

Using Order Constraints in Crowd Data Sourcing

Antoine Amarilli ${ }^{1,2}$, Yael Amsterdamer ${ }^{3,4}$, Tova Milo ${ }^{4}$, Pierre Senellart ${ }^{1,2}$
February 12th, 2018
${ }^{1}$ Télécom ParisTech
²École normale supérieure
${ }^{3}$ Bar Ilan University
${ }^{4}$ Tel Aviv University

Introduction

Example 1: Classifying products

Taxonomy of items for a store

Example 1: Classifying products

Taxonomy of items for a store with categories.

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.
Best categories?

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.
Best categories? Naive answer...

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.
Best categories? Naive answer...

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.
Best categories? Naive answer... Clever answer...

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.
Best categories? Naive answer... Clever answer...

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.
Best categories? Naive answer... Clever answer...

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.
Best categories? Naive answer... Clever answer...

Example 1: Classifying products

Monotonicity: compatibility increases as we go up.
Best categories? Naive answer... Clever answer...

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Taxonomy of activities
Taxonomy of activity combinations

Example 2: Finding popular activity combinations

Example 2: Finding popular activity combinations

- More specific combinations are less frequent

Example 2: Finding popular activity combinations

- More specific combinations are less frequent

Example 2: Finding popular activity combinations

- More specific combinations are
less frequent
- Ask crowd questions:

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

$$
\Rightarrow \text { No! }
$$

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

$$
\Rightarrow \text { No! }
$$

- \{lunch\}?

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

$$
\Rightarrow \text { No! }
$$

- \{lunch\}?

$$
\Rightarrow \text { Yes! }
$$

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

$$
\Rightarrow \text { No! }
$$

- \{lunch\}?

$$
\Rightarrow \text { Yes! }
$$

- \{research, lunch\}?

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

$$
\Rightarrow \text { No! }
$$

- \{lunch\}?

$$
\Rightarrow \text { Yes! }
$$

- \{research, lunch\}?

$$
\Rightarrow \text { Yes! }
$$

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

$$
\Rightarrow \text { No! }
$$

- \{lunch\}?

$$
\Rightarrow \text { Yes! }
$$

- \{research, lunch\}?

$$
\Rightarrow \text { Yes! }
$$

- \{research, diving\}?

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

$$
\Rightarrow \text { No! }
$$

- \{lunch\}?

$$
\Rightarrow \text { Yes! }
$$

- \{research, lunch\}?

$$
\Rightarrow \text { Yes! }
$$

- \{research, diving\}?

$$
\Rightarrow \text { No! }
$$

Example 2: Finding popular activity combinations

- More specific combinations are less frequent
- Ask crowd questions:
- Is \{diving\} frequent?

$$
\Rightarrow \text { Yes! }
$$

- \{lunch, diving\}?

$$
\Rightarrow \text { No! }
$$

- \{lunch\}?

$$
\Rightarrow \text { Yes! }
$$

- \{research, lunch\}?

$$
\Rightarrow \text { Yes! }
$$

- \{research, diving\}?

$$
\Rightarrow \text { No! }
$$

Example 3: Estimating unknown values

- How much food do people eat at conference buffets?

Example 3: Estimating unknown values

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!

Example 3: Estimating unknown values

small		
sweet	tiny both	sally

medium
sweet small
both
medium
salty

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!
large

sweet \begin{tabular}{c}
medium

both

\quad

salty

\end{tabular}

large both

Example 3: Estimating unknown values

| small | |
| :--- | :--- | :--- |
| sweet | tiny small |
| | both |

medium
sweet small
both
large large sweet medium salty both
medium salty

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!
large
both

Example 3: Estimating unknown values

small sweet	tiny both	small

medium
sweet small
both
large large sweet medium salty
both
medium salty sa

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!
- How to estimate quantities for my own conference?
large
both

Example 3: Estimating unknown values

small
sweet
tiny salty
both
medium
sweet small
both
large large sweet medium salty both
medium
salty

- How to estimate quantities for my own conference?
large
both

Example 3: Estimating unknown values

small
sweet
tiny salty
both
medium
sweet small
both
large large sweet medium salty both
small
medium
salty

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!
- How to estimate quantities for my own conference?
- Some order relations are implied
large
both

Example 3: Estimating unknown values

small

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!
- How to estimate quantities for my own conference?
- Some order relations are implied

Example 3: Estimating unknown values

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!
- How to estimate quantities for my own conference?
- Some order relations are implied

Example 3: Estimating unknown values

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!
- How to estimate quantities for my own conference?
- Some order relations are implied
\rightarrow How to complete the missing values?

