Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
00000000	00000000	0000	000	0000000	000

Probabilities and Provenance on Trees and Treelike Instances

Antoine Amarilli¹, Pierre Bourhis², Pierre Senellart^{1,3}

¹Télécom ParisTech

²CNRS CRIStAL

³National University of Singapore

January 8th, 2016

Introduction •0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Query ev	aluation				

• Relational signature σ

 \rightarrow Example: *R* (arity 1), *S* (arity 2), *T* (arity 1)

Introduction •0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Query ev	aluation				

- $\bullet~{\rm Relational~signature}~\sigma$
 - \rightarrow Example: *R* (arity 1), *S* (arity 2), *T* (arity 1)
- \bullet Fragment ${\cal Q}$ of Boolean constant-free queries
 - $\rightarrow \text{Example: Boolean conjunctive queries}$ (= existentially quantified conjunction of atoms)= Example: Constant and Conjunction of atoms)
 - \rightarrow Example of CQ: q : $\exists x y \ R(x) \land S(x, y) \land T(y)$

Introduction •0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
Query ev	aluation				

- Relational signature σ
 - \rightarrow Example: *R* (arity 1), *S* (arity 2), *T* (arity 1)
- Fragment \mathcal{Q} of Boolean constant-free queries
 - → Example: Boolean conjunctive queries (= existentially quantified conjunction of atoms)
 - \rightarrow Example of CQ: q : $\exists x y \ R(x) \land S(x, y) \land T(y)$
- \bullet Class ${\mathcal I}$ of instances

 \rightarrow Example: all instances; acyclic instances; treelike instances; ...

Introduction •0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Query ev	aluation				

- Relational signature σ
 - \rightarrow Example: *R* (arity 1), *S* (arity 2), *T* (arity 1)
- Fragment \mathcal{Q} of Boolean constant-free queries
 - → Example: Boolean conjunctive queries (= existentially quantified conjunction of atoms)
 - \rightarrow Example of CQ: q : $\exists x y \ R(x) \land S(x, y) \land T(y)$
- \bullet Class ${\mathcal I}$ of instances
 - \rightarrow Example: all instances; acyclic instances; treelike instances; ...
- \rightarrow Query evaluation problem for ${\cal Q}$ and ${\cal I}$:
 - Fix a query $q \in Q$
 - Given an input instance $I \in \mathcal{I}$
 - Determine whether *I* satisfies q (written $I \models q$)
 - Complexity as a function of *I*, not *q* (= data complexity)

Introduction 0000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
Query ev	valuation e	example			

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Query ev	aluation e	example			

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Query ev	aluation e	example			

 $q:\exists x \ y \ R(x) \land S(x,y) \land T(y)$

R a b c

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Query ev	aluation e	example			

 $q:\exists x \ y \ R(x) \land S(x,y) \land T(y)$

R		S
а	а	а
b	b	V
С	Ь	W

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Query ev	aluation ex	kample			

 $q:\exists x \ y \ R(x) \land S(x,y) \land T(y)$

R	S	Т
а	a a	V
Ь	b v	W
С	b w	Ь

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Query ev	aluation e	example			

 $q:\exists x y \ R(x) \land S(x,y) \land T(y)$

R	S	Т
а	a a	V
Ь	b v	W
С	b w	Ь

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Probabili	stic query	evaluation			

Signature σ , class $\mathcal Q$ of queries, class $\mathcal I$ of instances.

- \rightarrow Probabilistic query evaluation problem for ${\cal Q}$ and ${\cal I}$:
 - Fix a query $q \in Q$
 - Given an input instance $I \in \mathcal{I}$

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Probabili	stic query	evaluation			

Signature σ , class Q of queries, class \mathcal{I} of instances.

 \rightarrow Probabilistic query evaluation problem for ${\cal Q}$ and ${\cal I}:$

- Fix a query $q \in Q$
- Given an input instance $I \in \mathcal{I}$
- And given a probability valuation π mapping facts of *I* to probabilities in [0,1]

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Probabili	stic query	evaluation			

Signature σ , class Q of queries, class \mathcal{I} of instances.

 \rightarrow Probabilistic query evaluation problem for ${\cal Q}$ and ${\cal I}$:

- Fix a query $q \in Q$
- Given an input instance $I \in \mathcal{I}$
- And given a probability valuation π mapping facts of *I* to probabilities in [0,1]
- Compute the probability that $I \models q$

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Probabili	stic query	evaluation			

Signature σ , class Q of queries, class I of instances.

 \rightarrow Probabilistic query evaluation problem for ${\cal Q}$ and ${\cal I}:$

- Fix a query $q \in Q$
- Given an input instance $I \in \mathcal{I}$
- And given a probability valuation π mapping facts of *I* to probabilities in [0,1]
- Compute the probability that $I \models q$
- Data complexity: measured as a function of I and π

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Probabili	stic query o	evaluation			

Signature σ , class Q of queries, class \mathcal{I} of instances.

 \rightarrow Probabilistic query evaluation problem for ${\cal Q}$ and ${\cal I}$:

- Fix a query $q \in Q$
- Given an input instance $I \in \mathcal{I}$
- And given a probability valuation π mapping facts of *I* to probabilities in [0,1]
- Compute the probability that $I \models q$
- Data complexity: measured as a function of I and π

• Semantics: (I, π) represents a probability distribution on $I' \subseteq I$:

- Each fact $F \in I$ is either present or absent with probability $\pi(F)$
- Facts are independent

	<i>.</i>				
0000000	00000000	0000	000	000000	000
Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion

	S	
а	а	1
b	V	.5
b	w	.2

	· · · ·				
0000000	00000000	0000	000	0000000	000
Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion

	S	
а	а	1
Ь	V	.5
b	w	.2

Introduction 00000000	Opper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000

	S	
а	а	1
Ь	v	.5
Ь	W	.2

.5 >	× .2
	S
а	а
Ь	V
Ь	W

Introduction 00000000	Opper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000

	S	
а	а	1
b	v	.5
Ь	W	.2

.5	× .2	.5 ×	(12)
:	S		S
а	а	а	а
b	V	b	V
b	W		

Introduction 00000000	Opper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000

	S	
а	а	1
b	v	.5
Ь	W	.2

.5	$\times .2$.5 imes	(12)	(1 -	$(5) \times .2$	
	S		S			S
а	а	а	а		а	а
Ь	V	Ь	V			
b	W				b	W

	C				
0000000	00000000	0000	000	0000000	000
Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion

	S	
а	а	1
b	v	.5
b	w	.2

.5	× .2	.5 imes	(12)	_	(1 -	$(5) \times .2$	(1 -	$(5) \times (12)$
	S		S			S		S
а	а	а	а		а	а	а	а
b	V	Ь	V					
b	w			_	b	W		

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class I of all instances.

