

Dynamic Membership for Regular Languages

Antoine Amarilli¹, Louis Jachiet¹, Charles Paperman²

January 13, 2022

¹Télécom Paris

²Université de Lille

Problem: dynamic membership for regular languages

• Fix a regular language L

ightarrow E.g., $L = (ab)^*$

• Read an **input word** w with n := |w|

 \rightarrow E.g., w = abbbab

Problem: dynamic membership for regular languages

• Fix a regular language L

ightarrow E.g., $L = (ab)^*$

• Read an input word w with n := |w|

 \rightarrow E.g., w = abbbab

- Preprocess it in O(n)
 - $\rightarrow\,$ E.g., we have $\textbf{w}\notin\textbf{L}$

Problem: dynamic membership for regular languages

• Fix a regular language L

ightarrow E.g., $L = (ab)^*$

- Read an **input word w** with n := |w|
 - \rightarrow E.g., w = abbbab
- Preprocess it in O(n)
 - \rightarrow E.g., we have $w \notin L$
- Maintain the membership of w to L under substitution updates
 - \rightarrow E.g., replace character at position 3 with **a**: we now have **w** \in **L**

- Model: RAM model
 - Cell size in $\Theta(\log(n))$
 - Unit-cost arithmetics
- Updates: **only substitutions** (so **n** never changes)
 - Otherwise, already tricky to maintain the current state of the word
- Memory usage: always polynomial in *n* by definition of the model
 - Our upper bounds only need O(n) space
 - The lower bounds apply without this assumption
- Preprocessing:
 - The upper bounds only need O(n) preprocessing
 - The lower bounds apply without this assumption

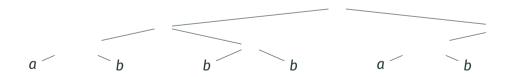
Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

Fix the language
$$L = (ab)^*$$
: start b

• Build a **balanced binary tree** on the input word **w** = **abaabb**

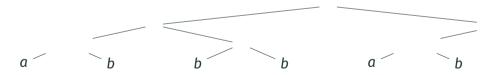
Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

• Build a **balanced binary tree** on the input word **w** = **abaabb**



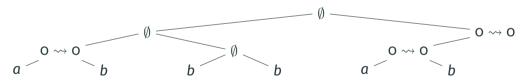
Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

- Build a **balanced binary tree** on the input word **w** = **abaabb**
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n



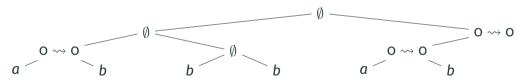
Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

- Build a **balanced binary tree** on the input word **w** = **abaabb**
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n



Fix the language
$$L = (ab)^*$$
: start $\longrightarrow 0$ b 1

- Build a **balanced binary tree** on the input word **w** = **abaabb**
- Label each node n by the transition monoid element: all pairs $q \rightsquigarrow q'$ such that we can go from q to q' by reading the factor below n



- The tree root describes if $w \in L$
- We can update the tree for each substitution in $O(\log n)$
- Can be improved to $O(\log n / \log \log n)$ with a log-ary tree

For our language $L = (ab)^*$ we can handle updates in O(1):

For our language $L = (ab)^*$ we can handle updates in O(1):

- Check that **n** is **even**
- Count violations: *a*'s at even positions and *b*'s at odd positions
- Maintain this counter in constant time
- We have $w \in L$ iff there are no violations

For our language $L = (ab)^*$ we can handle updates in O(1):

- Check that **n** is **even**
- Count violations: *a*'s at even positions and *b*'s at odd positions
- Maintain this counter in constant time
- We have $w \in L$ iff there are no violations

Question: what is the complexity of dynamic membership, depending on the fixed regular language *L*?