Example 3: Estimating unknown values

- How much food do people eat at conference buffets?
- Let's ask fellow organizers!
- How to estimate quantities for my own conference?
- Some order relations are implied
\rightarrow How to complete the missing values?

General problem

- Several items with values

General problem

\bullet
-

- Several items with values

General problem

-
-
- Several items with values
- Order relations on the values

General problem

- Several items with values
- Order relations on the values

General problem

- Several items with values
- Order relations on the values
- Some values are known and the others are unknown

General problem

- Several items with values
- Order relations on the values
- Some values are known and the others are unknown

General problem

- Several items with values
- Order relations on the values
- Some values are known and the others are unknown
\rightarrow Estimate the unknown values

General problem

- Several items with values
- Order relations on the values
- Some values are known and the others are unknown
\rightarrow Estimate the unknown values
\rightarrow Find the next crowd question to ask to obtain more known values

Estimating Missing Values

Estimating missing values (Antoine, Yael, Pierre, Tova, ICDT’17)

- Known and unknown values with order relation
- Estimate the unknown values without asking more crowd questions

Easy case: total order

- If the items are totally ordered, what can we do?

Easy case: total order

- If the items are totally ordered, what can we do? \rightarrow Linear interpolation!

Easy case: total order

```
    O
$
```

```
5
- If the items are totally ordered, what can we do? \(\rightarrow\) Linear interpolation!

\section*{Easy case: total order}

- If the items are totally ordered, what can we do?
\(\rightarrow\) Linear interpolation!
\(\rightarrow\) Can we generalize this if the order is not total?

\section*{Polytope interpretation}
- Introduce one variable per item:
\(\rightarrow x, y, z, w\)

\section*{Polytope interpretation}
- Introduce one variable per item:
\(\rightarrow x, y, z, w\)
- Write the order constraints:
\[
\rightarrow x \geq y, w \leq y, y \leq z
\]

\section*{Polytope interpretation}
- Introduce one variable per item:
\[
\rightarrow x, y, z, w
\]
- Write the order constraints:
\[
\rightarrow x \geq y, w \leq y, y \leq z
\]
- Write the known values:
\[
\rightarrow w=0.3, z=0.9
\]

\section*{Polytope interpretation}
- Introduce one variable per item:
\[
\rightarrow x, y, z, w
\]
- Write the order constraints:
\[
\rightarrow x \geq y, w \leq y, y \leq z
\]
- Write the known values:
\[
\rightarrow w=0.3, z=0.9
\]
- These linear constraints define an admissible polytope

\section*{Polytope interpretation}
- Introduce one variable per item:
\(\rightarrow x, y, z, w\)
- Write the order constraints:
\[
\rightarrow x \geq y, w \leq y, y \leq z
\]
- Write the known values:
\[
\rightarrow w=0.3, z=0.9
\]
- These linear constraints define an admissible polytope

\section*{Polytope interpretation}
- Introduce one variable per item:
\(\rightarrow x, y, z, w\)
- Write the order constraints:
\[
\rightarrow x \geq y, w \leq y, y \leq z
\]
- Write the known values:
\[
\rightarrow W=0.3, z=0.9
\]
- These linear constraints define an admissible polytope
\[
\begin{aligned}
& x \geq y \\
& w \leq y \\
& y \leq z \\
& w=0.3 \\
& z=0.9
\end{aligned}
\]



\section*{Polytope interpretation}
- Introduce one variable per item:
\(\rightarrow x, y, z, w\)
- Write the order constraints:
\[
\rightarrow x \geq y, w \leq y, y \leq z
\]
- Write the known values:
\[
\rightarrow W=0.3, z=0.9
\]
- These linear constraints define an admissible polytope
\[
\begin{aligned}
& x \geq y \\
& w \leq y \\
& y \leq z \\
& w=0.3 \\
& z=0.9
\end{aligned}
\]


\(\rightarrow\) Estimate unknown values as the center of mass of the polytope! \({ }_{9 / 16}\)

\section*{Polytope interpretation}
- Introduce one variable per item:
\(\rightarrow X, y, z, w\)
- Write the order constraints:
\[
\rightarrow x \geq y, w \leq y, y \leq z
\]
- Write the known values:
\[
\rightarrow w=0.3, z=0.9
\]
- These linear constraints define an admissible polytope
\[
\begin{aligned}
& x \geq y \\
& w \leq y \\
& y \leq z \\
& w=0.3 \\
& z \leq 1
\end{aligned}
\]

\(\rightarrow\) Estimate unknown values as the center of mass of the polytope! \(!_{9 / 16}\)

\section*{Results of our ICDT'17 paper}
- For total orders, the polytope method gives the same result as linear interpolation

\section*{Results of our ICDT'17 paper}
- For total orders, the polytope method gives the same result as linear interpolation
- Brute-force algorithm to compute the center of mass

\section*{Results of our ICDT'17 paper}
- For total orders, the polytope method gives the same result as linear interpolation
- Brute-force algorithm to compute the center of mass
- Intractability results for this task and for computing the top- \(k\) items

\section*{Results of our ICDT'17 paper}