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class \mathcal{I} of all instances.

$$q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$$

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class I of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

- 1	२
а	1
b	.4
С	.6

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class $\mathcal Q$ of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R	S		
а	1	а	а	1
b	.4	b	v	.5
С	.6	Ь	W	.2

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class $\mathcal Q$ of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x,y) \land T(y)$

I	R	_	S T		Г		
а	1		а	а	1	V	.3
b	.4		b	v	.5	W	.7
С	.6		b	W	.2	b	1

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	0000000	000

Signature σ , class $\mathcal Q$ of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

I	२		<u>S</u> T		Г	
а	1	а	а	1	V	.3
b	.4	b	V	.5	W	.7
С	.6	Ь	W	.2	Ь	1

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	0000000	000

Signature σ , class $\mathcal Q$ of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R	<u>S</u> T		Г		
а	1	а	а	1	V	.3
b	.4	b	v	.5	W	.7
С	.6	b	W	.2	Ь	1

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class I of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R	S		Т		
а	1	а	а	1	V	.3
b	.4	b	v	.5	W	.7
С	.6	b	W	.2	Ь	1

• The query is true iff R(b) is here and one of:

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class I of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R	S		Т		
а	1	а	а	1	V	.3
b	.4	b	V	.5	W	.7
С	.6	Ь	W	.2	Ь	1

• The query is true iff R(b) is here and one of:

• S(b, v) and T(v) are here

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R	S		Т		
а	1	а	а	1	V	.3
b	.4	b	v	.5	W	.7
С	.6	b	W	.2	Ь	1

- The query is true iff R(b) is here and one of:
 - S(b, v) and T(v) are here
 - S(b, w) and T(w) are here

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x,y) \land T(y)$

	R	S		Т		
а	1	а	а	1	V	.3
b	.4	b	v	.5	W	.7
С	.6	Ь	W	.2	Ь	1

- The query is true iff R(b) is here and one of:
 - S(b, v) and T(v) are here
 - S(b, w) and T(w) are here

 \rightarrow Probability:

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class $\mathcal Q$ of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R	S			٦	Т	
а	1	а	а	1	V	.3	
b	.4	b	v	.5	W	.7	
С	.6	Ь	W	.2	Ь	1	

- The query is true iff R(b) is here and one of:
 - S(b, v) and T(v) are here
 - S(b, w) and T(w) are here

 \rightarrow Probability: .4 \times

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R	S		Т		
а	1	а	а	1	V	.3
b	.4	b	v	.5	w	.7
С	.6	Ь	W	.2	Ь	1

- The query is true iff R(b) is here and one of:
 - S(b, v) and T(v) are here
 - S(b, w) and T(w) are here

 \rightarrow Probability: .4 × (1 –

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Signature σ , class Q of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

R		S			Т	
а	1	а	а	1	V	.3
b	.4	b	V	.5	W	.7
С	.6	Ь	W	.2	Ь	1

- The query is true iff R(b) is here and one of:
 - S(b, v) and T(v) are here
 - S(b, w) and T(w) are here

 \rightarrow Probability: .4 × (1 – (1 – .5 × .3)
Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Example of probabilistic query evaluation

Signature σ , class Q of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R		S		٦	Г
а	1	а	а	1	V	.3
b	.4	b	v	.5	W	.7
С	.6	b	W	.2	Ь	1

- The query is true iff R(b) is here and one of:
 - S(b, v) and T(v) are here
 - S(b, w) and T(w) are here

 \rightarrow Probability: .4 × (1 – (1 – .5 × .3) × (1 – .2 × .7))

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

Example of probabilistic query evaluation

Signature σ , class Q of conjunctive queries, class $\mathcal I$ of all instances.

 $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$

	R		S		٦	Г
а	1	а	а	1	V	.3
b	.4	b	v	.5	W	.7
С	.6	Ь	W	.2	Ь	1

- The query is true iff R(b) is here and one of:
 - S(b, v) and T(v) are here
 - S(b, w) and T(w) are here

 \rightarrow Probability: .4 × (1 – (1 – .5 × .3) × (1 – .2 × .7)) = .1076

Complexity of probabilistic query evaluation (PQE)

Introduction
Upper bounds
Semiring provenance
Correlations
Lower bounds
Conclusi

00000000
00000000
0000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000<

Complexity of probabilistic query evaluation (PQE)

- Existing dichotomy result: [Dalvi and Suciu, 2012]
 - $\bullet~\mathcal{Q}$ are (unions of) conjunctive queries, $\mathcal I$ is all instances
 - $\bullet\,$ There is a class $\mathcal{S}\subseteq \mathcal{Q}$ of safe queries

Introduction
Upper bounds
Semiring provenance
Correlations
Lower bounds
Conclus

00000000
00000000
0000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000</

Complexity of probabilistic query evaluation (PQE)

- Existing dichotomy result: [Dalvi and Suciu, 2012]
 - ${\mathcal Q}$ are (unions of) conjunctive queries, ${\mathcal I}$ is all instances
 - $\bullet~$ There is a class $\mathcal{S}\subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances

Introduction
Upper bounds
Semiring provenance
Correlations
Lower bounds
Conclu

00000000
00000000
0000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000</t

Complexity of probabilistic query evaluation (PQE)

- Existing dichotomy result: [Dalvi and Suciu, 2012]
 - ${\mathcal Q}$ are (unions of) conjunctive queries, ${\mathcal I}$ is all instances
 - $\bullet~$ There is a class $\mathcal{S}\subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances
 - PQE is #P-hard for any $q \in \mathcal{Q} \setminus \mathcal{S}$ on all instances

Introduction
Upper bounds
Semiring provenance
Correlations
Lower bounds
Conclusion

00000000
00000000
0000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
00

Complexity of probabilistic query evaluation (PQE)

- Existing dichotomy result: [Dalvi and Suciu, 2012]
 - ${\mathcal Q}$ are (unions of) conjunctive queries, ${\mathcal I}$ is all instances
 - $\bullet~$ There is a class $\mathcal{S}\subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances
 - PQE is #P-hard for any $q \in Q \setminus S$ on all instances
 - $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$ is unsafe!

Introduction
Upper bounds
Semiring provenance
Correlations
Lower bounds
Conclu

00000000
00000000
0000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000</t

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class Q of queries and class I of instances?

- Existing dichotomy result: [Dalvi and Suciu, 2012]
 - ${\mathcal Q}$ are (unions of) conjunctive queries, ${\mathcal I}$ is all instances
 - $\bullet~$ There is a class $\mathcal{S}\subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances
 - PQE is #P-hard for any $q \in \mathcal{Q} \setminus \mathcal{S}$ on all instances
 - $q: \exists x y \ R(x) \land S(x, y) \land T(y)$ is unsafe!

Is there a smaller class \mathcal{I} such that PQE is tractable for a larger \mathcal{Q} ?

Introduction
Upper bounds
Semiring provenance
Correlations
Lower bounds
Conclusion

00000000
0000
0000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000</t

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class Q of queries and class I of instances?

- Existing dichotomy result: [Dalvi and Suciu, 2012]
 - ${\mathcal Q}$ are (unions of) conjunctive queries, ${\mathcal I}$ is all instances
 - $\bullet~$ There is a class $\mathcal{S}\subseteq \mathcal{Q}$ of safe queries
 - PQE is PTIME for any $q \in S$ on all instances
 - PQE is #P-hard for any $q \in Q \setminus S$ on all instances
 - $q: \exists x \ y \ R(x) \land S(x, y) \land T(y)$ is unsafe!

Is there a smaller class \mathcal{I} such that PQE is tractable for a larger \mathcal{Q} ?

