
Problem statement Undecidability Decidability Adding FDs Conclusion

Combining Existential Rules and Description Logics

Antoine Amarilli1,2, Michael Benedikt2

1Télécom ParisTech, Paris, France
2University of Oxford, Oxford, United Kingdom

October 23, 2015

1/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Open-world query answering (QA)

Open-world query answering:
We are given:

Relational instance I (ground facts)
! Logical constraints Σ

? Boolean conjunctive query q

We ask:
Consider all possible completions J ⊇ I
Restrict to those that satisfy the constraints Σ

→ Is q certain among them?

2/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Open-world query answering (QA)

Open-world query answering:
We are given:

Relational instance I (ground facts)
! Logical constraints Σ

? Boolean conjunctive query q
We ask:

Consider all possible completions J ⊇ I
Restrict to those that satisfy the constraints Σ

→ Is q certain among them?

2/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Open-world query answering (QA)

Open-world query answering: – query entailment or containment
We are given:

Relational instance I (ground facts) – A-Box
! Logical constraints Σ – T-Box
? Boolean conjunctive query q

We ask:
Consider all possible completions J ⊇ I
Restrict to those that satisfy the constraints Σ

→ Is q certain among them?

2/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp ⊑ CEO ⊔ (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f, v)

Arity-two only Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)
Functionality asserts
Funct(Mgr−) ! n/a

→ QA is decidable for either language

3/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp ⊑ CEO ⊔ (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f, v)

Arity-two only Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)
Functionality asserts
Funct(Mgr−) ! n/a

→ QA is decidable for either language

3/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp ⊑ CEO ⊔ (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f, v)

Arity-two only Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)
Functionality asserts
Funct(Mgr−) ! n/a

→ QA is decidable for either language

3/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp ⊑ CEO ⊔ (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f, v)

Arity-two only Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)

Functionality asserts
Funct(Mgr−) ! n/a

→ QA is decidable for either language

3/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp ⊑ CEO ⊔ (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f, v)

Arity-two only Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)
Functionality asserts
Funct(Mgr−) ! n/a

→ QA is decidable for either language

3/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Emp ⊑ CEO ⊔ (∃Mgr−.Emp) ∀pwv Acpt(p,w, v) → ∃f Trip(p, f, v)

Arity-two only Arbitrary arity

Rich (disjunction, etc.) Poor (conjunction and implication)
Functionality asserts
Funct(Mgr−) ! n/a

→ QA is decidable for either language

3/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Our problem

Can we have the best of both worlds?
QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)
QA is decidable for frontier-guarded existential rules

→ Is QA decidable for rich DLs + some classes of rules?
We show:

QA is undecidable for rich DLs and frontier-guarded rules
QA with rich DLs is decidable for some new rule classes
Functional dependencies can be added under some conditions

4/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Our problem

Can we have the best of both worlds?
QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)
QA is decidable for frontier-guarded existential rules

→ Is QA decidable for rich DLs + some classes of rules?

We show:
QA is undecidable for rich DLs and frontier-guarded rules
QA with rich DLs is decidable for some new rule classes
Functional dependencies can be added under some conditions

4/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Our problem

Can we have the best of both worlds?
QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)
QA is decidable for frontier-guarded existential rules

→ Is QA decidable for rich DLs + some classes of rules?
We show:

QA is undecidable for rich DLs and frontier-guarded rules
QA with rich DLs is decidable for some new rule classes
Functional dependencies can be added under some conditions

4/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Our problem

Can we have the best of both worlds?
QA is decidable for rich DLs (i.e., expressible in GC2,
guarded two-variable first-order logic with counting)
QA is decidable for frontier-guarded existential rules

→ Is QA decidable for rich DLs + some classes of rules?
We show:

QA is undecidable for rich DLs and frontier-guarded rules
QA with rich DLs is decidable for some new rule classes
Functional dependencies can be added under some conditions