- For total orders, the polytope method gives the same result as linear interpolation
- Brute-force algorithm to compute the center of mass
- Intractability results for this task and for computing the top- \(k\) items

- Tractable cases when the order is a tree

\section*{Open problems}

- Are there more general posets/polytopes where we can interpolate efficiently? (generalizing trees, e.g., treelike posets)

\section*{Open problems}

- Are there more general posets/polytopes where we can interpolate efficiently? (generalizing trees, e.g., treelike posets)
- Fixing one value to its interpolated value can change other interpolated values! (unlike linear interpolation)

\section*{Asking Questions}

\section*{Asking questions (Antoine, Yael, Tova, ICDT’14)}

- Unknown values are Boolean: either o or 1

\section*{Asking questions (Antoine, Yael, Tova, ICDT’14)}

- Unknown values are Boolean: either o or 1
- The Boolean function is monotone with respect to the order

\section*{Asking questions (Antoine, Yael, Tova, ICDT’14)}

- Unknown values are Boolean: either o or 1
- The Boolean function is monotone with respect to the order

\section*{Asking questions (Antoine, Yael, Tova, ICDT’14)}

- Unknown values are Boolean: either o or 1
- The Boolean function is monotone with respect to the order

\section*{Asking questions (Antoine, Yael, Tova, ICDT’14)}

- Unknown values are Boolean: either o or 1
- The Boolean function is monotone with respect to the order
- Ask the right questions to determine the Boolean function completely

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do? \(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!

\section*{Easy case: total order}
- If the items are totally ordered, what can we do?
\(\rightarrow\) Binary search!
\(\rightarrow\) Can we generalize this if the order is not total?

\section*{Results of our ICDT'14 paper}
- Lower bound: each crowd query gives one bit so we need logarithmically many crowd queries in the number of possible Boolean functions

\section*{Results of our ICDT'14 paper}
- Lower bound: each crowd query gives one bit so we need logarithmically many crowd queries in the number of possible Boolean functions
- Matching upper bound: we can always query an item that splits the remaining Boolean functions evenly

\section*{Results of our ICDT'14 paper}
- Lower bound: each crowd query gives one bit so we need logarithmically many crowd queries in the number of possible Boolean functions
- Matching upper bound: we can always query an item that splits the remaining Boolean functions evenly
- Output-sensitive complexity: we can determine the function in a number of crowd queries linear in the "frontier"

\section*{Results of our ICDT'14 paper}
- Lower bound: each crowd query gives one bit so we need logarithmically many crowd queries in the number of possible Boolean functions
- Matching upper bound: we can always query an item that splits the remaining Boolean functions evenly
- Output-sensitive complexity: we can determine the function in a number of crowd queries linear in the "frontier"
- Computational hardness, e.g., of finding the best-split element

\section*{Open problems}
- We do not have a strategy that generalizes binary search? (i.e., computationally tractable and makes few queries)

\section*{Open problems}
- We do not have a strategy that generalizes binary search? (i.e., computationally tractable and makes few queries)
- What is the performance of making queries at random?

\section*{Open problems}
- We do not have a strategy that generalizes binary search? (i.e., computationally tractable and makes few queries)
- What is the performance of making queries at random?
- Many technical questions left open!

\section*{Open problems}
- We do not have a strategy that generalizes binary search? (i.e., computationally tractable and makes few queries)
- What is the performance of making queries at random?
- Many technical questions left open!

Is it \#P-hard to compute the number of antichains of a distributive lattice?

An antichain of a poset \((P,<)\) is a subset of pairwise incomparable elements, namely, a subset \(A \subseteq P\) such that there are no \(x, y \in A\) with \(x<y\). By a result
11 of Provan and Ball, it is known that it is \#P-hard, given a poset, to compute its nıumber of antichains
```

哈fa3nm
䠗 a3nm

```

\section*{Open problems}
－We do not have a strategy that generalizes binary search？ （i．e．，computationally tractable and makes few queries）
－What is the performance of making queries at random？
－Many technical questions left open！
Is it \＃P－hard to compute the number of antichains of a distributive lattice？


An antichain of a poset \((P,<)\) is a subset of pairwise incomparable elements， namely，a subset \(A \subseteq P\) such that there are no \(x, y \in A\) with \(x<y\) ．By a result
11 of Provan and Ball，it is known that it is \＃P－hard，given a poset，to compute its asked Nov 11 ＇15 at 19：28 nımber of antichains
```

