
Enumerating Pattern Matches in Texts and Trees

Antoine Amarilli1, Pierre Bourhis2, Stefan Mengel3, Matthias Niewerth4

October 11th, 2018
1Télécom ParisTech

2CNRS CRIStAL

3CNRS CRIL

4Universität Bayreuth

1/14

Problem: Finding Patterns in Text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses
• Write the pattern as a regular expression:

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

→ How to �nd the pattern P e�ciently in the text T?

2/14

Problem: Finding Patterns in Text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses

• Write the pattern as a regular expression:

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

→ How to �nd the pattern P e�ciently in the text T?

2/14

Problem: Finding Patterns in Text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses
• Write the pattern as a regular expression:

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

→ How to �nd the pattern P e�ciently in the text T?

2/14

Problem: Finding Patterns in Text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses
• Write the pattern as a regular expression:

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

→ How to �nd the pattern P e�ciently in the text T?

2/14

Solution: Automata

• Convert the regular expression P to an automaton A

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T

E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P

→ This is very e�cient in T and reasonably e�cient in P

3/14

Solution: Automata

• Convert the regular expression P to an automaton A
P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P

3/14

Actual Problem: Extracting all Patterns

• This only tests if the pattern occurs in the text!
→ “YES”

• Goal: �nd all substrings in the text T which match the pattern P
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E m a i l A f f i l i a t i o n

→ One match: [5, 20〉

4/14

Actual Problem: Extracting all Patterns

• This only tests if the pattern occurs in the text!
→ “YES”

• Goal: �nd all substrings in the text T which match the pattern P

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E m a i l A f f i l i a t i o n

→ One match: [5, 20〉

4/14

Actual Problem: Extracting all Patterns

• This only tests if the pattern occurs in the text!
→ “YES”

• Goal: �nd all substrings in the text T which match the pattern P
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

→ One match: [5, 20〉

4/14

Actual Problem: Extracting all Patterns

• This only tests if the pattern occurs in the text!
→ “YES”

• Goal: �nd all substrings in the text T which match the pattern P
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

→ One match: [5, 20〉

4/14

Actual Problem: Extracting all Patterns

• This only tests if the pattern occurs in the text!
→ “YES”

• Goal: �nd all substrings in the text T which match the pattern P
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

→ One match: [5, 20〉

4/14

Formal Problem Statement

• Problem description:

• Input:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by
Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• Output: the list of substrings of T that match P:
[186, 200〉, [483, 500〉, . . .

• Goal: be very e�cient in T and reasonably e�cient in P

5/14

Formal Problem Statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by
Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• Output: the list of substrings of T that match P:
[186, 200〉, [483, 500〉, . . .

• Goal: be very e�cient in T and reasonably e�cient in P

5/14

Formal Problem Statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by
Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• Output: the list of substrings of T that match P:
[186, 200〉, [483, 500〉, . . .

• Goal: be very e�cient in T and reasonably e�cient in P

5/14

Formal Problem Statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by
Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• Output: the list of substrings of T that match P:
[186, 200〉, [483, 500〉, . . .

• Goal: be very e�cient in T and reasonably e�cient in P

5/14

Formal Problem Statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by
Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• Output: the list of substrings of T that match P:
[186, 200〉, [483, 500〉, . . .

• Goal: be very e�cient in T and reasonably e�cient in P
5/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T
[〉 l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T
[

〉

l

[

〉 o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T
[

〉

l

[〉

o

[

〉 l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T
[

〉

l

[〉

o

[〉

l

[

〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l [〉 o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l [

〉

o

[

〉 l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l [

〉

o

[〉

l

[

〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o [〉 l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o [

〉

l

[

〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l [〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)

→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:

• Consider the text T:
aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉

→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity

6/14

Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/14

Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/14

Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/14

Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/14

Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/14

Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/14

Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣
Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,[1337, 1351〉

}

Results

8/14

Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣
Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,[1337, 1351〉

}

Results

8/14

Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣
Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,[1337, 1351〉

}

Results

8/14

Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣
Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,[1337, 1351〉

}

Results

8/14

Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣
Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,

[1337, 1351〉
}

Results
8/14

Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣
Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,[1337, 1351〉

}
Results

8/14

Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣
Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,[1337, 1351〉

}
Results

Two ways to measure performance:

• Total time for phase 1
• Delay between two results in phase 2

... as a function of the text and pattern
8/14

Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?
→ it is the maximal time to �nd the next matching substring
→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?

9/14

Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?
→ it is the maximal time to �nd the next matching substring
→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?

9/14

Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?

→ it is the maximal time to �nd the next matching substring
→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?

9/14

Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?
→ it is the maximal time to �nd the next matching substring

→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?

9/14

Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?
→ it is the maximal time to �nd the next matching substring
→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?

9/14

Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?
→ it is the maximal time to �nd the next matching substring
→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?
9/14

Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T

and exponential in P

• Delay constant (independent from T)

and exponential in P

→ Problem: They only measure the complexity as a function of T!

• Our contribution is:
Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/14

Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T

and exponential in P

• Delay constant (independent from T)

and exponential in P

→ Problem: They only measure the complexity as a function of T!

• Our contribution is:
Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/14

Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds in T:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T and exponential in P
• Delay constant (independent from T) and exponential in P

→ Problem: They only measure the complexity as a function of T!

• Our contribution is:
Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/14

Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds in T:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T and exponential in P
• Delay constant (independent from T) and exponential in P

→ Problem: They only measure the complexity as a function of T!

• Our contribution is:

Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/14

Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds in T:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T and exponential in P
• Delay constant (independent from T) and exponential in P

→ Problem: They only measure the complexity as a function of T!