- Probabilistic XML: [Cohen et al., 2009]
 - ${\mathcal Q}$ are tree automata, ${\mathcal I}$ are trees
 - PQE is PTIME

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Trees and	d treelike i	nstances			

 \bullet Goal: find an instance class ${\cal I}$ where PQE is tractable

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Trees and	d treelike i	nstances			

- \bullet Goal: find an instance class ${\cal I}$ where PQE is tractable
- Idea: take ${\mathcal I}$ to be treelike instances
 - Treelike: the treewidth is bounded by a constant

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Trees and	d treelike ii	nstances			

- \bullet Goal: find an instance class ${\cal I}$ where PQE is tractable
- Idea: take \mathcal{I} to be treelike instances
 - Treelike: the treewidth is bounded by a constant
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and (k-1)-grids have treewidth k-1

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Trees and	d treelike i	nstances			

- Goal: find an instance class \mathcal{I} where PQE is tractable
- Idea: take \mathcal{I} to be treelike instances
 - Treelike: the treewidth is bounded by a constant
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and (k-1)-grids have treewidth k-1
- \rightarrow For non-probabilistic query evaluation [Courcelle, 1990]:
 - \mathcal{I} : treelike instances; \mathcal{Q} : monadic second-order (MSO) queries
 - $\rightarrow\,$ non-probabilistic QE is in linear time

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Trees and	d treelike i	nstances			

- \bullet Goal: find an instance class ${\cal I}$ where PQE is tractable
- Idea: take \mathcal{I} to be treelike instances
 - Treelike: the treewidth is bounded by a constant
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and (k-1)-grids have treewidth k-1
- \rightarrow For non-probabilistic query evaluation [Courcelle, 1990]:
 - \mathcal{I} : treelike instances; \mathcal{Q} : monadic second-order (MSO) queries
 - $\rightarrow\,$ non-probabilistic QE is in linear time
- \rightarrow Does this extend to probabilistic QE?

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
Our resu	lts				

An instance-based dichotomy result:

Upper bound. For \mathcal{I} the treelike instances and \mathcal{Q} the MSO queries \rightarrow PQE is in linear time modulo arithmetic costs

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
Our resu	ılts				

An instance-based dichotomy result:

Upper bound. For ${\mathcal I}$ the treelike instances and ${\mathcal Q}$ the MSO queries

- $\rightarrow\,$ PQE is in linear time modulo arithmetic costs
 - Also for expressive provenance representations
 - Also with bounded-treewidth correlations

Introduction 0000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Our resu	lts				

An instance-based dichotomy result:

Upper bound. For ${\mathcal I}$ the treelike instances and ${\mathcal Q}$ the MSO queries

- \rightarrow PQE is in linear time modulo arithmetic costs
 - Also for expressive provenance representations
 - Also with bounded-treewidth correlations

Lower bound. For any unbounded-tw family ${\mathcal I}$ and ${\mathcal Q}$ FO queries

- \rightarrow PQE is #P-hard under RP reductions assuming
 - Signature arity is 2 (graphs)
 - \bullet High-tw instances in ${\mathcal I}$ are easily constructible

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Table of	contents				

1 Introduction

2 Upper bounds

3 Semiring provenance

4 Correlations

5 Lower bounds

6 Conclusion

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	0000000	000

The provenance of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Introduction 00000000	Upper bounds •00000000	Semiring provenance	Correlations	Lower bounds	Conclusion 000

The provenance of a query q on an instance l:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
- $\ \ \, \rightarrow \ \, \text{For all} \ \, \nu: \textit{I} \rightarrow \{0,1\} \text{ we have } \nu(\phi) = 1 \text{ iff } \{\textit{F} \in \textit{I} \mid \nu(\textit{F}) = 1\} \models \textit{q}$

Introduction 00000000	Upper bounds •00000000	Semiring provenance	Correlations	Lower bounds	Conclusion 000

The provenance of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
- \rightarrow For all $\nu: I \rightarrow \{0,1\}$ we have $\nu(\phi) = 1$ iff $\{F \in I \mid \nu(F) = 1\} \models q$

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

Introduction 00000000	Upper bounds •00000000	Semiring provenance	Correlations	Lower bounds	Conclusion 000

The provenance of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
- \rightarrow For all $\nu: I \rightarrow \{0,1\}$ we have $\nu(\phi) = 1$ iff $\{F \in I \mid \nu(F) = 1\} \models q$

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

Introduction 00000000	Upper bounds •00000000	Semiring provenance	Correlations	Lower bounds	Conclusion 000

The provenance of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
- \rightarrow For all $\nu: I \rightarrow \{0,1\}$ we have $\nu(\phi) = 1$ iff $\{F \in I \mid \nu(F) = 1\} \models q$

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Provenance: $(f_1 \land f_2)$

Introduction 00000000	Upper bounds •00000000	Semiring provenance	Correlations	Lower bounds	Conclusion 000

The provenance of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
- \rightarrow For all $\nu: I \rightarrow \{0,1\}$ we have $\nu(\phi) = 1$ iff $\{F \in I \mid \nu(F) = 1\} \models q$

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
Ь	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Provenance: $(f_1 \land f_2) \lor (f_3 \land f_4)$

Introduction 00000000	Upper bounds •00000000	Semiring provenance	Correlations	Lower bounds	Conclusion 000

The provenance of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
- \rightarrow For all $\nu: I \rightarrow \{0,1\}$ we have $\nu(\phi) = 1$ iff $\{F \in I \mid \nu(F) = 1\} \models q$

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
Ь	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Provenance: $(f_1 \land f_2) \lor (f_3 \land f_4)$

Introduction 00000000	Upper bounds •00000000	Semiring provenance	Correlations	Lower bounds	Conclusion 000

The provenance of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
- \rightarrow For all $\nu: I \rightarrow \{0,1\}$ we have $\nu(\phi) = 1$ iff $\{F \in I \mid \nu(F) = 1\} \models q$

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Provenance: $(f_1 \land f_2) \lor (f_3 \land f_4) \lor f_5$

Introduction 00000000	Upper bounds ●00000000	Semiring provenance	Correlations	Lower bounds	Conclusion 000

The provenance of a query q on an instance I:

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
- \rightarrow For all $\nu: I \rightarrow \{0,1\}$ we have $\nu(\phi) = 1$ iff $\{F \in I \mid \nu(F) = 1\} \models q$

Example query: $\exists x \, y \, z \, R(x, y) \land R(y, z)$

	R	
а	Ь	f_1
Ь	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Provenance: $(f_1 \land f_2) \lor (f_3 \land f_4) \lor f_5$

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
General roadmap					

• Use provenance for probabilistic query evaluation:

- Compute a provenance representation efficiently
- \rightarrow Probability of the provenance = probability of the query

Introduction 00000000	Upper bounds 00000000	Semiring provenance	Correlations	Lower bounds	Conclusion
General roadmap					

- Use provenance for probabilistic query evaluation:
 - Compute a provenance representation efficiently
 - \rightarrow Probability of the provenance = probability of the query
 - Compute the provenance probability efficiently (show it is not #P-hard as in the general case)

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
General roadmap					

- Use provenance for probabilistic query evaluation:
 - Compute a provenance representation efficiently
 - \rightarrow Probability of the provenance = probability of the query
 - Compute the provenance probability efficiently (show it is not #P-hard as in the general case)
- To solve the PQE problem on treelike instances for MSO
 - First solve the problem on trees with tree automata
 - Then use the results of [Courcelle, 1990]

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Uncerta	in trees				

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Uncerta	in trees				

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Uncertai	n trees				

Example tree automaton:

"Is there both a red and a green node?"

