorem [Chekuri and Chuzhoy, 2014]

There is a certain constant ¢ € N such that

for any planar graph G of degree < 3 and graph H of treewidth > |G
we can embed G as a topological minor of H in PTIME with high proba

Cc
’
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- Choose a problem from which to reduce:

- Must be #P-hard on planar degree-3 graphs
- Must be encodable to an FO query q
— We use the problem of counting graph matchings
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- Choose a problem from which to reduce:

- Must be #P-hard on planar degree-3 graphs
- Must be encodable to an FO query q
— We use the problem of counting graph matchings

- Given an input graph G, compute Rk := |G|
- Compute in PTIME an instance [, of Z of treewidth > k

- Compute in randomized PTIME an embedding of G in I

- Construct a probability valuation = of I, such that:

- Unneccessary edges of I, are removed
- PQE for g gives the answer to the hard problem
— Easy for MSO but trickier for FO
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Non-probabilistic evaluation

Apply [Chekuri and Chuzhoy, 2014] to method of [Ganian et al,, 2014]
for MSO non-probabilistic query evaluation (QE):

Theorem

For any arity-2 signature o and level Z,P of the polynomial hierarchy,
there is a MSO query q; such that,

for any constructible, subinstance-closed, unbounded-tw class Z,
the QE problem for Q ={q;} and Z is Zf.’—hard under RP reductions
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Non-probabilistic evaluation

Apply [Chekuri and Chuzhoy, 2014] to method of [Ganian et al,, 2014]
for MSO non-probabilistic query evaluation (QE):

Theorem

For any arity-2 signature o and level Z,P of the polynomial hierarchy,
there is a MSO query q; such that,

for any constructible, subinstance-closed, unbounded-tw class Z,
the QE problem for Q ={q;} and Z is Zf—hard under RP reductions

Variant: we also show a result like in [Ganian et al,, 2014], with:

- weaker constructibility requirement on Z:

— T is densely unbounded poly-logarithmically
- stronger complexity hypothesis:

— PH does not admit 2°("-sized circuits
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Lower bound on OBDD representations

OBDD for a query g on instance I:
ordered decision diagram on the facts of | to decide whether g holds
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Lower bound on OBDD representations (result)

- If we find an OBDD of g on I in PTIME, then PQE of g on I also is
— Show inexistence of poly-size OBDDs (rather than PQE hardness)
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Lower bound on OBDD representations (result)

- If we find an OBDD of g on I in PTIME, then PQE of g on I also is

— Show inexistence of poly-size OBDDs (rather than PQE hardness)

Theorem

For any arity-2 signature o, there is a UCQ with inequalities g s.t.
for any I of treewidth densely unbounded poly-logarithmically,
g has no OBDDs of polynomial size on instances of

— Meta-dichotomy on the connected UCQ# for which this holds
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- Hardness results for MSO match counting:
— Count how many subsets X are such that I satisfies g(X)

- Connect the tractability result of MSO on treelike TID
to the study of tractable lineages:

— d-DNNFs, OBDDs, formulae, etc.

- Connect the same result to tractability of safe queries:

- Inversion-free queries: subclass of safe queries, tractable OBDDs
— We can always rewrite their input instances to treelike instances
in a lineage-preserving way (hence, probability-preserving)
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Summary of our dichotomy

Upper. PQE for MSO on treelike instances
has linear data complexity up to arithmetic costs
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Summary of our dichotomy

Upper. PQE for MSO on treelike instances
has linear data complexity up to arithmetic costs

Lower. PQE for FO on any constructible, arity-2, unbounded-tw
instance family is #P-hard under RP reductions

— Bounded treewidth is the right notion for tractability of PQE
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- Can we show #P-hardness under usual P reductions?
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20/20



- Can we show #P-hardness under usual P reductions?
— Depends on [Chekuri and Chuzhoy, 2014]

- Can we extend the result to arbitrary arity signatures?

20/20



- Can we show #P-hardness under usual P reductions?
— Depends on [Chekuri and Chuzhoy, 2014]

- Can we extend the result to arbitrary arity signatures?

- Can we extend the result to weaker query languages like UCQ#?
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- Can we show #P-hardness under usual P reductions?
— Depends on [Chekuri and Chuzhoy, 2014]

- Can we extend the result to arbitrary arity signatures?

- Can we extend the result to weaker query languages like UCQ#?

Conjecture
PQE is hard on any constructible unbounded-tw family for:

q: (E(x.y) VE(y,x)) A (E(y,2) V E(z,y)) AX # Z

— This query is alerady hard in terms of OBDDs

Thanks for your attention!
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Encoding treelike instances [Chaudhuri and Vardi, 1992]
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Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:  Gaifman graph: Tree decomp.: Tree encoding:
N a f abc N(a4, ay)
a b ‘ ‘ |
N(a,,a
b ¢ b——e bee ( 2‘ 3
c d ‘ / \ S(a4,as3)
d e c d cde ef [
e f 5(02704)
7N

N(as,a:) N(as,ax)
‘ :
N(a., a,)

S 9o
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- In the embedding, edges of G can become long paths in I,

- @ must answer the hard problem on G despite subdivisions
— Easy in MSO but tricky in FO!

— Qur g restricts to a subset of the worlds of known weight
and gives the right answer up to renormalization



	Introduction
	Proof sketch
	Extensions
	Conclusion

