
Dynamic Membership for Regular Languages

Antoine Amarilli1, Louis Jachiet1, Charles Paperman2

January 13, 2022
1Télécom Paris

2Université de Lille

1/23

Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)
→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

2/23

Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)
→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

2/23

Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)
→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

2/23

Design choices

• Model: RAM model
• Cell size in Θ(log(n))
• Unit-cost arithmetics

• Updates: only substitutions (so n never changes)
• Otherwise, already tricky to maintain the current state of the word

• Memory usage: always polynomial in n by definition of the model
• Our upper bounds only need O(n) space
• The lower bounds apply without this assumption

• Preprocessing:
• The upper bounds only need O(n) preprocessing
• The lower bounds apply without this assumption

3/23

A general-purpose algorithm in O(log n)

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input word w = abaabb

• Label each node n by the transition monoid element: all pairs q⇝ q′ such
that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

4/23

A general-purpose algorithm in O(log n)

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input word w = abaabb

• Label each node n by the transition monoid element: all pairs q⇝ q′ such
that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

4/23

A general-purpose algorithm in O(log n)

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input word w = abaabb

• Label each node n by the transition monoid element: all pairs q⇝ q′ such
that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

4/23

A general-purpose algorithm in O(log n)

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input word w = abaabb
• Label each node n by the transition monoid element: all pairs q⇝ q′ such

that we can go from q to q′ by reading the factor below n

a b b b a b

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

4/23

A general-purpose algorithm in O(log n)

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input word w = abaabb
• Label each node n by the transition monoid element: all pairs q⇝ q′ such

that we can go from q to q′ by reading the factor below n

a b b b a b
0⇝ 0 ∅ 0⇝ 0

∅ 0⇝ 0
∅

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

4/23

A general-purpose algorithm in O(log n)

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input word w = abaabb
• Label each node n by the transition monoid element: all pairs q⇝ q′ such

that we can go from q to q′ by reading the factor below n

a b b b a b
0⇝ 0 ∅ 0⇝ 0

∅ 0⇝ 0
∅

• The tree root describes if w ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree

4/23

Can we do better than O(log n)?

For our language L = (ab)∗ we can handle updates in O(1):

• Check that n is even
• Count violations: a’s at even positions and b’s at odd positions
• Maintain this counter in constant time
• We have w ∈ L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?

5/23

Can we do better than O(log n)?

For our language L = (ab)∗ we can handle updates in O(1):

• Check that n is even
• Count violations: a’s at even positions and b’s at odd positions
• Maintain this counter in constant time
• We have w ∈ L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?

5/23

Can we do better than O(log n)?

For our language L = (ab)∗ we can handle updates in O(1):

• Check that n is even
• Count violations: a’s at even positions and b’s at odd positions
• Maintain this counter in constant time
• We have w ∈ L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the
fixed regular language L?

5/23

Dynamic word problem for monoids

To answer the question, we study the dynamic word problem for monoids:

• Problem definition:
• Fix a monoid M (set with associative law and neutral element)
• Input: word w of elements of M
• Maintain the product of the elements under substitution updates

• This is a special case of dynamic membership for regular languages
• e.g., it assumes that there is a neutral element

• This problem was studied by [Skovbjerg Frandsen et al., 1997]:
→ in O(1) for commutative monoids
→ in O(log log n) for group-free monoids
→ in Θ(log n/ log log n) for a certain class of monoids

6/23

Dynamic word problem for monoids

To answer the question, we study the dynamic word problem for monoids:

• Problem definition:
• Fix a monoid M (set with associative law and neutral element)
• Input: word w of elements of M
• Maintain the product of the elements under substitution updates

• This is a special case of dynamic membership for regular languages
• e.g., it assumes that there is a neutral element

• This problem was studied by [Skovbjerg Frandsen et al., 1997]:
→ in O(1) for commutative monoids
→ in O(log log n) for group-free monoids
→ in Θ(log n/ log log n) for a certain class of monoids

6/23

Our results on the dynamic word problem for monoids

ZG: in O(1)

not in O(1)?

• We identify the class ZG satisfying xω+1y = yxω+1:
• for any monoid in ZG, the problem is in O(1)
• for any monoid not in ZG, we can reduce from a problem

that we conjecture is not in O(1)

• We identify the class SG satisfying xω+1yxω = xωyxω+1

• for any monoid in SG, the problem is in O(log log n)
• for any monoid not in SG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

• The problem is always in O(log n/ log log n)

7/23

Our results on the dynamic word problem for monoids

ZG: in O(1)

SG: in O(log log n)
not in O(1)?

