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Query evaluation

Relational signature σ

→ Example: R (arity 1), S (arity 2), T (arity 1)

Fragment Q of Boolean constant-free queries
→ Example: Boolean conjunctive queries

(= existentially quantified conjunction of atoms)
→ Example of CQ: q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

Class I of instances
→ Example: all instances; acyclic instances; treelike instances; ...

→ Query evaluation problem for Q and I:
Fix a query q ∈ Q
Given an input instance I ∈ I
Determine whether I satisfies q (written I |= q)
Complexity as a function of I, not q (= data complexity)
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Query evaluation example

Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a
b
c

S
a a
b v
b w

T
v
w
b
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Probabilistic query evaluation

Signature σ, class Q of queries, class I of instances.
→ Probabilistic query evaluation problem for Q and I:

Fix a query q ∈ Q
Given an input instance I ∈ I

And given a probability valuation π
mapping facts of I to probabilities in [0, 1]
Compute the probability that I |= q
Data complexity: measured as a function of I and π

Semantics: (I, π) represents a probability distribution on
I′ ⊆ I:

Each fact F ∈ I is either present or absent with probability π(F)
Facts are independent
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Example of a probabilistic instance

S
a a 1
b v .5
b w .2

This (I, π) represents the following probability distribution:

.5× .2

S
a a
b v
b w

.5× (1− .2)

S
a a
b v

(1− .5)× .2

S
a a

b w

(1− .5)× (1− .2)

S
a a
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Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:

S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here

S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability:

.4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4×

(1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1−

(1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)

× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7))

= .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Example of probabilistic query evaluation
Signature σ, class Q of conjunctive queries, class I of all instances.

q : ∃x y R(x) ∧ S(x, y) ∧ T(y)

R
a 1
b .4
c .6

S
a a 1
b v .5
b w .2

T
v .3
w .7
b 1

The query is true iff R(b) is here and one of:
S(b, v) and T(v) are here
S(b,w) and T(w) are here

→ Probability: .4× (1− (1− .5× .3)× (1− .2× .7)) = .1076

6/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Complexity of probabilistic query evaluation (PQE)
Question: what is the complexity of probabilistic query evaluation
depending on the class Q of queries and class I of instances?

Existing dichotomy result: [Dalvi and Suciu, 2012]
Q are (unions of) conjunctive queries, I is all instances
There is a class S ⊆ Q of safe queries
PQE is PTIME for any q ∈ S on all instances
PQE is #P-hard for any q ∈ Q\S on all instances
q : ∃x y R(x) ∧ S(x, y) ∧ T(y) is unsafe!

Is there a smaller class I such that PQE is tractable for a larger Q?

Probabilistic XML: [Cohen et al., 2009]
Q are tree automata, I are trees
PQE is PTIME
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Trees and treelike instances

Goal: find an instance class I where PQE is tractable

Idea: take I to be treelike instances
Treelike: the treewidth is bounded by a constant

Trees have treewidth 1
Cycles have treewidth 2
k-cliques and (k − 1)-grids have treewidth k − 1

→ For non-probabilistic query evaluation [Courcelle, 1990]:
I: treelike instances; Q: monadic second-order (MSO) queries

→ non-probabilistic QE is in linear time

→ Does this extend to probabilistic QE?
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Our results

An instance-based dichotomy result:
Upper bound. For I the treelike instances and Q the MSO queries

→ PQE is in linear time modulo arithmetic costs

Also for expressive provenance representations
Also with bounded-treewidth correlations

Lower bound. For any unbounded-tw family I and Q FO queries
→ PQE is #P-hard under RP reductions assuming

Signature arity is 2 (graphs)
High-tw instances in I are easily constructible
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Technical tool: provenance
The provenance of a query q on an instance I:

Boolean function ϕ whose variables are the facts of I
A subinstance of I satisfies q iff ϕ is true for that valuation

→ For all ν : I → {0, 1} we have ν(ϕ) = 1 iff {F ∈ I | ν(F) = 1} |= q
Example query: ∃x y z R(x, y) ∧ R(y, z)

R
a b
b c
d e
e d
f f

→ Provenance: (f1 ∧ f2) ∨ (f3 ∧ f4) ∨ f5
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General roadmap

Use provenance for probabilistic query evaluation:
Compute a provenance representation efficiently

→ Probability of the provenance = probability of the query

Compute the provenance probability efficiently
(show it is not #P-hard as in the general case)

To solve the PQE problem on treelike instances for MSO
First solve the problem on trees with tree automata
Then use the results of [Courcelle, 1990]
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Uncertain trees

1

5
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2

43

A valuation of a tree decides whether to
keep or discard node labels.
Example tree automaton:
“Is there both a red and a green node?”
Valuation: {2, 3, 7}

The tree automaton accepts
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Provenance formulae and circuits on trees

1

5

76

2

43

Which valuations satisfy the query?