Dynamic word problem for monoids

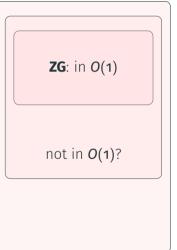
To answer the question, we study the dynamic word problem for monoids:

- Problem definition:
 - Fix a monoid *M* (set with associative law and neutral element)
 - Input: word w of elements of M
 - Maintain the **product** of the elements under substitution updates

To answer the question, we study the dynamic word problem for monoids:

- Problem definition:
 - Fix a **monoid M** (set with associative law and neutral element)
 - Input: word w of elements of M
 - Maintain the **product** of the elements under substitution updates
- This is a **special case** of dynamic membership for regular languages
 - e.g., it assumes that there is a **neutral element**
- This problem was studied by [Skovbjerg Frandsen et al., 1997]:
 - \rightarrow in O(1) for commutative monoids
 - \rightarrow in $O(\log \log n)$ for group-free monoids
 - \rightarrow in $\Theta(\log n / \log \log n)$ for a certain class of monoids

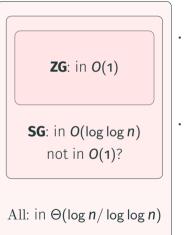
Our results on the dynamic word problem for monoids



• We identify the class **ZG** satisfying $x^{\omega+1}y = yx^{\omega+1}$:

- for any monoid in **ZG**, the problem is in O(1)
- for any monoid not in ZG, we can reduce from a problem that we conjecture is not in O(1)

Our results on the dynamic word problem for monoids

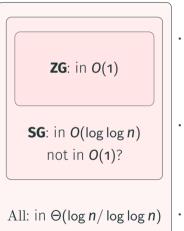


- We identify the class **ZG** satisfying $x^{\omega+1}y = yx^{\omega+1}$:
 - for any monoid in **ZG**, the problem is in O(1)
 - for any monoid not in ZG, we can reduce from a problem that we conjecture is not in O(1)

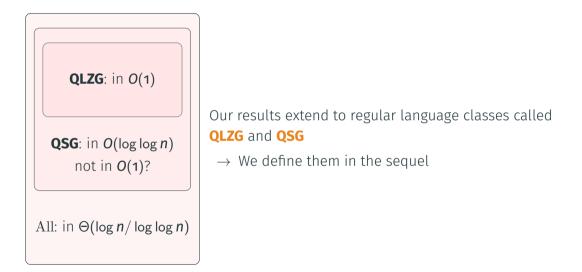
• We identify the class **SG** satisfying $x^{\omega+1}yx^{\omega} = x^{\omega}yx^{\omega+1}$

- for any monoid in **SG**, the problem is in $O(\log \log n)$
- for any monoid not in SG, it is in Ω(log n/ log log n) (lower bound of Skovbjerg Frandsen et al.)

Our results on the dynamic word problem for monoids



- We identify the class **ZG** satisfying $x^{\omega+1}y = yx^{\omega+1}$:
 - for any monoid in **ZG**, the problem is in O(1)
 - for any monoid not in ZG, we can reduce from a problem that we conjecture is not in O(1)
- We identify the class **SG** satisfying $x^{\omega+1}yx^{\omega} = x^{\omega}yx^{\omega+1}$
 - for any monoid in **SG**, the problem is in $O(\log \log n)$
 - for any monoid not in SG, it is in Ω(log n/ log log n) (lower bound of Skovbjerg Frandsen et al.)
- The problem is always in $O(\log n / \log \log n)$



- First: show the results on monoids
 - The dynamic word problem is in O(1) for monoids in ZG
 - The dynamic word problem is in $O(\log \log n)$ for monoids in SG
 - Lower bounds outside of \mathbf{ZG} and outside of \mathbf{SG}
- Second: extend the results to semigroups
- Third: extend the results to regular languages

Results on monoids

The dynamic word problem for commutative monoids is in O(1)

Algorithm:

- Count the number n_m of occurrences of each element m of M in w
- Maintain the counts n_m under updates
- Evaluate the product as $\prod_{m \in M} m^{n_m}$ in O(1)

The dynamic word problem for commutative monoids is in O(1)

