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Open-world query answering (QA)

Open-world query answering:
We are given:

Relational instance I (ground facts)
! Logical constraints Σ

? Boolean conjunctive query q

We ask:
Consider all possible completions J ⊇ I
Restrict to those that satisfy the constraints Σ

→ Is q certain among them?
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Open-world query answering (QA)

Open-world query answering: – query entailment or containment
We are given:

Relational instance I (ground facts) – A-Box
! Logical constraints Σ – T-Box
? Boolean conjunctive query q

We ask:
Consider all possible completions J ⊇ I
Restrict to those that satisfy the constraints Σ

→ Is q certain among them?
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Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp ⊑ CEO ⊔ (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f, v)

Arity-two only Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)
Functionality asserts
Funct(Mgr−) ! n/a

→ QA is decidable for either language
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Our problem

Can we have the best of both worlds?
QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)
QA is decidable for frontier-guarded existential rules

→ Is QA decidable for rich DLs + some classes of rules?
We show:

QA is undecidable for rich DLs and frontier-guarded rules
QA with rich DLs is decidable for some new rule classes
Functional dependencies can be added under some conditions
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Undecidability of frontier-guarded plus DLs

Theorem
QA is undecidable for rich DLs and frontier-guarded rules

Problem:
DLs can express Funct (↔ functional dependencies, FDs)
Frontier-guarded can express inclusion dependencies (IDs)
Implication of IDs and FDs is undecidable [Mitchell, 1983]
Implication reduces to QA [Calì et al., 2003]

→ Restrict to frontier-one rules: ∀xy ϕ(x,y) → ∃z ψ(x, z)
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Undecidability of frontier-one plus DLs

Restrict to frontier-one rules: ∀xy ϕ(x,y) → ∃z ψ(x, z)
QA for frontier-one IDs plus FDs is decidable (separability).

However:
Theorem
QA is undecidable for rich DLs and frontier-one rules

Problem:
Rule heads and bodies may contain cycles
We have Funct assertions

→ We can build a grid and encode tiling problems
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Undecidability of frontier-one plus DLs: proof
We reduce from tiling problems:

finite set of colors: , ,

horizontal and vertical allowed pairs:

The tiling problem is:
input: initial configuration:
output: is there an infinite tiling?

. . .

. . .

. . .
... ... ... ... ... . . .

→ Undecidable for some sets of colors and configurations
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Undecidability of frontier-one plus DLs: proof, cont’d

Functional relations D for down and R for right
Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

DL constraints for the pairs, e.g., C ⊓ ∃R.C ⊑ ⊥
Disjunction to color tiles: T ⊑ C ⊔ C ⊔ C

Frontier-one rule: ∀x T(x) ⇒ ∃yzw
T(x) R−−−−→ T(y)yD

yD

T(z) R−−−−→ T(w)

→ There is an extension of the instance iff there is a tiling
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Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
R(x, y) S(y, z) T(z, x) is a cycle
R(z, x, y) S(x, y,w) is also a cycle

Formally:
Berge cycle: cycle in the atom–variable incidence graph
Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one rules + rich DLs

11/24
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Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)

Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]
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Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one rules: no cycles in head

Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

Basic idea:
If there is a counterexample model to QA, we can unravel it
→ It is still a counterexample
→ It has no cycles (except in the instance part)

→ Looping rule bodies can only match on the instance part
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Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:

Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

Consider all possible mappings to the instance
→ Ex.: R(x, y)∧ S(y, z)∧ T(z, x) gives R(x, y)∧ S(y′, z)∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping rules

→ QA for the shredded instance, treefied rules, query, and axioms
is equivalent to QA for the original instance, rules, query
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Adding functional dependencies

We have shown:
Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

We have functional dependencies Funct(R) on binary relations
Could we also allow FDs on higher-arity relations?
Ex.: Talk[speaker, session] determines Talk[title]
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Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

Theorem
QA for FDs and linear frontier-one rules is undecidable.

Proof ideas:
Reduce from implication of unary FDs and frontier-2 IDs
Leverage variable reuse and FDs to export two variables:
to encode the ID R[1, 2] ⊆ R[3, 4] with the FD R[1] → R[2],
write R(x, y, z,w) ⇒ R(x, y′, x, y′): we must have y = y′

→ We need an additional restriction for decidability
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Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)
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Decidability for non-conflicting FDs
We know from [Calì et al., 2012]:
Theorem
QA decidable for single-head frontier-guarded + non-conflicting FDs

We have shown:
Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

We show:
Theorem
QA is decidable for:

Rich DL constraints (with Funct)
Single-head (hence, head-non-looping) frontier-one rules
Non-conflicting FDs (on higher-arity predicates)
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Decidability for non-conflicting FDs: proof ideas

Non-conflicting: the FDs are not violated in the chase
Unraveling is a bit like chasing

→ Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:

if S′ ⊊ S, for S′ an FD determiner
→ ignore this fact (it’s not required by the constraints)

if S′ = S for S′ an FD determiner
→ copy only one such fact, distinguish its other elements

(no equality between them is required by the constraints)
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Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?
→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24



Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?

→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24



Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?
→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads

→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24



Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?
→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24



Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?
→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24



Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of the other things I do
Adding transitive and order relations to existential rules1

→ QA for frontier-guarded is decidable with transitive relations
→ Also for order relations (with atom-covered requirement)

QA on finite models2

→ Frontier-one IDs and FDs are finitely controllable up to closure

Database tasks on treelike instances3

Tractable probability evaluation, semiring provenance circuits
→ Necessity of bounded treewidth, via grid minor results
→ Query-specific tree decompositions for richer safe classes?

Also: partially ordered databases, crowdsourcing, and more!
→ If you’re interested by one of these, come chat with me today!

Thanks for your attention!

1With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS’15
3With Pierre Bourhis and Pierre Senellart, [Amarilli et al., 2015], ICALP’15 24/24
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