Valuation: $\{2, 3, 7\}$

The tree automaton accepts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Uncertai	n trees				

Example tree automaton:

"Is there both a red and a green node?"

Valuation: $\{2\}$

The tree automaton rejects

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Uncertai	n trees				

Example tree automaton:

"Is there both a red and a green node?"

Valuation: $\{2,7\}$

The tree automaton accepts

Provenance formulae and circuits on trees

• Which valuations satisfy the query?

Provenance formulae and circuits on trees

- Which valuations satisfy the query?
- \rightarrow Provenance of a tree automaton A on an uncertain tree T:
 - Boolean formula ϕ
 - on variables x_2, x_3, x_7
 - \rightarrow A accepts $\nu(T)$ iff $\nu(\phi)$ is true

Provenance formulae and circuits on trees

- Which valuations satisfy the query?
- \rightarrow Provenance of a tree automaton A on an uncertain tree T:
 - Boolean formula ϕ
 - on variables x₂, x₃, x₇
 - $\rightarrow~{\it A}~{\it accepts}~\nu({\it T})$ iff $\nu(\phi)$ is true
 - Provenance circuit of A on T [Deutch et al., 2014]
 - Boolean circuit C
 - with input gates g_2, g_3, g_7
 - \rightarrow A accepts $\nu(T)$ iff $\nu(C)$ is true

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Example					

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
Example					

Is there both a red and a green node?

• Provenance formula: $(x_2 \lor x_3) \land x_7$

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Example					

Is there both a red and a green node?

- Provenance formula: $(x_2 \lor x_3) \land x_7$
- Provenance circuit:

Introduction 00000000	Upper bounds ooooo●ooo	Semiring provenance	Correlations	Lower bounds	Conclusion
-					

Theorem

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Introduction 00000000	Upper bounds ○○○○○●○○○	Semiring provenance	Correlations	Lower bounds	Conclusion
•					

Theore<u>m</u>

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Introduction 00000000	Upper bounds ○○○○○●○○○	Semiring provenance	Correlations	Lower bounds	Conclusion
•					

Theorem

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Introduction 00000000	Upper bounds ooooo●ooo	Semiring provenance	Correlations	Lower bounds	Conclusion
•					

Theorem

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
<u> </u>					

Theorem

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Treelike i	instances				

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents I
- MSO query on *I* translates to
 - \rightarrow MSO query on *E* by [Courcelle, 1990]
 - \rightarrow tree automaton on *E* by [Thatcher and Wright, 1968]

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Treelike	instances				

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents I
- MSO query on *I* translates to
 - \rightarrow MSO query on *E* by [Courcelle, 1990]
 - \rightarrow tree automaton on *E* by [Thatcher and Wright, 1968]
- Uncertain instance: each fact can be present or absent
- $\rightarrow\,$ Possible subinstances are possible valuations of the encoding

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Treelike i	instances				

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents I
- MSO query on *I* translates to
 - \rightarrow MSO query on *E* by [Courcelle, 1990]
 - \rightarrow tree automaton on *E* by [Thatcher and Wright, 1968]
- Uncertain instance: each fact can be present or absent
- $\rightarrow\,$ Possible subinstances are possible valuations of the encoding

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Treelike	instances				

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents I
- MSO query on *I* translates to
 - \rightarrow MSO query on *E* by [Courcelle, 1990]
 - \rightarrow tree automaton on *E* by [Thatcher and Wright, 1968]
- Uncertain instance: each fact can be present or absent
- $\rightarrow\,$ Possible subinstances are possible valuations of the encoding

R a b b c b d

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Treelike	instances				

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents I
- MSO query on *I* translates to
 - \rightarrow MSO query on *E* by [Courcelle, 1990]
 - \rightarrow tree automaton on *E* by [Thatcher and Wright, 1968]
- Uncertain instance: each fact can be present or absent
- $\rightarrow\,$ Possible subinstances are possible valuations of the encoding

Our main	rocult on	trooliko instan	COC		
0000000	00000000	0000	000	0000000	000
Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion

Our main result on treelike instances

Theorem

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time in I a provenance circuit of q on I.

Upper bounds

Semiring provenance

Correlations

Lower bounds

Conclusion

Probability evaluation

Two alternate ways to see why probability evaluation is tractable on our provenance circuits:

Upper bounds

Semiring provenance

Correlations

Lower bounds

Conclusion

Probability evaluation

Two alternate ways to see why probability evaluation is tractable on our provenance circuits:

- They have bounded treewidth themselves
 - Follows the structure of the tree encoding
 - Width only depends on number of automaton states
 - \rightarrow Apply message passing [Lauritzen and Spiegelhalter, 1988]

Upper bounds

Semiring provenance

Correlations

Lower bounds

Conclusion

Probability evaluation

Two alternate ways to see why probability evaluation is tractable on our provenance circuits:

- They have bounded treewidth themselves
 - Follows the structure of the tree encoding
 - Width only depends on number of automaton states
 - \rightarrow Apply message passing [Lauritzen and Spiegelhalter, 1988]
- If the tree automaton is deterministic
 - All conjunctions depend on disjoint sets of input gates
 - All disjunctions are on mutually exclusive outcomes
 - \rightarrow Circuit is a d-DNNF [Darwiche, 2001]

Upper bounds

Semiring provenance

Correlation:

Lower bounds

Conclusion

Probability evaluation

Two alternate ways to see why probability evaluation is tractable on our provenance circuits:

- They have bounded treewidth themselves
 - Follows the structure of the tree encoding
 - Width only depends on number of automaton states
 - \rightarrow Apply message passing [Lauritzen and Spiegelhalter, 1988]
- If the tree automaton is deterministic
 - All conjunctions depend on disjoint sets of input gates
 - All disjunctions are on mutually exclusive outcomes
 - \rightarrow Circuit is a d-DNNF [Darwiche, 2001]

Corollary

Probabilistic query evaluation of MSO queries on treelike instances is in linear time up to arithmetic operations.