品f: a3nm

```

Worst number of questions needed to learn a monotonic predicate over a poset predicate over \(X\)（i．e．，for any \(x, y \in X\) ，if \(P(x)\) and \(x \leq y\) then \(P(y)\) ）．I can
15 evaluate \(P\) by providing one node \(x \in X\) and finding out if \(P(x)\) holds or not．My
anal is to determine exactlv the set of nodes \(x \in X\) such that \(P(x)\) holds usinc as
```

品皆: a3nm
㬉年
2,906 • 10 • 46

```

\section*{Open problems}
－We do not have a strategy that generalizes binary search？ （i．e．，computationally tractable and makes few queries）
－What is the performance of making queries at random？
－Many technical questions left open！
Is it \＃P－hard to compute the number of antichains of a distributive lattice？


An antichain of a poset \((P,<)\) is a subset of pairwise incomparable elements， namely，a subset \(A \subseteq P\) such that there are no \(x, y \in A\) with \(x<y\) ．By a result
11 of Provan and Ball，it is known that it is \＃P－hard，given a poset，to compute its asked Nov 11 ＇ 15 at 19：28
```

品管 a3nm

``` number of antichains

Worst number of questions needed to learn a monotonic predicate over a poset

Consider \((X, \leq)\) a finite poset over \(n\) items，and \(P\) an unknown monotonic predicate over \(X\)（i．e．，for any \(x, y \in X\) ，if \(P(x)\) and \(x \leq y\) then \(P(y)\) ）．I can
15 evaluate \(P\) by providing one node \(x \in X\) and finding out if \(P(x)\) holds or not．My
asked Jan 28 ＇13 at 14：58

解 a3，906． 10.46
\(\qquad\)
anal is to determine exactlv the set of nodes \(x \in X\) such that \(P(x)\) holds usinn as
Minimal elements of a monotonic predicate over the powerset \(2^{|n|}\)Consider a monotonic predicate \(P\) over the powerset \(2^{|n|}\)（ordered by inclusion）． By＂monotonic＂I mean：\(\forall x, y \in 2^{|n|}\) such that \(x \subset y\) ，if \(P(x)\) then \(P(y)\) ．I am

\section*{Conclusion}

\section*{Summary and conclusion}
- General problem:
- Known and unknown values
- Order relation between them


\section*{Summary and conclusion}
- General problem:
- Known and unknown values
- Order relation between them
\(\rightarrow\) Estimate the missing values


\section*{Summary and conclusion}
- General problem:
- Known and unknown values
- Order relation between them
\(\rightarrow\) Estimate the missing values
\(\rightarrow\) Choose the next question to ask


\section*{Summary and conclusion}
- General problem:
- Known and unknown values
- Order relation between them
\(\rightarrow\) Estimate the missing values
\(\rightarrow\) Choose the next question to ask

\(\rightarrow\) Can we combine the two approaches?

\section*{Summary and conclusion}
- General problem:
- Known and unknown values
- Order relation between them
\(\rightarrow\) Estimate the missing values
\(\rightarrow\) Choose the next question to ask

\(\rightarrow\) Can we combine the two approaches?
\(\rightarrow\) What about uncertainty on crowd answers?
(ask the same question multiple times to get a better estimate)

\section*{Summary and conclusion}
- General problem:
- Known and unknown values
- Order relation between them
\(\rightarrow\) Estimate the missing values
\(\rightarrow\) Choose the next question to ask

\(\rightarrow\) Can we combine the two approaches?
\(\rightarrow\) What about uncertainty on crowd answers?
(ask the same question multiple times to get a better estimate)

\section*{References}
( Amarilli, A., Amsterdamer, Y., and Milo, T. (2014). On the Complexity of Mining Itemsets from the Crowd Using Taxonomies.
In ICDT.
R Amarilli, A., Amsterdamer, Y., Milo, T., and Senellart, P. (2017). Top-k Queries on Unknown Values under Order Constraints. In ICDT.

\section*{Image credits}
- Title slide, Bar-Ilan logo, https: //en.wikipedia.org/wiki/File:Bar_Ilan_logo2.svg
- Slide 9: picture by Yael Amsterdamer, https://a3nm.net/ work/talks/icdt2017/amarilli2017top_slides.pdf, slide 7
- Slide 10: picture by Yael Amsterdamer, https://a3nm.net/ work/talks/icdt2017/amarilli2017top_slides.pdf, slide 14```