4/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Table of contents

1 Problem statement

2 Undecidability

3 Decidability

4 Adding FDs

5 Conclusion

5/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-guarded plus DLs

Theorem
QA is undecidable for rich DLs and frontier-guarded rules

Problem:
DLs can express Funct (↔ functional dependencies, FDs)
Frontier-guarded can express inclusion dependencies (IDs)
Implication of IDs and FDs is undecidable [Mitchell, 1983]
Implication reduces to QA [Calì et al., 2003]

→ Restrict to frontier-one rules: ∀xy ϕ(x,y) → ∃z ψ(x, z)

6/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-guarded plus DLs

Theorem
QA is undecidable for rich DLs and frontier-guarded rules

Problem:
DLs can express Funct (↔ functional dependencies, FDs)
Frontier-guarded can express inclusion dependencies (IDs)
Implication of IDs and FDs is undecidable [Mitchell, 1983]
Implication reduces to QA [Calì et al., 2003]

→ Restrict to frontier-one rules: ∀xy ϕ(x,y) → ∃z ψ(x, z)

6/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-guarded plus DLs

Theorem
QA is undecidable for rich DLs and frontier-guarded rules

Problem:
DLs can express Funct (↔ functional dependencies, FDs)
Frontier-guarded can express inclusion dependencies (IDs)
Implication of IDs and FDs is undecidable [Mitchell, 1983]
Implication reduces to QA [Calì et al., 2003]

→ Restrict to frontier-one rules: ∀xy ϕ(x,y) → ∃z ψ(x, z)

6/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs

Restrict to frontier-one rules: ∀xy ϕ(x,y) → ∃z ψ(x, z)
QA for frontier-one IDs plus FDs is decidable (separability).

However:
Theorem
QA is undecidable for rich DLs and frontier-one rules

Problem:
Rule heads and bodies may contain cycles
We have Funct assertions

→ We can build a grid and encode tiling problems

7/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs

Restrict to frontier-one rules: ∀xy ϕ(x,y) → ∃z ψ(x, z)
QA for frontier-one IDs plus FDs is decidable (separability).

However:
Theorem
QA is undecidable for rich DLs and frontier-one rules

Problem:
Rule heads and bodies may contain cycles
We have Funct assertions

→ We can build a grid and encode tiling problems

7/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs

Restrict to frontier-one rules: ∀xy ϕ(x,y) → ∃z ψ(x, z)
QA for frontier-one IDs plus FDs is decidable (separability).

However:
Theorem
QA is undecidable for rich DLs and frontier-one rules

Problem:
Rule heads and bodies may contain cycles
We have Funct assertions

→ We can build a grid and encode tiling problems

7/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof
We reduce from tiling problems:

finite set of colors: , ,

horizontal and vertical allowed pairs:

The tiling problem is:
input: initial configuration:
output: is there an infinite tiling?

. . .

. . .

. . .
...

→ Undecidable for some sets of colors and configurations

8/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof
We reduce from tiling problems:

finite set of colors: , ,
horizontal and vertical allowed pairs:

The tiling problem is:
input: initial configuration:
output: is there an infinite tiling?

. . .

. . .

. . .
...

→ Undecidable for some sets of colors and configurations

8/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof
We reduce from tiling problems:

finite set of colors: , ,
horizontal and vertical allowed pairs:

The tiling problem is:
input: initial configuration:

output: is there an infinite tiling?

. . .

. . .

. . .
...

→ Undecidable for some sets of colors and configurations

8/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof
We reduce from tiling problems:

finite set of colors: , ,
horizontal and vertical allowed pairs:

The tiling problem is:
input: initial configuration:
output: is there an infinite tiling?

. . .

. . .

. . .
...

→ Undecidable for some sets of colors and configurations

8/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof
We reduce from tiling problems:

finite set of colors: , ,
horizontal and vertical allowed pairs:

The tiling problem is:
input: initial configuration:
output: is there an infinite tiling?

. . .

. . .

. . .
...

→ Undecidable for some sets of colors and configurations

8/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof
We reduce from tiling problems:

finite set of colors: , ,
horizontal and vertical allowed pairs:

The tiling problem is:
input: initial configuration:
output: is there an infinite tiling?

. . .

. . .

. . .
...