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Table of	contents				

2 Upper bounds

Correlations

5 Lower bounds

6 Conclusion

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Provenar	nce semirin	gs			

• Semiring of positive Boolean functions $(PosBool[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Provenan	ice semirin	gs			

- Semiring of positive Boolean functions $(PosBool[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: [Green et al., 2007]
 - Provenance generalized to arbitrary (commutative) semirings
 - For queries in the positive relational algebra and Datalog

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Provenan	ice semirin	gs			

- Semiring of positive Boolean functions $(PosBool[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: [Green et al., 2007]
 - Provenance generalized to arbitrary (commutative) semirings
 - For queries in the positive relational algebra and Datalog
- \rightarrow Our circuits capture $\operatorname{PosBool}[X]$ -provenance in this sense

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Provenan	ce semirin	gs			

- Semiring of positive Boolean functions $(PosBool[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: [Green et al., 2007]
 - Provenance generalized to arbitrary (commutative) semirings
 - For queries in the positive relational algebra and Datalog
- \rightarrow Our circuits capture $\operatorname{PosBool}[X]$ -provenance in this sense
 - The definitions match: all subinstances that satisfy the query

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Provenan	ce semirin	gs			

- Semiring of positive Boolean functions $(PosBool[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: [Green et al., 2007]
 - Provenance generalized to arbitrary (commutative) semirings
 - For queries in the positive relational algebra and Datalog
- \rightarrow Our circuits capture PosBool[X]-provenance in this sense
 - The definitions match: all subinstances that satisfy the query
 - For monotone queries, we can construct positive circuits

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Universal	provenanc	e			

- Universal semiring of polynomials $(\mathbb{N}[X], +, \times, 0, 1)$
 - \rightarrow The provenance for $\mathbb{N}[X]$ can be specialized to any $\mathcal{K}[X]$

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Univers	al provenar	ice			

• Universal semiring of polynomials $(\mathbb{N}[X], +, \times, 0, 1)$

 $\rightarrow\,$ The provenance for $\mathbb{N}[X]$ can be specialized to any $\mathcal{K}[X]$

- Captures many useful semirings:
 - counting the number of matches of a query
 - computing the security level of a query result
 - computing the cost of a query result

Introduction 00000000	Upper bounds 000000000	Semiring provenance	Correlations 000	Lower bounds	Conclusion

$\mathbb{N}[X]$ -provenance example

	R	
а	Ь	x_1
b	С	x_2
d	е	x_3
е	d	x_4
f	f	x_5

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
$\mathbb{N}[X]$ -prov	venance ex	ample			

$\exists x y z$	R(x, y)	\wedge	R(y,	z)
-----------------	---------	----------	------	----

	R	
а	Ь	x_1
Ь	С	x_2
d	е	x_3
е	d	x_4
f	f	x_5

 \rightarrow PosBool[X]-provenance:

 $\rightarrow \mathbb{N}[X]$ -provenance:

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
$\mathbb{N}[X]$ -prov	venance ex	ample			

	R	
а	b	x_1
b	С	x_2
d	е	x_3
е	d	x_4
f	f	x_5

 \rightarrow PosBool[X]-provenance:

 $\rightarrow \mathbb{N}[X]$ -provenance:

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
$\mathbb{N}[X]$ -prov	venance ex	ample			

	R	
а	b	x_1
b	С	x_2
d	е	x_3
е	d	x_4
f	f	x_5

- $\rightarrow \operatorname{PosBool}[X] \text{-provenance:} \\ (x_1 \land x_2)$
- $\rightarrow \mathbb{N}[X]$ -provenance:

• Definition of provenance for conjunctive queries:

 $(\mathbf{x}_1 \times \mathbf{x}_2)$

- Sum over query matches
- Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
$\mathbb{N}[X]$ -prov	venance ex-	ample			

	R		$\exists x y z R(x, y) \land R(y, z)$
			$\rightarrow \text{PosBool}[X]$ -provenance:
а	Ь	x_1	
b	С	x_2	$(x_1 \wedge x_2)$
d	е	x_3	$\rightarrow \mathbb{N}[X]$ -provenance:
е	d	x_4	
f	f	x_5	$(x_1 imes x_2)$

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
$\mathbb{N}[X]$ -prov	venance ex-	ample			

	R	
а	Ь	x_1
b	с	x_2
d	е	<i>x</i> 3
е	d	x_4
f	f	x_5

- $\rightarrow \operatorname{PosBool}[X]$ -provenance:
 - $(x_1 \wedge x_2) \vee (\mathbf{x_3} \wedge \mathbf{x_4})$
- $\rightarrow \mathbb{N}[X]$ -provenance:
- $(\mathbf{x}_1 \times \mathbf{x}_2) + (\mathbf{x}_3 \times \mathbf{x}_4)$
- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
$\mathbb{N}[X]$ -prov	venance ex-	ample			

	R	
а	b	<i>x</i> ₁
b	с	x_2
d	е	x_3
е	d	x_4
f	f	x_5

- $\rightarrow \operatorname{PosBool}[X]$ -provenance:
 - $(x_1 \wedge x_2) \lor (x_3 \wedge x_4)$
- $\rightarrow \mathbb{N}[X]$ -provenance:
- $(\mathbf{x}_1 \times \mathbf{x}_2) + (\mathbf{x}_3 \times \mathbf{x}_4)$
- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
$\mathbb{N}[X]$ -prov	venance ex	ample			

	R	
а	b	<i>x</i> ₁
Ь	с	x_2
d	е	X 3
е	d	x_4
f	f	x_5

- $\rightarrow \text{PosBool}[X]$ -provenance:
 - $(x_1 \wedge x_2) \lor (x_3 \wedge x_4)$

 $\rightarrow \mathbb{N}[X]$ -provenance:

$$(\mathbf{x}_1 \times \mathbf{x}_2) + (\mathbf{x}_3 \times \mathbf{x}_4) + (\mathbf{x}_4 \times \mathbf{x}_3)$$

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts
| Introduction
00000000 | Upper bounds | Semiring provenance | Correlations | Lower bounds | Conclusion
000 |
|--------------------------|--------------|---------------------|--------------|--------------|-------------------|
| $\mathbb{N}[X]$ -prov | venance ex- | ample | | | |

	R	
а	b	x_1
b	с	x_2
d	е	x_3
е	d	x_4
f	f	x_5

 $\exists x \, y \, z \, R(x, y) \land R(y, z)$

 $\rightarrow \operatorname{PosBool}[X] \text{-provenance:}$ $(x_1 \land x_2) \lor (x_3 \land x_4)$

 $\rightarrow \mathbb{N}[X]$ -provenance:

$$(x_1 \times x_2) + (x_3 \times x_4) + (x_4 \times x_3)$$

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
$\mathbb{N}[X]$ -pro	venance e	xample			

	R	
а	Ь	x_1
b	с	x_2
d	е	x_3
е	d	x_4
f	f	x_5

 $\exists x \, y \, z \, R(x, y) \land R(y, z)$ $\rightarrow \operatorname{PosBool}[X] \text{-provenance:}$ $(x_1 \land x_2) \lor (x_3 \land x_4) \lor x_5$ $\rightarrow \mathbb{N}[X] \text{-provenance:}$ $(x_1 \times x_2) + (x_3 \times x_4) + (x_4 \times x_3) + (x_5 \times x_5)$

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
$\mathbb{N}[X]$ -pro	venance e	xample			

	R	
а	Ь	x_1
Ь	С	x_2
d	е	x_3
е	d	x_4
f	f	x_5

 $\rightarrow \operatorname{PosBool}[X]\operatorname{-provenance:}$ $(x_1 \wedge x_2) \lor (x_3 \wedge x_4) \qquad \lor \ x_5$ $\rightarrow \mathbb{N}[X]\operatorname{-provenance:}$

 $\exists x \, y \, z \, R(x, y) \land R(y, z)$

$$(x_1 \times x_2) + (x_3 \times x_4) + (x_4 \times x_3) + (x_5 \times x_5)$$

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
$\mathbb{N}[X]$ -pro	venance e	xample			