Algorithm:

- Count the number n_m of occurrences of each element m of M in w
- Maintain the counts n_m under updates
- Evaluate the product as $\prod_{m \in M} m^{n_m}$ in O(1)

Lemma (Closure under monoid variety operations)

The **submonoids**, **direct products**, **quotients** of tractable monoids are also tractable

The monoids S¹ where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e*ae*be*

The monoids S¹ where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e*ae*be*

- **Preprocessing:** prepare a **doubly-linked list** *L* of the positions containing *a*'s and *b*'s
- Maintain the (unsorted) list when *a*'s and *b*'s are added/removed
- Evaluation:
 - If there are not exactly two positions in *L*, answer **no**
 - Otherwise, check that the smallest position of these two is an *a* and the largest is a *b*

The monoids S¹ where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e*ae*be*

- **Preprocessing:** prepare a **doubly-linked list** *L* of the positions containing *a*'s and *b*'s
- Maintain the (unsorted) list when *a*'s and *b*'s are added/removed
- Evaluation:
 - If there are not exactly two positions in *L*, answer **no**
 - Otherwise, check that the **smallest position** of these two is an **a** and the **largest** is a **b**

This technique applies to monoids where we intuitively need to track a constant number of non-neutral elements

Call **ZG** the variety of monoids satisfying $x^{\omega+1}y = yx^{\omega+1}$ for all x, y

- \rightarrow Elements of the form $x^{\omega+1}$ are those belonging to a subgroup of the monoid
- \rightarrow This includes in particular all **idempotents** (xx = x)
- \rightarrow The $x^{\omega+1}$ are central: they commute with all other elements

Call **ZG** the variety of monoids satisfying $x^{\omega+1}y = yx^{\omega+1}$ for all x, y

- \rightarrow Elements of the form $x^{\omega+1}$ are those belonging to a subgroup of the monoid
- \rightarrow This includes in particular all **idempotents** (xx = x)
- ightarrow The $x^{\omega+1}$ are central: they commute with all other elements

Lemma

ZG is exactly the monoids obtainable from **commutative monoids** and **monoids of the form S**¹ for a nilpotent semigroup **S** via the **monoid variety operators**

Theorem

The dynamic word problem for monoids in **ZG** is in O(1)

Call **SG** the variety of monoids satisfying $x^{\omega+1}yx^{\omega} = x^{\omega}yx^{\omega+1}$ for all x, y

 $\rightarrow\,$ Intuition: we can swap the elements of any given subgroup of the monoid

Examples:

- All **ZG** monoids (where elements $x^{\omega+1}$ commute with everything)
- All group-free monoids (where subgroups are trivial)
- Products of **ZG** monoids and group-free monoids

Call **SG** the variety of monoids satisfying $x^{\omega+1}yx^{\omega} = x^{\omega}yx^{\omega+1}$ for all x, y

 $\rightarrow\,$ Intuition: we can swap the elements of any given subgroup of the monoid

Examples:

- All **ZG** monoids (where elements $x^{\omega+1}$ commute with everything)
- All group-free monoids (where subgroups are trivial)
- Products of **ZG** monoids and group-free monoids

Theorem

The dynamic word problem for monoids in **SG** is in O(log log n)

- Idea: maintain the count of factors *ae***a*
- Problem: to do this, we need to "jump over" the e's

- Idea: maintain the count of factors *ae***a*
- Problem: to do this, we need to "jump over" the e's
- \rightarrow Van Emde Boas tree data structure:
 - maintain a subset of {1,..., n} under insertions/deletions
 - jump to the prev/next element in $O(\log \log n)$

- Idea: maintain the count of factors *ae***a*
- Problem: to do this, we need to "jump over" the e's
- \rightarrow Van Emde Boas tree data structure:
 - maintain a subset of {1,..., n} under insertions/deletions
 - jump to the prev/next element in $O(\log \log n)$

Full proof: induction on $\mathcal{J}\text{-}classes$ and Rees-Sushkevich theorem

