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Tuple independent databases (TID)

• Probabilistic databases: model uncertainty about data

• Simplest model: tuple independent databases (TID)
• A relational database I
• A probability valuation π mapping each fact of I to [0, 1]

• Semantics of a TID (I, π): a probability distribution on I′ ⊆ I:
• Each fact F ∈ I is either present or absent with probability π(F)

• Assume independence across facts
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Example: TID

S

a a 1
b v .5
b w .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b v
b w

.5× (1− .2)

S

a a
b v

(1− .5)× .2

S

a a

b w

(1− .5)× (1− .2)

S

a a

3/20



Example: TID

S

a a 1
b v .5
b w .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b v
b w

.5× (1− .2)

S

a a
b v

(1− .5)× .2

S

a a

b w

(1− .5)× (1− .2)

S

a a

3/20



Example: TID

S

a a 1
b v .5
b w .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b v
b w

.5× (1− .2)

S

a a
b v

(1− .5)× .2

S

a a

b w

(1− .5)× (1− .2)

S

a a

3/20



Example: TID

S

a a 1
b v .5
b w .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b v
b w

.5× (1− .2)

S

a a
b v

(1− .5)× .2

S

a a

b w

(1− .5)× (1− .2)

S

a a

3/20



Example: TID

S

a a 1
b v .5
b w .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b v
b w

.5× (1− .2)

S

a a
b v

(1− .5)× .2

S

a a

b w

(1− .5)× (1− .2)

S

a a

3/20



Example: TID

S

a a 1
b v .5
b w .2

This TID (I, π) represents the following probability distribution:

.5× .2

S

a a
b v
b w

.5× (1− .2)

S

a a
b v

(1− .5)× .2

S

a a

b w

(1− .5)× (1− .2)

S

a a

3/20



Probabilistic query evaluation (PQE)

Let us fix:

• Relational signature σ
• Class I of relational instances on σ (e.g., acyclic, treelike)
• Class Q of Boolean queries (e.g., CQs, acyclic CQs)

Probabilistic query evaluation (PQE) problem for Q and I :

• Fix a query q ∈ Q
• Read an instance I ∈ I and a probability valuation π
• Compute the probability that (I, π) satisfies q
• Data complexity: measured as a function of (I, π)
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Example: PQE

Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R

a 1
b .4
c .6

S

a a 1
b v .5
b w .2

T

v .3
w .7
b 1

• The query is true iff R(b) is here and one of:
• S(b, v) and T(v) are here
• S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076
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Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of PQE
depending on the class Q of queries and class I of instances?

• Existing dichotomy result on Q [Dalvi and Suciu, 2012]
• Q are unions of CQs, I is all instances
• There is a class S ⊆ Q of safe queries
→ PQE is PTIME for any q ∈ S on all instances
→ PQE is #P-hard for any q ∈ Q\S on all instances
• q : ∃x y R(x) ∧ S(x, y) ∧ T(y) is unsafe!
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Instance-based dichotomy

→ We show a dichotomy result on I instead:
• Q are Boolean monadic second-order queries (includes all UCQs)

→ PQE is in linear time for Q on any bounded-treewidth class I
up to arithmetic costs [Same authors, ICALP’15]

→ This talk: PQE is intractable for Q
on any unbounded-treewidth class I (under some assumptions)

→ Treewidth measures how much data is close to a tree
• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1
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Main result: hardness of PQE

Theorem
For any arity-2 signature σ, there is a first-order query q such that
for any constructible unbounded-treewidth class I ,
the PQE problem for Q = {q} and I is #P-hard under RP reductions

• Arity-2: Relations have arity ≤ 2 (and one has arity 2), i.e., graphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• #P-hard under RP reductions: reduce in PTIME with high probability
from the problem of counting accepting paths of a PTIME machine

8/20



Table of contents

Introduction

Proof sketch

Extensions

Conclusion

9/20



Idea: Topological minors

• G is a topological minor of H if:

G H
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Idea: Topological minors

• G is a topological minor of H if:

3

1

2

4 3 4

2

1

maps vertices
to vertices

maps edges to
vertex-disjoint paths

Embedding:
G H

10/20



Topological minor extraction results

Theorem [Robertson and Seymour, 1986]
For any planar graph G of degree ≤ 3,
for any graph H of sufficiently high treewidth,
G is a topological minor of H.