	R	
а	Ь	x_1
Ь	С	x_2
d	е	x_3
е	d	x_4
f	f	x_5

 $\exists x \, y \, z \, R(x, y) \land R(y, z)$

 $\rightarrow \text{PosBool}[X]\text{-provenance:}$ $(x_1 \land x_2) \lor (x_3 \land x_4) \lor x_5$ $\rightarrow \mathbb{N}[X]\text{-provenance:}$ $(x_1 \times x_2) + (x_3 \times x_4) + (x_4 \times x_3) + (x_5 \times x_5)$

 $= x_1 x_2 + 2 x_3 x_4 + x_5^2$

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
$\mathbb{N}[X]$ -pro	venance e	xample			

	R	
а	Ь	x_1
b	С	x_2
d	е	x_3
е	d	x_4
f	f	x_5

 $\exists x y z R(x, y) \land R(y, z)$

 $\rightarrow \operatorname{PosBool}[X] \text{-provenance:} \\ (x_1 \land x_2) \lor (x_3 \land x_4) \qquad \lor \ x_5 \\ \rightarrow \mathbb{N}[X] \text{-provenance:}$

$$\begin{aligned} (x_1 \times x_2) + (x_3 \times x_4) + (x_4 \times x_3) + (x_5 \times x_5) \\ &= x_1 x_2 + 2 x_3 x_4 + x_5^2 \end{aligned}$$

- Definition of provenance for conjunctive queries:
 - Sum over query matches
 - Multiply over matched facts

How is $\mathbb{N}[X]$ more expressive than $\operatorname{PosBool}[X]$?

- → Coefficients: counting multiple matches
- \rightarrow Exponents: using facts multiple times

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Capturing	g $\mathbb{N}[X]$ -pro	venance			

Our construction can be extended to $\mathbb{N}[X]$ -provenance for conjunctive queries and unions of conjunctive queries (UCQ):

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
Capturing	$\mathbb{Z} \mathbb{N}[X]$ -prov	venance			

Our construction can be extended to $\mathbb{N}[X]$ -provenance for conjunctive queries and unions of conjunctive queries (UCQ):

Theorem

For any fixed UCQ q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a $\mathbb{N}[X]$ provenance circuit of q on I.

00000000	000000000	000	000	0000000	000		
Capturing $\mathbb{N}[X]$ -provenance							

Our construction can be extended to $\mathbb{N}[X]$ -provenance for conjunctive queries and unions of conjunctive queries (UCQ):

Theorem

For any fixed UCQ q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time a $\mathbb{N}[X]$ provenance circuit of q on I.

 \rightarrow What fails for MSO and Datalog?

• Unbounded maximal multiplicity of fact uses

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Table of	contents				

1 Introduction

Opper bounds

3 Semiring provenance

4 Correlations

5 Lower bounds

6 Conclusion

Introduction 00000000	Upper bounds	Semiring provenance	Correlations •00	Lower bounds	Conclusion
Correlat	ions				

- Our probabilistic instances assume independence on all facts
 - $\rightarrow \mbox{ Not very expressive!}$

Introduction 00000000	Upper bounds	Semiring provenance	Correlations •00	Lower bounds	Conclusion
Correlation	ons				

Our probabilistic instances assume independence on all facts
 → Not very expressive!

More expressive formalism: Block-Independent Disjoint instances:

<u>name</u>	city	iso	р
pods	san francisco	us	0.8
pods	los angeles	us	0.2
icalp	rome	it	0.1
icalp	florence	it	0.9

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
pc-tables	5				

More generally, pc-tables to represent arbitrary correlations

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion 000
pc-table	s				

More generally, pc-tables to represent arbitrary correlations

date	teacher	room	
04	John	C42	$\neg x_1$
04	Jane	C42	<i>x</i> ₁
11	John	C017	$x_2 \wedge \neg x_1$
11	Jane	C017	$x_2 \wedge x_1$
11	John	C47	$\neg x_2 \land \neg x_1$
11	Jane	C47	$ eg x_2 \wedge x_1$

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
pc-table	s				

More generally, pc-tables to represent arbitrary correlations

date	teacher	room	
04	John	C42	$\neg x_1$
04	Jane	C42	<i>x</i> ₁
11	John	C017	$x_2 \wedge \neg x_1$
11	Jane	C017	$x_2 \wedge x_1$
11	John	C47	$\neg x_2 \land \neg x_1$
11	Jane	C47	$ eg x_2 \wedge x_1$

 x_1 John gets sick

 \rightarrow Probability 0.1

 x_2 Room C017 is available

 \rightarrow Probability 0.2

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
Our resi	ilts				

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

ntroduction	Upper bounds	Semiring provenance	Correlations ○○●	Lower bounds	Conclusion
<u>^</u>	1.				

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.

ntroduction	Upper bounds 000000000	Semiring provenance	Correlations	Lower bounds	Conclusion
<u>^</u>	1.				

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.

"Tree-like" just means the underlying instance (easy correlations)

ntroduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
<u>^</u>	1.				

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.

"Tree-like" just means the underlying instance (easy correlations)

Theorem

Probabilistic query evaluation of MSO queries on treelike pc-tables is in linear time up to arithmetic operations.

ntroduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
<u>^</u>	1.				

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.

"Tree-like" just means the underlying instance (easy correlations)

Theorem

Probabilistic query evaluation of MSO queries on treelike pc-tables is in linear time up to arithmetic operations.

"Tree-like" refers to the underlying instance, adding facts to represent variable occurrences and co-occurrences

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Table of	contents				

1 Introduction

2 Upper bounds

3 Semiring provenance

4 Correlations

5 Lower bounds

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds •000000	Conclusion
Lower bo	ound goal				

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q} .
- Show that probabilistic query evaluation of q on $\mathcal I$ is hard

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds •000000	Conclusion
Lower bo	ound goal				

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q} .
- \bullet Show that probabilistic query evaluation of q on ${\mathcal I}$ is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds •000000	Conclusion 000
Lower bo	ound goal				

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q} .
- Show that probabilistic query evaluation of q on $\mathcal I$ is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
- \rightarrow Impose that ${\cal I}$ is tw-constructible:

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds •000000	Conclusion
Lower bo	ound goal				

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q} .
- Show that probabilistic query evaluation of q on $\mathcal I$ is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
- \rightarrow Impose that ${\cal I}$ is tw-constructible:
 - Given $k \in \mathbb{N}$, we can construct in time Poly(k)an instance of \mathcal{I} of treewidth $\geq k$

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds •000000	Conclusion
Lower bo	ound goal				

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q} .
- Show that probabilistic query evaluation of q on $\mathcal I$ is hard
- \rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
- \rightarrow Impose that ${\cal I}$ is tw-constructible:
 - Given $k \in \mathbb{N}$, we can construct in time $\operatorname{Poly}(k)$ an instance of \mathcal{I} of treewidth $\geq k$
 - → Otherwise instances of treewidth k in \mathcal{I} could be very large... see [Makowsky and Marino, 2003]

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
Our lowe	r bound re	sult			

Theorem

There is a first-order query q such that for any unbounded-tw, tw-constructible, arity-2 instance family \mathcal{I} , probabilistic query eval for q on \mathcal{I} is #P-hard under RP reductions.