→ Provenance of a tree automaton A
on an uncertain tree T:

Boolean formula ϕ
on variables x2, x3, x7

→ A accepts ν(T) iff ν(ϕ) is true

Provenance circuit of A on T
[Deutch et al., 2014]

Boolean circuit C
with input gates g2, g3, g7

→ A accepts ν(T) iff ν(C) is true
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Is there both a red and a green node?

Provenance formula: (x2 ∨ x3) ∧ x7
Provenance circuit:
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g2 g3
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Our main result on trees

Theorem
For any bottom-up (nondet) tree automaton A and input tree T,
we can build a provenance circuit of A on T
in linear time in A and T.

Construct the Boolean provenance circuit bottom-up

in in
... ... ... ...

... ...q1 q2

in
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Treelike instances

Treelike instance I
Tree encoding: tree E on fixed alphabet, represents I
MSO query on I translates to

→ MSO query on E by [Courcelle, 1990]
→ tree automaton on E by [Thatcher and Wright, 1968]

Uncertain instance: each fact can be present or absent
→ Possible subinstances are possible valuations of the encoding

R
a b
b c
b d

R(a1, a2)

R(a2, a3)R(a2, a3)
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Our main result on treelike instances

Theorem
For any fixed MSO query q and k ∈ N,
for any input instance I of treewidth ≤ k,
we can build in linear time in I a provenance circuit of q on I.
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Probability evaluation
Two alternate ways to see why probability evaluation
is tractable on our provenance circuits:

They have bounded treewidth themselves
Follows the structure of the tree encoding
Width only depends on number of automaton states

→ Apply message passing [Lauritzen and Spiegelhalter, 1988]

If the tree automaton is deterministic
All conjunctions depend on disjoint sets of input gates
All disjunctions are on mutually exclusive outcomes

→ Circuit is a d-DNNF [Darwiche, 2001]

Corollary
Probabilistic query evaluation of MSO queries on treelike instances
is in linear time up to arithmetic operations.
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Provenance semirings

Semiring of positive Boolean functions (PosBool[X],∨,∧, f, t)

Provenance semirings: [Green et al., 2007]
Provenance generalized to arbitrary (commutative) semirings
For queries in the positive relational algebra and Datalog

→ Our circuits capture PosBool[X]-provenance in this sense
The definitions match: all subinstances that satisfy the query
For monotone queries, we can construct positive circuits
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Universal provenance

Universal semiring of polynomials (N[X],+,×, 0, 1)

→ The provenance for N[X] can be specialized to any K[X]

Captures many useful semirings:
counting the number of matches of a query
computing the security level of a query result
computing the cost of a query result

22/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

Universal provenance

Universal semiring of polynomials (N[X],+,×, 0, 1)

→ The provenance for N[X] can be specialized to any K[X]

Captures many useful semirings:
counting the number of matches of a query
computing the security level of a query result
computing the cost of a query result

22/40



Introduction Upper bounds Semiring provenance Correlations Lower bounds Conclusion

N[X]-provenance example

R
a b x1
b c x2
d e x3
e d x4
f f x5

∃x y z R(x, y) ∧ R(y, z)

→ PosBool[X]-provenance:

(x1 ∧ x2) ∨ (x3 ∧ x4) ∨ x5

→ N[X]-provenance:

(x1 × x2) + (x3 × x4) + (x4 × x3) + (x5 × x5)
= x1x2 + 2x3x4 + x25

Definition of provenance for conjunctive queries:
Sum over query matches
Multiply over matched facts

How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple matches
→ Exponents: using facts multiple times
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How is N[X] more expressive than PosBool[X]?
→ Coefficients: counting multiple matches
→ Exponents: using facts multiple times
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Capturing N[X]-provenance

Our construction can be extended to N[X]-provenance
for conjunctive queries and unions of conjunctive queries (UCQ):

Theorem
For any fixed UCQ q and k ∈ N,
for any input instance I of treewidth ≤ k,
we can build in linear time a N[X] provenance circuit of q on I.

→ What fails for MSO and Datalog?
Unbounded maximal multiplicity of fact uses
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Correlations

Our probabilistic instances assume independence on all facts
→ Not very expressive!

More expressive formalism: Block-Independent Disjoint instances:

name city iso p
pods san francisco us 0.8
pods los angeles us 0.2
icalp rome it 0.1
icalp florence it 0.9
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pc-tables
More generally, pc-tables to represent arbitrary correlations

date teacher room
04 John C42 ¬x1
04 Jane C42 x1
11 John C017 x2 ∧ ¬x1
11 Jane C017 x2 ∧ x1
11 John C47 ¬x2 ∧ ¬x1
11 Jane C47 ¬x2 ∧ x1

x1 John gets sick

→ Probability 0.1

x2 Room C017 is available

→ Probability 0.2
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Our results
Probabilistic query evaluation on instances with correlations
is tractable if the instance and correlations are bounded-tw:

Theorem
Probabilistic query evaluation of MSO queries on treelike BID
is in linear time up to arithmetic operations.