More recently:

Theorem [Chekuri and Chuzhoy, 2014]
There is a certain constant c ∈ N such that
for any planar graph G of degree ≤ 3 and graph H of treewidth ≥ |G|c,
we can embed G as a topological minor of H in PTIME with high proba
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Proof sketch

• Choose a problem from which to reduce:
• Must be #P-hard on planar degree-3 graphs
• Must be encodable to an FO query q
→ We use the problem of counting graph matchings

• Given an input graph G, compute k ··= |G|c

• Compute in PTIME an instance Ik of I of treewidth ≥ k

• Compute in randomized PTIME an embedding of G in Ik

• Construct a probability valuation π of Ik such that:
• Unneccessary edges of Ik are removed
• PQE for q gives the answer to the hard problem
→ Easy for MSO but trickier for FO

12/20
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Non-probabilistic evaluation

Apply [Chekuri and Chuzhoy, 2014] to method of [Ganian et al., 2014]
for MSO non-probabilistic query evaluation (QE):

Theorem
For any arity-2 signature σ and level ΣP

i of the polynomial hierarchy,
there is a MSO query qi such that,
for any constructible, subinstance-closed, unbounded-tw class I ,
the QE problem for Q = {qi} and I is ΣP

i -hard under RP reductions

Variant: we also show a result like in [Ganian et al., 2014], with:

• weaker constructibility requirement on I :
→ I is densely unbounded poly-logarithmically

• stronger complexity hypothesis:
→ PH does not admit 2o(n)-sized circuits
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Lower bound on OBDD representations

OBDD for a query q on instance I:
ordered decision diagram on the facts of I to decide whether q holds

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

0

1

0
1

1

0

1
0

1

0 1
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Lower bound on OBDD representations (result)

• If we find an OBDD of q on I in PTIME, then PQE of q on I also is
→ Show inexistence of poly-size OBDDs (rather than PQE hardness)

Theorem
For any arity-2 signature σ, there is a UCQ with inequalities q s.t.
for any I of treewidth densely unbounded poly-logarithmically,
q has no OBDDs of polynomial size on instances of I

→ Meta-dichotomy on the connected UCQ6= for which this holds
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Also in paper

• Hardness results for MSO match counting:
→ Count how many subsets X are such that I satisfies q(X)

• Connect the tractability result of MSO on treelike TID
to the study of tractable lineages:
→ d-DNNFs, OBDDs, formulae, etc.

• Connect the same result to tractability of safe queries:
• Inversion-free queries: subclass of safe queries, tractable OBDDs
→ We can always rewrite their input instances to treelike instances

in a lineage-preserving way (hence, probability-preserving)
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Summary of our dichotomy

Upper. PQE for MSO on treelike instances
has linear data complexity up to arithmetic costs

Lower. PQE for FO on any constructible, arity-2, unbounded-tw
instance family is #P-hard under RP reductions

→ Bounded treewidth is the right notion for tractability of PQE
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Future work

• Can we show #P-hardness under usual P reductions?
→ Depends on [Chekuri and Chuzhoy, 2014]

• Can we extend the result to arbitrary arity signatures?

• Can we extend the result to weaker query languages like UCQ 6=?
Conjecture
PQE is hard on any constructible unbounded-tw family for:

q : (E(x, y) ∨ E(y, x)) ∧ (E(y, z) ∨ E(z, y)) ∧ x 6= z

→ This query is alerady hard in terms of OBDDs

Thanks for your attention!
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Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N

a b
b c
c d
d e
e f

S

a c
b e

Gaifman graph:

a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1,a2)

N(a2,a3)

S(a1,a3)

S(a2,a4)

N(a3,a1)

N(a1,a4)

N(a4,a1)
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Defining the query

G Ik
1 2 ⇒ 1 2

• In the embedding, edges of G can become long paths in Ik
• q must answer the hard problem on G despite subdivisions
→ Easy in MSO but tricky in FO!

→ Our q restricts to a subset of the worlds of known weight
and gives the right answer up to renormalization
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