Introduction 00000000	Upper bounds 000000000	Semiring provenance	Correlations	Lower bounds	Conclusion

• Let G be a planar graph of degree ≤ 3

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

- Let G be a planar graph of degree ≤ 3
- *G* is a topological minor of *H* if:

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

- Let G be a planar graph of degree ≤ 3
- *G* is a topological minor of *H* if:

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

- Let G be a planar graph of degree ≤ 3
- *G* is a topological minor of *H* if:

Introduction	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
0000000	00000000	0000	000	000000	000

- Let G be a planar graph of degree ≤ 3
- *G* is a topological minor of *H* if:

- Map vertices to vertices
- Map edges to vertex-disjoint paths

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Transformer		and a transmission	Lu.		

Topological minor extraction results

Theorem ([Robertson and Seymour, 1986])

For any planar graph G of degree ≤ 3 , for any graph H of sufficiently high treewidth, G is a topological minor of H.

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Terretorie		the state of the second	h.		

Topological minor extraction results

Theorem ([Robertson and Seymour, 1986])

For any planar graph G of degree ≤ 3 , for any graph H of sufficiently high treewidth, G is a topological minor of H.

More recently:

Theorem ([Chekuri and Chuzhoy, 2014])

There is a certain constant $c \in \mathbb{N}$ such that for any planar graph G of degree ≤ 3 , for any graph H of treewidth $\geq |G|^c$, G is a topological minor of H and we can embed G in H (with high probability) in PTIME in |H|.

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
1	C	1			

Intuition for our result: reduction

• Choose a problem from which to reduce:

- Must be **#P-hard** on planar degree-3 graphs
- Must be encodable to an FO query q (more later)
- $\rightarrow\,$ We use the problem of counting matchings

In a state of	f	مايت المعاد متاري			
Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds 0000●00	Conclusion

Intuition for our result: reduction

• Choose a problem from which to reduce:

- Must be **#P-hard** on planar degree-3 graphs
- Must be encodable to an FO query q (more later)
- $\rightarrow\,$ We use the problem of counting matchings
- Given an input graph G, compute $k := |G|^c$

Last Artes	C	In such at the			
Introduction 00000000	Upper bounds 000000000	Semiring provenance	Correlations	Lower bounds 0000●00	Conclusion 000

Intuition for our result: reduction

- Choose a problem from which to reduce:
 - Must be **#P-hard** on planar degree-3 graphs
 - Must be encodable to an FO query q (more later)
 - $\rightarrow\,$ We use the problem of counting matchings
- Given an input graph G, compute $k := |G|^c$
- Compute in PTIME an instance I of \mathcal{I} of treewidth $\geq k$
| In a state of | f | والمعادية والمعادية | | | |
|--------------------------|--------------|---------------------|--------------|--------------|------------|
| Introduction
00000000 | Upper bounds | Semiring provenance | Correlations | Lower bounds | Conclusion |

Intuition for our result: reduction

- Choose a problem from which to reduce:
 - Must be **#P-hard** on planar degree-3 graphs
 - Must be encodable to an FO query q (more later)
 - $\rightarrow\,$ We use the problem of counting matchings
- Given an input graph G, compute $k := |G|^c$
- Compute in PTIME an instance I of \mathcal{I} of treewidth $\geq k$
- Compute in randomized PTIME an embedding of G in I

	C	10 I II			
ntroduction 20000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion

Intuition for our result: reduction

- Choose a problem from which to reduce:
 - Must be **#P-hard** on planar degree-3 graphs
 - Must be encodable to an FO query q (more later)
 - \rightarrow We use the problem of counting matchings
- Given an input graph G, compute $k := |G|^c$
- Compute in PTIME an instance I of \mathcal{I} of treewidth $\geq k$
- Compute in randomized PTIME an embedding of G in I
- Construct a probability valuation π of I such that:
 - Unneccessary edges of *I* are removed
 - Probability eval for q gives the answer to the hard problem

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Technica	lissue				

- In the embedding, edges of G can become long paths in I
- q must answer the hard problem on G despite subdivisions

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Technica	lissue				

- In the embedding, edges of G can become long paths in I
- q must answer the hard problem on G despite subdivisions
- \rightarrow Our *q* restricts to a subset of the worlds of known weight and gives the right answer up to renormalizing

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Technica	lissue				

- $\begin{array}{c} G \\ 1 \\ \hline \end{array} \begin{array}{c} 2 \end{array} \Rightarrow \begin{array}{c} 1 \\ \hline \end{array} \end{array} \begin{array}{c} I \\ \hline \end{array} \begin{array}{c} I \\ \end{array} \begin{array}{c} I \\ \hline \end{array} \end{array} \begin{array}{c} I \\ \hline \end{array} \begin{array}{c} I \\ \hline \end{array} \begin{array}{c} I \\ \hline \end{array} \end{array} \begin{array}{c} I \\ \hline \end{array} \end{array} \begin{array}{c} I \\ I \end{array} \end{array} \begin{array}{c} I \\ I \end{array} \end{array} \begin{array}{c} I \\ I \end{array} \end{array} \end{array}$ \end{array}
 - In the embedding, edges of G can become long paths in I
 - q must answer the hard problem on G despite subdivisions
 - \rightarrow Our *q* restricts to a subset of the worlds of known weight and gives the right answer up to renormalizing
 - \rightarrow For non-probabilistic evaluation, using FO does not work [Frick and Grohe, 2001]
 - \rightarrow Lower bounds for non-probabilistic evaluation are for MSO [Ganian et al., 2014]

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Can we d	lo better?				

- We can use a non-monotone FO or a monotone MSO query
- Can we use a weaker query language? (e.g., monotone FO)

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion 000
Can we	do better?				

- We can use a non-monotone FO or a monotone MSO query
- Can we use a weaker query language? (e.g., monotone FO)
- \rightarrow We cannot use a connected CQ even with inequalities
- \rightarrow We cannot use a query closed under homomorphisms

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Can we	do better?				

- We can use a non-monotone FO or a monotone MSO query
- Can we use a weaker query language? (e.g., monotone FO)
- \rightarrow We cannot use a connected CQ even with inequalities
- \rightarrow We cannot use a query closed under homomorphisms
 - A good candidate query:

 $q:(\textit{E}(\textit{x},\textit{y}) \lor \textit{E}(\textit{y},\textit{x})) \land (\textit{E}(\textit{y},\textit{z}) \land \textit{E}(\textit{z},\textit{y})) \land \textit{x} \neq \textit{z}$

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion
Can we	do better?				