→ Undecidable for some sets of colors and configurations
8/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof, cont’d

Functional relations D for down and R for right
Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

DL constraints for the pairs, e.g., C ⊓ ∃R.C ⊑ ⊥
Disjunction to color tiles: T ⊑ C ⊔ C ⊔ C

Frontier-one rule: ∀x T(x) ⇒ ∃yzw
T(x) R−−−−→ T(y)yD

yD

T(z) R−−−−→ T(w)

→ There is an extension of the instance iff there is a tiling

9/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof, cont’d

Functional relations D for down and R for right
Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

DL constraints for the pairs, e.g., C ⊓ ∃R.C ⊑ ⊥
Disjunction to color tiles: T ⊑ C ⊔ C ⊔ C

Frontier-one rule: ∀x T(x) ⇒ ∃yzw
T(x) R−−−−→ T(y)yD

yD

T(z) R−−−−→ T(w)

→ There is an extension of the instance iff there is a tiling

9/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof, cont’d

Functional relations D for down and R for right
Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

DL constraints for the pairs, e.g., C ⊓ ∃R.C ⊑ ⊥
Disjunction to color tiles: T ⊑ C ⊔ C ⊔ C

Frontier-one rule: ∀x T(x) ⇒ ∃yzw
T(x) R−−−−→ T(y)yD

yD

T(z) R−−−−→ T(w)

→ There is an extension of the instance iff there is a tiling

9/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof, cont’d

Functional relations D for down and R for right
Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

DL constraints for the pairs, e.g., C ⊓ ∃R.C ⊑ ⊥
Disjunction to color tiles: T ⊑ C ⊔ C ⊔ C

Frontier-one rule: ∀x T(x) ⇒ ∃yzw
T(x) R−−−−→ T(y)yD

yD

T(z) R−−−−→ T(w)

→ There is an extension of the instance iff there is a tiling

9/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of frontier-one plus DLs: proof, cont’d

Functional relations D for down and R for right
Unary predicate T for tiles and C for each color

Initial instance: C R−−−−→ C R−−−−→ C R−−−−→ C

DL constraints for the pairs, e.g., C ⊓ ∃R.C ⊑ ⊥
Disjunction to color tiles: T ⊑ C ⊔ C ⊔ C

Frontier-one rule: ∀x T(x) ⇒ ∃yzw
T(x) R−−−−→ T(y)yD

yD

T(z) R−−−−→ T(w)

→ There is an extension of the instance iff there is a tiling
9/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Table of contents

1 Problem statement

2 Undecidability

3 Decidability

4 Adding FDs

5 Conclusion

10/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
R(x, y) S(y, z) T(z, x) is a cycle
R(z, x, y) S(x, y,w) is also a cycle

Formally:
Berge cycle: cycle in the atom–variable incidence graph
Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one rules + rich DLs

11/24

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
R(x, y) S(y, z) T(z, x) is a cycle
R(z, x, y) S(x, y,w) is also a cycle

Formally:
Berge cycle: cycle in the atom–variable incidence graph

Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one rules + rich DLs

11/24

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
R(x, y) S(y, z) T(z, x) is a cycle
R(z, x, y) S(x, y,w) is also a cycle

Formally:
Berge cycle: cycle in the atom–variable incidence graph

Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one rules + rich DLs

11/24

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
R(x, y) S(y, z) T(z, x) is a cycle
R(z, x, y) S(x, y,w) is also a cycle

Formally:
Berge cycle: cycle in the atom–variable incidence graph

Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one rules + rich DLs

11/24

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
R(x, y) S(y, z) T(z, x) is a cycle
R(z, x, y) S(x, y,w) is also a cycle

Formally:
Berge cycle: cycle in the atom–variable incidence graph
Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one rules + rich DLs

11/24

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs

Idea: prohibit cycles in existential rules:
R(x, y) S(y, z) T(z, x) is a cycle
R(z, x, y) S(x, y,w) is also a cycle

Formally:
Berge cycle: cycle in the atom–variable incidence graph
Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
Non-looping frontier-one: non-looping body and head

Theorem
QA is decidable for non-looping frontier-one rules + rich DLs

11/24

x y z

R(x, y) S(y, z)T(z, x)

x yz w

R(z, x, y) S(x, y,w)