“Tree-like” just means the underlying instance (easy correlations)

Theorem
Probabilistic query evaluation of MSO queries on treelike pc-tables
is in linear time up to arithmetic operations.

“Tree-like” refers to the underlying instance, adding facts
to represent variable occurrences and co-occurrences
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Lower bound goal

Class I of unbounded-treewidth instances, query q in class Q.
Show that probabilistic query evaluation of q on I is hard

→ Restrict to arity-2 (= labeled graphs) for technical reasons
→ Impose that I is tw-constructible:

Given k ∈ N, we can construct in time Poly(k)
an instance of I of treewidth ≥ k

→ Otherwise instances of treewidth k in I could be very large...
see [Makowsky and Marino, 2003]
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Our lower bound result

Theorem
There is a first-order query q such that
for any unbounded-tw, tw-constructible, arity-2 instance family I,
probabilistic query eval for q on I is #P-hard under RP reductions.
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Idea: extracting topological minors

Let G be a planar graph of degree ≤ 3

G is a topological minor of H if:

G H

⇒

Map vertices to vertices
Map edges to vertex-disjoint paths
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Topological minor extraction results

Theorem ([Robertson and Seymour, 1986])
For any planar graph G of degree ≤ 3,
for any graph H of sufficiently high treewidth,
G is a topological minor of H.

More recently:

Theorem ([Chekuri and Chuzhoy, 2014])
There is a certain constant c ∈ N such that
for any planar graph G of degree ≤ 3,
for any graph H of treewidth ≥ |G|c,
G is a topological minor of H and
we can embed G in H (with high probability) in PTIME in |H|.
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Intuition for our result: reduction

Choose a problem from which to reduce:
Must be #P-hard on planar degree-3 graphs
Must be encodable to an FO query q (more later)

→ We use the problem of counting matchings

Given an input graph G, compute k ··= |G|c

Compute in PTIME an instance I of I of treewidth ≥ k
Compute in randomized PTIME an embedding of G in I
Construct a probability valuation π of I such that:

Unneccessary edges of I are removed
Probability eval for q gives the answer to the hard problem
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Technical issue
G I

1 2 ⇒ 1 2

In the embedding, edges of G can become long paths in I
q must answer the hard problem on G despite subdivisions

→ Our q restricts to a subset of the worlds of known weight
and gives the right answer up to renormalizing

→ For non-probabilistic evaluation, using FO does not work
[Frick and Grohe, 2001]

→ Lower bounds for non-probabilistic evaluation are for MSO
[Ganian et al., 2014]
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Can we do better?

We can use a non-monotone FO or a monotone MSO query
Can we use a weaker query language? (e.g., monotone FO)

→ We cannot use a connected CQ even with inequalities
→ We cannot use a query closed under homomorphisms

A good candidate query:

q : (E(x, y) ∨ E(y, x)) ∧ (E(y, z) ∧ E(z, y)) ∧ x ̸= z

→ This UCQ with inequalities is hard in a weaker sense
(no polynomial-size OBDD representations of provenance)

→ We don’t know whether it’s #P-hard (because of subdivisions)
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Summary of our results

Upper. Probabilistic query eval. for MSO on treelike instances
has linear data complexity up to arithmetic costs

→ Also for bounded-treewidth correlations
→ Can compute a provenance circuit in linear time

→ Also N[X]-provenance circuits for UCQ queries

Lower. PQE for FO on any tw-constructible, arity-2, unbounded-tw
instance family is #P-hard under RP reductions

→ Bounded treewidth is the right notion for tractability of PQE?
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Future work (upper bound)

Two promising directions:

Restricting both instances and queries
Hard query on unbounded-treewidth instances may be easy!
Query-specific tree decomposition or instance simplification?
Tractability criterion based on the instance and query?
Understand the connection to the query-based dichotomy?

Combined complexity: tractability in the query and data
Cost in the MSO query is nonelementary in general
Lower for some query languages? (... on some instances?)
Monadic Datalog approaches? [Gottlob et al., 2010]
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Future work (lower bounds)

Can we show #P-hardness under usual P reductions?
→ Depends on [Chekuri and Chuzhoy, 2014]

Can we make this work for arbitrary arity signatures?
→ Problem: correlations between Gaifman graph edges
→ Extracting minors with non-overlapping edges from

bounded-arity hypergraphs?

What about simpler query languages?
→ Is there a monotone FO query where probability evaluation

is hard on any constructible unbounded-treewidth family?
(= under arbitrary subdivisions?)

Thanks for your attention!
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Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N
a b
b c
c d
d e
e f

S
a c
b e

Gaifman graph:

a

b

c d

e

f

Tree decomp.:

a b c

b c e

c d e e f

Tree encoding:

N(a1, a2)

N(a2, a3)

S(a1, a3)

S(a2, a4)

N(a3, a1)

N(a1, a4)

N(a4, a1)
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