Lower bounds

All lower bounds reduce from the **prefix problem** for some language *L*:

- Maintain a word under substitution updates
- Answer queries asking if a given prefix of the current word is in L

Lower bounds

All lower bounds reduce from the **prefix problem** for some language *L*:

- Maintain a word under substitution updates
- Answer queries asking if a given prefix of the current word is in L

Specifically:

- **Prefix-** \mathbb{Z}_d : for $\Sigma = \{0, ..., d-1\}$, does the input prefix sum to 0 modulo d? \rightarrow Known lower bound of $\Omega(\log n / \log \log n)$
- **Prefix-** U_1 : for $\Sigma = \{0, 1\}$, does the queried prefix contain a 0?
 - \rightarrow We conjecture that this cannot be done in O(1)

Lower bounds

All lower bounds reduce from the **prefix problem** for some language *L*:

- Maintain a word under substitution updates
- Answer queries asking if a given prefix of the current word is in L

Specifically:

- Prefix- \mathbb{Z}_d : for $\Sigma = \{0, \dots, d-1\}$, does the input prefix sum to 0 modulo d?
 - \rightarrow Known **lower bound** of $\Omega(\log n / \log \log n)$
- **Prefix-** U_1 : for $\Sigma = \{0, 1\}$, does the queried prefix contain a 0?
 - \rightarrow We conjecture that this cannot be done in O(1)

Theorem (Lower bounds on a monoid *M*)

- If M is not in SG, then for some $d \in \mathbb{N}$ the Prefix- \mathbb{Z}_d problem reduces to the dynamic word problem for M
- If M is in $SG \setminus ZG$, then $Prefix\text{-}U_1$ reduces to the dynamic word problem for M

From monoids to semigroups

- Semigroup: like a monoid but possibly without a neutral element
- · Dynamic word problem for semigroups: defined like for monoids

What is the difference?

- The language $\Sigma^*(ae^*a)\Sigma^*$ on $\Sigma = \{a, b, e\}$ has a neutral letter e that we intuitively need to "jump over"
- The language $\Sigma^* aa\Sigma^*$ on $\Sigma = \{a, b\}$ without e can be maintained in O(1) by counting the factors aa

- A submonoid of a semigroup S is a subset of S that has a neutral element
 - \rightarrow If **S** has a submonoid **M** then the dynamic word problem for **M** reduces to **S**
 - \rightarrow Lower bounds on *M* thus apply to S

- A **submonoid** of a semigroup **S** is a subset of **S** that has a **neutral element**
 - \rightarrow If **S** has a submonoid **M** then the dynamic word problem for **M** reduces to **S**
 - \rightarrow Lower bounds on *M* thus apply to S
- Hence, we define:
 - LSG: all submonoids are in SG
 - LZG: all submonoids are in ZG

We can show that, for semigroups:

Lemma

A semigroup satisfies the equation of **SG** iff it is in **LSG**

Hence, as the algorithm for **SG** works for semigroups as well as monoids:

Theorem

For any semigroup **S**:

- If **S** is in **SG**, then the dynamic word problem is in O(log log n)
- Otherwise, the dynamic word problem is $in \Theta(\log n / \log \log n)$

We have $ZG \neq LZG$, but we can still show:

Theorem

For any semigroup **S**:

- If **S** is in **LZG**, then the dynamic word problem is in O(1)
- Otherwise, it has a reduction from Prefix-U₁

We have $ZG \neq LZG$, but we can still show:

Theorem

For any semigroup **S**:

- If **S** is in **LZG**, then the dynamic word problem is in O(1)
- Otherwise, it has a reduction from Prefix-U₁

Proof sketch: only need to show the **upper bound**:

- We show the O(1) upper bound on the semidirect product ZG * D of ZG with definite semigroups
- We show an independent locality result: LZG = ZG * D
 - ightarrow Technical proof relying on finite categories and Straubing's delay theorem