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)

Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),

with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)

Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)

→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)

→
(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)

∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x)

∧
(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))

→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of non-looping frontier-one and DLs (proof)

Shred R(a, b, c) to R1(f, a),R2(f, b),R3(f, c)
Axiomatize the Ri, e.g., ∀f ∃=1x R1(f, x)

→ QA for the shredded instance, rules, query, and axioms
is equivalent to QA for the original instance, rules, query

Rewrite shredded non-looping frontier-one rules to GC2:
Rewrite ∀xy ϕ(x,y) ⇒ ∃z ψ(x, z) to ∀x ϕ′(x) ⇒ ψ′(x),
with ϕ′(x) and ψ′(x) the shredding of ∀yϕ(x,y) and ∃zψ(x,y)
Exemple: ϕ(x) = ∃yz T(x, y) ∧ R(x, x, z) ∧ A(z)
→ ∃yzf T(x, y) ∧ R1(f, x) ∧ R2(f, x) ∧ R3(f, z) ∧ A(z)
→

(
∃y T(x, y)

)
∧
(
∃f R1(f, x) ∧ R2(f, x) ∧

(
∃z R3(f, z) ∧ A(z)

))
→ Reduces to QA for GC2: decidable [Pratt-Hartmann, 2009]

12/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one rules: no cycles in head

Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

Basic idea:
If there is a counterexample model to QA, we can unravel it
→ It is still a counterexample
→ It has no cycles (except in the instance part)

→ Looping rule bodies can only match on the instance part

13/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one rules: no cycles in head

Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

Basic idea:
If there is a counterexample model to QA, we can unravel it
→ It is still a counterexample
→ It has no cycles (except in the instance part)

→ Looping rule bodies can only match on the instance part

13/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one rules: no cycles in head

Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

Basic idea:
If there is a counterexample model to QA, we can unravel it
→ It is still a counterexample
→ It has no cycles (except in the instance part)

→ Looping rule bodies can only match on the instance part

13/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1

e2

c1 d2 e3 b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2

e3 b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3

b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

a

b c

d e

⇒

a

b c

d1e1 e2

c1 d2 e3 b1 d3

14/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:

Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

Consider all possible mappings to the instance
→ Ex.: R(x, y)∧ S(y, z)∧ T(z, x) gives R(x, y)∧ S(y′, z)∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping rules

→ QA for the shredded instance, treefied rules, query, and axioms
is equivalent to QA for the original instance, rules, query

15/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:
Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

Consider all possible mappings to the instance
→ Ex.: R(x, y)∧ S(y, z)∧ T(z, x) gives R(x, y)∧ S(y′, z)∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping rules

→ QA for the shredded instance, treefied rules, query, and axioms
is equivalent to QA for the original instance, rules, query

15/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:
Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

Consider all possible mappings to the instance
→ Ex.: R(x, y)∧ S(y, z)∧ T(z, x) gives R(x, y)∧ S(y′, z)∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping rules

→ QA for the shredded instance, treefied rules, query, and axioms
is equivalent to QA for the original instance, rules, query

15/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:
Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

Consider all possible mappings to the instance
→ Ex.: R(x, y)∧ S(y, z)∧ T(z, x) gives R(x, y)∧ S(y′, z)∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping rules

→ QA for the shredded instance, treefied rules, query, and axioms
is equivalent to QA for the original instance, rules, query

15/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:
Consider all possible self-homomorphisms of the body
→ Ex.: R(x, y) ∧ S(y, z) ∧ T(z, x) gives R(x, y) ∧ S(y, x) ∧ T(x, x)

Consider all possible mappings to the instance
→ Ex.: R(x, y)∧ S(y, z)∧ T(z, x) gives R(x, y)∧ S(y′, z)∧ T(z′, x′)

∧ x = a ∧ x′ = a ∧ y = b ∧ y′ = b ∧ z = c ∧ z′ = c

→ Keep the resulting fully non-looping rules

→ QA for the shredded instance, treefied rules, query, and axioms
is equivalent to QA for the original instance, rules, query