• Our contribution is:
Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

10/14

Extension: From Text to Trees

Pattern Matching on Trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉

11/14

Pattern Matching on Trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉

11/14

Pattern Matching on Trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results:

〈α : 4, β : 6〉, 〈α : 4, β : 7〉

11/14

Pattern Matching on Trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there α: an h2 header and β: an image in the same section?

• Results:

〈α : 4, β : 6〉, 〈α : 4, β : 7〉

11/14

Pattern Matching on Trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there α: an h2 header and β: an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉
11/14

De�nitions and Results on Trees

• Tree patterns P can be written as a kind of tree automaton...

• Existing work has studied this problem and shown:

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree pattern P
(with constantly many capture variables) with:

• Preprocessing linear in T

and exponential in P

• Delay constant in T

and exponential in P

• Again, this only measures the complexity in T!
→ We are working on proving the following:
Conjecture

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

12/14

De�nitions and Results on Trees

• Tree patterns P can be written as a kind of tree automaton...
• Existing work has studied this problem and shown:

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree pattern P
(with constantly many capture variables) with:

• Preprocessing linear in T

and exponential in P

• Delay constant in T

and exponential in P

• Again, this only measures the complexity in T!
→ We are working on proving the following:
Conjecture

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

12/14

De�nitions and Results on Trees

• Tree patterns P can be written as a kind of tree automaton...
• Existing work has studied this problem and shown:

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree pattern P
(with constantly many capture variables) with:

• Preprocessing linear in T

and exponential in P

• Delay constant in T

and exponential in P

• Again, this only measures the complexity in T!
→ We are working on proving the following:
Conjecture

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

12/14

De�nitions and Results on Trees

• Tree patterns P can be written as a kind of tree automaton...
• Existing work has studied this problem and shown:

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree pattern P
(with constantly many capture variables) with:

• Preprocessing linear in T and exponential in P
• Delay constant in T and exponential in P

• Again, this only measures the complexity in T!

→ We are working on proving the following:
Conjecture

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T

12/14

De�nitions and Results on Trees

• Tree patterns P can be written as a kind of tree automaton...
• Existing work has studied this problem and shown:

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree pattern P
(with constantly many capture variables) with:

• Preprocessing linear in T and exponential in P
• Delay constant in T and exponential in P

• Again, this only measures the complexity in T!
→ We are working on proving the following:
Conjecture

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T
12/14

Extension: Supporting Updates

Updates

Tree T

Phase 1:
Preprocessing

Index structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch
→ Can we do better?
Conjecture
When the input data T is updated, we can update our index
in time O(log |T|)

13/14

Updates

Tree T

Phase 1:
Preprocessing

Index structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch
→ Can we do better?
Conjecture
When the input data T is updated, we can update our index
in time O(log |T|)

13/14

Updates

Tree T

Phase 1:
Preprocessing

Index structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch
→ Can we do better?
Conjecture
When the input data T is updated, we can update our index
in time O(log |T|)

13/14

Updates

Tree T

Phase 1:
Preprocessing

Index structure

• The input data can be modi�ed after the preprocessing
• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?
Conjecture
When the input data T is updated, we can update our index
in time O(log |T|)

13/14

Updates

Tree T

Phase 1:
Preprocessing

Index structure

• The input data can be modi�ed after the preprocessing
• If this happen, we must rerun the preprocessing from scratch
→ Can we do better?

Conjecture
When the input data T is updated, we can update our index
in time O(log |T|)

13/14

Updates

Tree T

Phase 1:
Preprocessing

Index structure

• The input data can be modi�ed after the preprocessing
• If this happen, we must rerun the preprocessing from scratch
→ Can we do better?
Conjecture
When the input data T is updated, we can update our index
in time O(log |T|) 13/14

Summary and Future Work

Summary and Future Work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all substrings of T that match P

• Result: we can do this with reasonable complexity in P
and with linear preprocessing and constant delay in T

Extensions and future work:

• Extending the results from text to trees

• Supporting updates on the input data
• Testing how well our methods perform in practice

Thanks for your attention!

14/14

Summary and Future Work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all substrings of T that match P

• Result: we can do this with reasonable complexity in P
and with linear preprocessing and constant delay in T

Extensions and future work:

• Extending the results from text to trees

• Supporting updates on the input data
• Testing how well our methods perform in practice

Thanks for your attention!

14/14

Summary and Future Work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all substrings of T that match P

• Result: we can do this with reasonable complexity in P
and with linear preprocessing and constant delay in T

Extensions and future work:

• Extending the results from text to trees

• Supporting updates on the input data
• Testing how well our methods perform in practice

Thanks for your attention!

14/14

Summary and Future Work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all substrings of T that match P

• Result: we can do this with reasonable complexity in P
and with linear preprocessing and constant delay in T

Extensions and future work:

• Extending the results from text to trees

• Supporting updates on the input data

• Testing how well our methods perform in practice

Thanks for your attention!

14/14

Summary and Future Work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all substrings of T that match P

• Result: we can do this with reasonable complexity in P
and with linear preprocessing and constant delay in T

Extensions and future work:

• Extending the results from text to trees

• Supporting updates on the input data
• Testing how well our methods perform in practice

Thanks for your attention!

14/14

Summary and Future Work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all substrings of T that match P

• Result: we can do this with reasonable complexity in P
and with linear preprocessing and constant delay in T

Extensions and future work:

• Extending the results from text to trees

• Supporting updates on the input data
• Testing how well our methods perform in practice

Thanks for your attention!

14/14

References i

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc,
D. (2018).
Constant delay algorithms for regular document spanners.
In PODS.

	Extension: From Text to Trees
	Extension: Supporting Updates
	Summary and Future Work
	Appendix