From semigroups to languages

We now move back to dynamic membership for regular languages

- Dynamic membership for a regular language *L* is like the dynamic word problem for its syntactic semigroup
 - ightarrow This is like the transition monoid but without the neutral element
- Difference: not all elements of the syntactic semigroup can be achieved as one letter
- \rightarrow We use instead the stable semigroup, which intuitively groups letters together into blocks of a constant size

Call QLZG and QSG the languages whose stable semigroup is in LZG and SG

Theorem

Our results on **semigroups** in **SG** and **LZG** extend to **regular languages** in **QSG** and **QLZG**

Call QLZG and QSG the languages whose stable semigroup is in LZG and SG

Theorem

Our results on **semigroups** in **SG** and **LZG** extend to **regular languages** in **QSG** and **QLZG**

For any regular language **L**:

- If **L** is in **QLZG** then dynamic membership is in O(1)
- If L is in QSG \ QLZG then dynamic membership is in O(log log n) and has a reduction from prefix-U1
- If **L** is not in **QSG** then dynamic membership is in $\Theta(\log n / \log \log n)$

Conclusion and future work

- Can one show a **superconstant lower bound** on **prefix-***U*₁?
 - \rightarrow Help welcome! but new techniques probably needed

- Can one show a **superconstant lower bound** on **prefix-***U*₁?
 - \rightarrow Help welcome! but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - Question: can the intermediate classes be characterized?

- Can one show a **superconstant lower bound** on **prefix-***U*₁?
 - \rightarrow Help welcome! but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - Question: can the intermediate classes be characterized?
- Meta-dichotomy: what is the complexity of finding which case occurs?
 → Probably PSPACE-complete (depends on the representation)

- Can one show a **superconstant lower bound** on **prefix-***U*₁?
 - \rightarrow Help welcome! but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - Question: can the intermediate classes be characterized?
- Meta-dichotomy: what is the complexity of finding which case occurs?
 → Probably PSPACE-complete (depends on the representation)
- What about a dichotomy for the prefix problem or infix problem?
 - $\rightarrow\,$ We have an inelegant characterization

- Can one show a **superconstant lower bound** on **prefix-***U*₁?
 - \rightarrow Help welcome! but new techniques probably needed
- What about intermediate cases between O(1) and $O(\log \log n)$
 - Yes with randomization: one language in $\Theta(\log \log n)$ and one in $O(\sqrt{\log \log n})$
 - Question: can the intermediate classes be characterized?
- Meta-dichotomy: what is the complexity of finding which case occurs?
 → Probably PSPACE-complete (depends on the representation)
- What about a dichotomy for the **prefix problem** or **infix problem**?
 - \rightarrow We have an inelegant characterization
- Is there an intuitive way to understand QSG and QLZG?

• Extending from words to trees

 \rightarrow Probably challenging: the algebraic tools for trees are not as powerful

- Extending from words to trees
 - \rightarrow Probably challenging: the algebraic tools for trees are not as powerful
- Extending from regular languages to context-free languages
 - \rightarrow Also missing algebraic tools; probably related to trees

- Extending from words to trees
 - \rightarrow Probably challenging: the algebraic tools for trees are not as powerful
- Extending from regular languages to context-free languages
 - ightarrow Also missing algebraic tools; probably related to trees
- Supporting more expressive updates: insertion, deletion, cut and paste (?)
 - \rightarrow May be able to support insert/delete in a "linked list" model
 - \rightarrow Other interesting setting: insert/delete at the extremities (streaming)

- Extending from words to trees
 - \rightarrow Probably challenging: the algebraic tools for trees are not as powerful
- Extending from regular languages to context-free languages
 - ightarrow Also missing algebraic tools; probably related to trees
- Supporting more expressive updates: insertion, deletion, cut and paste (?)
 - \rightarrow May be able to support insert/delete in a "linked list" model
 - \rightarrow Other interesting setting: insert/delete at the extremities (streaming)
- Going beyond Boolean queries
 - \rightarrow Natural questions: counting matches, or enumerating matches
 - \rightarrow Idea: achieve efficient enumeration under updates