15/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Table of contents

1 Problem statement

2 Undecidability

3 Decidability

4 Adding FDs

5 Conclusion

16/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Adding functional dependencies

We have shown:
Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

We have functional dependencies Funct(R) on binary relations
Could we also allow FDs on higher-arity relations?
Ex.: Talk[speaker, session] determines Talk[title]

17/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Adding functional dependencies

We have shown:
Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

We have functional dependencies Funct(R) on binary relations
Could we also allow FDs on higher-arity relations?
Ex.: Talk[speaker, session] determines Talk[title]

17/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

Theorem
QA for FDs and linear frontier-one rules is undecidable.

Proof ideas:
Reduce from implication of unary FDs and frontier-2 IDs
Leverage variable reuse and FDs to export two variables:
to encode the ID R[1, 2] ⊆ R[3, 4] with the FD R[1] → R[2],
write R(x, y, z,w) ⇒ R(x, y′, x, y′): we must have y = y′

→ We need an additional restriction for decidability

18/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

Theorem
QA for FDs and linear frontier-one rules is undecidable.

Proof ideas:
Reduce from implication of unary FDs and frontier-2 IDs
Leverage variable reuse and FDs to export two variables:
to encode the ID R[1, 2] ⊆ R[3, 4] with the FD R[1] → R[2],
write R(x, y, z,w) ⇒ R(x, y′, x, y′): we must have y = y′

→ We need an additional restriction for decidability

18/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

Theorem
QA for FDs and linear frontier-one rules is undecidable.

Proof ideas:
Reduce from implication of unary FDs and frontier-2 IDs
Leverage variable reuse and FDs to export two variables:
to encode the ID R[1, 2] ⊆ R[3, 4] with the FD R[1] → R[2],
write R(x, y, z,w) ⇒ R(x, y′, x, y′): we must have y = y′

→ We need an additional restriction for decidability

18/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:

For every rule head H = R(x1, . . . , xn):
S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:

→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail

→ if S′ = S and some variable occurs twice in S, fail
Examples: for the FD R[1] → R[3]:

T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:

T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is...

non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting

T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is...

conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)

T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is...

non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting

T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is...

conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)

T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is...

not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Non-conflicting rules and FDs [Calì et al., 2012]
Consider QA under single-head rules Σ and FDs Φ

Σ and Φ are separable if QA(Σ,Φ) ⇔ QA(Σ) when I |= Φ

Separability guaranteed under the non-conflicting condition:
For every rule head H = R(x1, . . . , xn):

S ··= positions of H with a frontier variable
S ··= positions with an existentially quantified variable

For each FD R[S′] → R[i] of Φ:
→ if S′ ⊊ S, fail
→ if S′ = S and some variable occurs twice in S, fail

Examples: for the FD R[1] → R[3]:
T(x) ⇒ R(y, y, x) is... non-conflicting
T(x, y) ⇒ R(x, y, z) is... conflicting (superset)
T(x) ⇒ R(x, y, z) is... non-conflicting
T(x) ⇒ R(x, y, y) is... conflicting (variable reuse)
T(y) ⇒ R(x, y, z)U(z) is... not allowed (not single-head)

19/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability for non-conflicting FDs
We know from [Calì et al., 2012]:
Theorem
QA decidable for single-head frontier-guarded + non-conflicting FDs

We have shown:
Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

We show:
Theorem
QA is decidable for:

Rich DL constraints (with Funct)
Single-head (hence, head-non-looping) frontier-one rules
Non-conflicting FDs (on higher-arity predicates)

20/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability for non-conflicting FDs
We know from [Calì et al., 2012]:
Theorem
QA decidable for single-head frontier-guarded + non-conflicting FDs

We have shown:
Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

We show:
Theorem
QA is decidable for:

Rich DL constraints (with Funct)
Single-head (hence, head-non-looping) frontier-one rules
Non-conflicting FDs (on higher-arity predicates)

20/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability for non-conflicting FDs
We know from [Calì et al., 2012]:
Theorem
QA decidable for single-head frontier-guarded + non-conflicting FDs