- We can use a non-monotone FO or a monotone MSO query
- Can we use a weaker query language? (e.g., monotone FO)
- \rightarrow We cannot use a connected CQ even with inequalities
- \rightarrow We cannot use a query closed under homomorphisms
 - A good candidate query:

 $q:(\textit{E}(\textit{x},\textit{y}) \lor \textit{E}(\textit{y},\textit{x})) \land (\textit{E}(\textit{y},\textit{z}) \land \textit{E}(\textit{z},\textit{y})) \land \textit{x} \neq \textit{z}$

- → This UCQ with inequalities is hard in a weaker sense (no polynomial-size OBDD representations of provenance)
- \rightarrow We don't know whether it's #P-hard (because of subdivisions)

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
Table of	contents				

1 Introduction

Opper bounds

3 Semiring provenance

4 Correlations

5 Lower bounds

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion •00
Summary	of our res	ults			

Upper. Probabilistic query eval. for MSO on treelike instances has linear data complexity up to arithmetic costs

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion •00
Summary	of our res	ults			

Upper. Probabilistic query eval. for MSO on treelike instances has linear data complexity up to arithmetic costs \rightarrow Also for bounded-treewidth correlations

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion •00
Summary	of our res	ults			

- Upper. Probabilistic query eval. for MSO on treelike instances has linear data complexity up to arithmetic costs
 - $\rightarrow\,$ Also for bounded-treewidth correlations
 - $\rightarrow\,$ Can compute a provenance circuit in linear time

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion •00
Summary	of our res	ults			

- Upper. Probabilistic query eval. for MSO on treelike instances has linear data complexity up to arithmetic costs
 - $\rightarrow\,$ Also for bounded-treewidth correlations
 - \rightarrow Can compute a provenance circuit in linear time
 - \rightarrow Also $\mathbb{N}[X]$ -provenance circuits for UCQ queries

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion •00
Summary	of our res	ults			

- Upper. Probabilistic query eval. for MSO on treelike instances has linear data complexity up to arithmetic costs
 - $\rightarrow\,$ Also for bounded-treewidth correlations
 - $\rightarrow\,$ Can compute a provenance circuit in linear time
 - \rightarrow Also $\mathbb{N}[X]$ -provenance circuits for UCQ queries
- Lower. PQE for FO on any tw-constructible, arity-2, unbounded-tw instance family is #P-hard under RP reductions

Introduction 00000000	Upper bounds	Semiring provenance	Correlations	Lower bounds	Conclusion •00
Summary	of our res	ults			

- Upper. Probabilistic query eval. for MSO on treelike instances has linear data complexity up to arithmetic costs
 - \rightarrow Also for bounded-treewidth correlations
 - → Can compute a provenance circuit in linear time → Also $\mathbb{N}[X]$ -provenance circuits for UCQ queries
- Lower. PQE for FO on any tw-constructible, arity-2, unbounded-tw instance family is **#P-hard** under RP reductions
 - \rightarrow Bounded treewidth is the right notion for tractability of PQE?

Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Two promising directions:

- Restricting both instances and queries
 - Hard query on unbounded-treewidth instances may be easy!
 - Query-specific tree decomposition or instance simplification?
 - Tractability criterion based on the instance and query?
 - Understand the connection to the query-based dichotomy?

Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Two promising directions:

- Restricting both instances and queries
 - Hard query on unbounded-treewidth instances may be easy!
 - Query-specific tree decomposition or instance simplification?
 - Tractability criterion based on the instance and query?
 - Understand the connection to the query-based dichotomy?
- Combined complexity: tractability in the query and data
 - Cost in the MSO query is nonelementary in general
 - Lower for some query languages? (... on some instances?)
 - Monadic Datalog approaches? [Gottlob et al., 2010]

 Introduction
 Upper bounds
 Semiring provenance
 Correlations
 Lower bounds
 Conclusion

 00000000
 0000
 0000
 000
 000
 000
 000

Future work (lower bounds)

• Can we show #P-hardness under usual P reductions?

 \rightarrow Depends on [Chekuri and Chuzhoy, 2014]

Introduction 00000000	Upper bounds	Semiring provenance	Correlations 000	Lower bounds	Conclusion
-					

- Future work (lower bounds)
 - Can we show #P-hardness under usual P reductions?
 - $\rightarrow\,$ Depends on [Chekuri and Chuzhoy, 2014]
 - Can we make this work for arbitrary arity signatures?
 - \rightarrow Problem: correlations between Gaifman graph edges
 - \rightarrow Extracting minors with non-overlapping edges from bounded-arity hypergraphs?

Introduction Upper bounds Semiring provenance Correlations Lower bounds 00000000 CO

Future work (lower bounds)

- Can we show #P-hardness under usual P reductions?
 - \rightarrow Depends on [Chekuri and Chuzhoy, 2014]
- Can we make this work for arbitrary arity signatures?
 - \rightarrow Problem: correlations between Gaifman graph edges
 - → Extracting minors with non-overlapping edges from bounded-arity hypergraphs?
- What about simpler query languages?
 - → Is there a monotone FO query where probability evaluation is hard on any constructible unbounded-treewidth family? (= under arbitrary subdivisions?)

Introduction Upper bounds Semiring provenance Correlations Lower bounds 00000000 COO

Future work (lower bounds)

- Can we show #P-hardness under usual P reductions?
 - \rightarrow Depends on [Chekuri and Chuzhoy, 2014]
- Can we make this work for arbitrary arity signatures?
 - → Problem: correlations between Gaifman graph edges
 - → Extracting minors with non-overlapping edges from bounded-arity hypergraphs?
- What about simpler query languages?
 - → Is there a monotone FO query where probability evaluation is hard on any constructible unbounded-treewidth family? (= under arbitrary subdivisions?)

Thanks for your attention!

References I

- Chaudhuri, S. and Vardi, M. Y. (1992).
 On the equivalence of recursive and nonrecursive Datalog programs.
 In *PODS*.
 Chekuri, C. and Chuzhov, J. (2014).
 - Chekuri, C. and Chuzhoy, J. (2014). Polynomial bounds for the grid-minor theorem. In STOC.
- Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009). Running tree automata on probabilistic XML. In *PODS*.

References II

Courcelle, B. (1990).

The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.

Inf. Comput., 85(1).

Dalvi, N. and Suciu, D. (2012). The dichotomy of probabilistic inference for unions of conjunctive queries. JACM, 59(6):30.

Darwiche, A. (2001).

On the tractable counting of theory models and its application to truth maintenance and belief revision.

J. Applied Non-Classical Logics, 11(1-2).

References III

- Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014). Circuits for datalog provenance. In *ICDT*.
- Frick, M. and Grohe, M. (2001).

Deciding first-order properties of locally tree-decomposable structures.

JACM, 48(6).

 Ganian, R., Hliněný, P., Langer, A., Obdržálek, J., Rossmanith, P., and Sikdar, S. (2014).
 Lower bounds on the complexity of MSO1 model-checking. *JCSS*, 1(80).

References IV

- Gottlob, G., Pichler, R., and Wei, F. (2010). Monadic datalog over finite structures of bounded treewidth. *TOCL*, 12(1):3.
- Green, T. J., Karvounarakis, G., and Tannen, V. (2007). Provenance semirings. In *PODS*.
- Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems.

J. Royal Statistical Society. Series B.

Makowsky, J. A. and Marino, J. (2003). Tree-width and the monadic quantifier hierarchy. *Theor. Comput. Sci.*, 303(1).

References V

- Robertson, N. and Seymour, P. D. (1986).
 Graph minors. V. Excluding a planar graph.
 J. Comb. Theory, Ser. B, 41(1).
- Thatcher, J. W. and Wright, J. B. (1968).

Generalized finite automata theory with an application to a decision problem of second-order logic. *Mathematical systems theory*, 2(1):57–81.

Instance:

N			
а	Ь		
b	С		
с	d		
d	е		
e f			
S			
а	с		
b e			

Gaifman graph: Tree decomp.: Instance: Ν abc а b а b С bce h С d d е cde еf f е С d S а C e