- $\cdot\,$ Extending from words to trees
 - \rightarrow Probably challenging: the algebraic tools for trees are not as powerful
- Extending from regular languages to context-free languages
 - ightarrow Also missing algebraic tools; probably related to trees
- Supporting more expressive updates: insertion, deletion, cut and paste (?)
 - \rightarrow May be able to support insert/delete in a "linked list" model
 - \rightarrow Other interesting setting: insert/delete at the extremities (streaming)
- Going beyond Boolean queries
 - \rightarrow Natural questions: counting matches, or enumerating matches
 - \rightarrow Idea: achieve efficient enumeration under updates

Thanks for your attention!

- Amarilli, A., Jachiet, L., and Paperman, C. (2021).
 Dynamic Membership for Regular Languages.
 In ICALP.
- Amarilli, A. and Paperman, C. (2021).
 Locality and Centrality: The Variety ZG.
 Under review.
- Fredman, M. and Saks, M. (1989).

The cell probe complexity of dynamic data structures. In *STOC*.

📔 Patrascu, M. (2008).

Lower bound techniques for data structures.

PhD thesis, Massachusetts Institute of Technology.

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).
 Dynamic word problems.

JACM, 44(2).

- Enumeration algorithms, links to circuit classes
 - Enumeration for regular spanners and grammars
 - In-order enumeration
 - Connections to knowledge compilation

 0×0

- Enumeration algorithms, links to circuit classes
 - Enumeration for regular spanners and grammars
 - In-order enumeration
 - Connections to knowledge compilation
- Efficient maintenance of query results on dynamic data
 - Supporting membership queries, counts, enumeration structures...
 - For regular languages, regular tree languages, context-free languages...
 - On words, trees, graphs...
 - Under substitution updates or other updates

- Enumeration algorithms, links to circuit classes
 - Enumeration for regular spanners and grammars
 - In-order enumeration
 - Connections to knowledge compilation
- Efficient maintenance of query results on dynamic data
 - Supporting membership queries, counts, enumeration structures...
 - For regular languages, regular tree languages, context-free languages...
 - On words, trees, graphs...
 - Under substitution updates or other updates
- Query evaluation on probabilistic data
 - Dichotomies for homomorphism-closed queries
 - Uniform model counting
 - Treewidth-based and grid-minor-based methods

0? 50% 1? 50%

 $0 \times 0 1$

- Enumeration algorithms, links to circuit classes
 - Enumeration for regular spanners and grammars
 - In-order enumeration
 - Connections to knowledge compilation
- Efficient maintenance of query results on dynamic data
 - Supporting membership queries, counts, enumeration structures...
 - For regular languages, regular tree languages, context-free languages...
 - On words, trees, graphs...
 - Under substitution updates or other updates
- Query evaluation on probabilistic data
 - Dichotomies for homomorphism-closed queries
 - Uniform model counting
 - Treewidth-based and grid-minor-based methods
- Database theory, provenance, logics...
- 0? 50% 1? 50%

 $0 \times 0 1$

Advertisement: TCS4F and "No free view? No review!"

TheoretiCS

A new **open-access journal** for **theoretical computer science** (managing editor with Nathanaël Fijalkow)

Advertisement: TCS4F and "No free view? No review!"

TheoretiCS

A new **open-access journal** for **theoretical computer science** (managing editor with Nathanaël Fijalkow)

A pledge to **reduce the carbon footprint** of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Advertisement: TCS4F and "No free view? No review!"

TheoretiCS

A new **open-access journal** for **theoretical computer science** (managing editor with Nathanaël Fijalkow)

A pledge to **reduce the carbon footprint** of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

A pledge **not to review** for conferences and journals that do not publish their research as **open access**

www.nofreeviewnoreview.org

(with Antonin Delpeuch)