We have shown:
Theorem
QA is decidable for head-non-looping frontier-one rules + rich DLs

We show:
Theorem
QA is decidable for:

Rich DL constraints (with Funct)
Single-head (hence, head-non-looping) frontier-one rules
Non-conflicting FDs (on higher-arity predicates)

20/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability for non-conflicting FDs: proof ideas

Non-conflicting: the FDs are not violated in the chase
Unraveling is a bit like chasing

→ Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:

if S′ ⊊ S, for S′ an FD determiner
→ ignore this fact (it’s not required by the constraints)

if S′ = S for S′ an FD determiner
→ copy only one such fact, distinguish its other elements

(no equality between them is required by the constraints)

21/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability for non-conflicting FDs: proof ideas

Non-conflicting: the FDs are not violated in the chase
Unraveling is a bit like chasing

→ Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:

if S′ ⊊ S, for S′ an FD determiner
→ ignore this fact (it’s not required by the constraints)

if S′ = S for S′ an FD determiner
→ copy only one such fact, distinguish its other elements

(no equality between them is required by the constraints)

21/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability for non-conflicting FDs: proof ideas

Non-conflicting: the FDs are not violated in the chase
Unraveling is a bit like chasing

→ Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:

if S′ ⊊ S, for S′ an FD determiner
→ ignore this fact (it’s not required by the constraints)

if S′ = S for S′ an FD determiner
→ copy only one such fact, distinguish its other elements

(no equality between them is required by the constraints)

21/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability for non-conflicting FDs: proof ideas

Non-conflicting: the FDs are not violated in the chase
Unraveling is a bit like chasing

→ Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:

if S′ ⊊ S, for S′ an FD determiner
→ ignore this fact (it’s not required by the constraints)

if S′ = S for S′ an FD determiner
→ copy only one such fact, distinguish its other elements

(no equality between them is required by the constraints)

21/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Decidability for non-conflicting FDs: proof ideas

Non-conflicting: the FDs are not violated in the chase
Unraveling is a bit like chasing

→ Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact,
consider the positions S where the previous element occurs:

if S′ ⊊ S, for S′ an FD determiner
→ ignore this fact (it’s not required by the constraints)

if S′ = S for S′ an FD determiner
→ copy only one such fact, distinguish its other elements

(no equality between them is required by the constraints)

21/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Table of contents

1 Problem statement

2 Undecidability

3 Decidability

4 Adding FDs

5 Conclusion

22/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?
→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?

→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?
→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads

→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?
→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of results
Combining Existential Rules and Description Logics

Open-world query answering (QA) under:
Rich DL constraints
Existential rules

For which rule classes is QA decidable with rich DLs?
→ Must restrict to frontier-one rules
→ Must prohibit cycles in rule heads
→ QA is decidable for head-non-looping frontier-one + rich DLs
→ Can add non-conflicting FDs

What about QA on finite models?
Could we have an expressive frontier-one language?
(FDs, disjunctions... like DLs but higher-arity)

23/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of the other things I do
Adding transitive and order relations to existential rules1

→ QA for frontier-guarded is decidable with transitive relations
→ Also for order relations (with atom-covered requirement)

QA on finite models2

→ Frontier-one IDs and FDs are finitely controllable up to closure

Database tasks on treelike instances3

Tractable probability evaluation, semiring provenance circuits
→ Necessity of bounded treewidth, via grid minor results
→ Query-specific tree decompositions for richer safe classes?

Also: partially ordered databases, crowdsourcing, and more!
→ If you’re interested by one of these, come chat with me today!

Thanks for your attention!

1With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS’15
3With Pierre Bourhis and Pierre Senellart, [Amarilli et al., 2015], ICALP’15 24/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of the other things I do
Adding transitive and order relations to existential rules1

→ QA for frontier-guarded is decidable with transitive relations
→ Also for order relations (with atom-covered requirement)

QA on finite models2

→ Frontier-one IDs and FDs are finitely controllable up to closure

Database tasks on treelike instances3

Tractable probability evaluation, semiring provenance circuits
→ Necessity of bounded treewidth, via grid minor results
→ Query-specific tree decompositions for richer safe classes?

Also: partially ordered databases, crowdsourcing, and more!
→ If you’re interested by one of these, come chat with me today!

Thanks for your attention!

1With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS’15
3With Pierre Bourhis and Pierre Senellart, [Amarilli et al., 2015], ICALP’15 24/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of the other things I do
Adding transitive and order relations to existential rules1

→ QA for frontier-guarded is decidable with transitive relations
→ Also for order relations (with atom-covered requirement)

QA on finite models2

→ Frontier-one IDs and FDs are finitely controllable up to closure

Database tasks on treelike instances3

Tractable probability evaluation, semiring provenance circuits
→ Necessity of bounded treewidth, via grid minor results
→ Query-specific tree decompositions for richer safe classes?

Also: partially ordered databases, crowdsourcing, and more!
→ If you’re interested by one of these, come chat with me today!

Thanks for your attention!

1With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS’15
3With Pierre Bourhis and Pierre Senellart, [Amarilli et al., 2015], ICALP’15 24/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of the other things I do
Adding transitive and order relations to existential rules1

→ QA for frontier-guarded is decidable with transitive relations
→ Also for order relations (with atom-covered requirement)

QA on finite models2

→ Frontier-one IDs and FDs are finitely controllable up to closure

Database tasks on treelike instances3

Tractable probability evaluation, semiring provenance circuits
→ Necessity of bounded treewidth, via grid minor results
→ Query-specific tree decompositions for richer safe classes?

Also: partially ordered databases, crowdsourcing, and more!

→ If you’re interested by one of these, come chat with me today!

Thanks for your attention!

1With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS’15
3With Pierre Bourhis and Pierre Senellart, [Amarilli et al., 2015], ICALP’15 24/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of the other things I do
Adding transitive and order relations to existential rules1

→ QA for frontier-guarded is decidable with transitive relations
→ Also for order relations (with atom-covered requirement)

QA on finite models2

→ Frontier-one IDs and FDs are finitely controllable up to closure

Database tasks on treelike instances3

Tractable probability evaluation, semiring provenance circuits
→ Necessity of bounded treewidth, via grid minor results
→ Query-specific tree decompositions for richer safe classes?

Also: partially ordered databases, crowdsourcing, and more!
→ If you’re interested by one of these, come chat with me today!

Thanks for your attention!

1With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS’15
3With Pierre Bourhis and Pierre Senellart, [Amarilli et al., 2015], ICALP’15 24/24

Problem statement Undecidability Decidability Adding FDs Conclusion

Summary of the other things I do
Adding transitive and order relations to existential rules1

→ QA for frontier-guarded is decidable with transitive relations
→ Also for order relations (with atom-covered requirement)

QA on finite models2

→ Frontier-one IDs and FDs are finitely controllable up to closure

Database tasks on treelike instances3

Tractable probability evaluation, semiring provenance circuits
→ Necessity of bounded treewidth, via grid minor results
→ Query-specific tree decompositions for richer safe classes?

Also: partially ordered databases, crowdsourcing, and more!
→ If you’re interested by one of these, come chat with me today!

Thanks for your attention!
1With Michael Benedikt, ongoing work
2With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS’15
3With Pierre Bourhis and Pierre Senellart, [Amarilli et al., 2015], ICALP’15 24/24

References I

Amarilli, A. and Benedikt, M. (2015).
Finite open-world query answering with number restrictions.
In Proc. LICS.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In Proc. ICALP.
Calì, A., Gottlob, G., and Pieris, A. (2012).
Towards more expressive ontology languages: The query
answering problem.
Artif. Intel., 193.

1/2

References II

Calì, A., Lembo, D., and Rosati, R. (2003).
Query rewriting and answering under constraints in data
integration systems.
In IJCAI.
Mitchell, J. C. (1983).
The implication problem for functional and inclusion
dependencies.
Information and Control, 56(3).

Pratt-Hartmann, I. (2009).
Data-complexity of the two-variable fragment with counting
quantifiers.
Inf. Comput., 207(8).

2/2

	Problem statement
	Undecidability
	Decidability
	Adding FDs
	Conclusion