All: in Θ(log n/ log log n)

• We identify the class ZG satisfying xω+1y = yxω+1:
• for any monoid in ZG, the problem is in O(1)
• for any monoid not in ZG, we can reduce from a problem

that we conjecture is not in O(1)

• We identify the class SG satisfying xω+1yxω = xωyxω+1

• for any monoid in SG, the problem is in O(log log n)
• for any monoid not in SG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

• The problem is always in O(log n/ log log n)

7/23

Our results on the dynamic word problem for monoids

ZG: in O(1)

SG: in O(log log n)
not in O(1)?

All: in Θ(log n/ log log n)

• We identify the class ZG satisfying xω+1y = yxω+1:
• for any monoid in ZG, the problem is in O(1)
• for any monoid not in ZG, we can reduce from a problem

that we conjecture is not in O(1)

• We identify the class SG satisfying xω+1yxω = xωyxω+1

• for any monoid in SG, the problem is in O(log log n)
• for any monoid not in SG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

• The problem is always in O(log n/ log log n)

7/23

Results on the dynamic membership problem for regular languages

QLZG: in O(1)

QSG: in O(log log n)
not in O(1)?

All: in Θ(log n/ log log n)

Our results extend to regular language classes called
QLZG and QSG
→ We define them in the sequel

8/23

Roadmap of proof techniques

• First: show the results on monoids
• The dynamic word problem is in O(1) for monoids in ZG
• The dynamic word problem is in O(log log n) for monoids in SG
• Lower bounds outside of ZG and outside of SG

• Second: extend the results to semigroups
• Third: extend the results to regular languages

9/23

Results on monoids

O(1) upper bound for monoids

Theorem
The dynamic word problem for commutative monoids is in O(1)

Algorithm:

• Count the number nm of occurrences of each element m of M in w
• Maintain the counts nm under updates
• Evaluate the product as

∏
m∈M mnm in O(1)

Lemma (Closure under monoid variety operations)
The submonoids, direct products, quotients of tractable monoids are also
tractable

10/23

O(1) upper bound for monoids

Theorem
The dynamic word problem for commutative monoids is in O(1)

Algorithm:

• Count the number nm of occurrences of each element m of M in w
• Maintain the counts nm under updates
• Evaluate the product as

∏
m∈M mnm in O(1)

Lemma (Closure under monoid variety operations)
The submonoids, direct products, quotients of tractable monoids are also
tractable

10/23

O(1) upper bound for monoids (cont’d)

Theorem
The monoids S1 where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e∗ae∗be∗

• Preprocessing: prepare a doubly-linked list L of the positions containing a’s
and b’s

• Maintain the (unsorted) list when a’s and b’s are added/removed
• Evaluation:

• If there are not exactly two positions in L, answer no
• Otherwise, check that the smallest position of these two is an a and the largest

is a b

This technique applies to monoids where we intuitively need to track a constant
number of non-neutral elements

11/23

O(1) upper bound for monoids (cont’d)

Theorem
The monoids S1 where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e∗ae∗be∗

• Preprocessing: prepare a doubly-linked list L of the positions containing a’s
and b’s

• Maintain the (unsorted) list when a’s and b’s are added/removed
• Evaluation:

• If there are not exactly two positions in L, answer no
• Otherwise, check that the smallest position of these two is an a and the largest

is a b

This technique applies to monoids where we intuitively need to track a constant
number of non-neutral elements

11/23

O(1) upper bound for monoids (cont’d)

Theorem
The monoids S1 where we add an identity to a nilpotent semigroup S are in O(1)

Idea of the proof: consider e∗ae∗be∗

• Preprocessing: prepare a doubly-linked list L of the positions containing a’s
and b’s

• Maintain the (unsorted) list when a’s and b’s are added/removed
• Evaluation:

• If there are not exactly two positions in L, answer no
• Otherwise, check that the smallest position of these two is an a and the largest

is a b

This technique applies to monoids where we intuitively need to track a constant
number of non-neutral elements

11/23

O(1) upper bound for monoids (end)

Call ZG the variety of monoids satisfying xω+1y = yxω+1 for all x, y

→ Elements of the form xω+1 are those belonging to a subgroup of the monoid
→ This includes in particular all idempotents (xx = x)
→ The xω+1 are central: they commute with all other elements

Lemma
ZG is exactly the monoids obtainable from commutative monoids and monoids of
the form S1 for a nilpotent semigroup S via the monoid variety operators

Theorem
The dynamic word problem for monoids in ZG is in O(1)

12/23

O(1) upper bound for monoids (end)

Call ZG the variety of monoids satisfying xω+1y = yxω+1 for all x, y

→ Elements of the form xω+1 are those belonging to a subgroup of the monoid
→ This includes in particular all idempotents (xx = x)
→ The xω+1 are central: they commute with all other elements

Lemma
ZG is exactly the monoids obtainable from commutative monoids and monoids of
the form S1 for a nilpotent semigroup S via the monoid variety operators

Theorem
The dynamic word problem for monoids in ZG is in O(1)

12/23

O(log log n) upper bound for monoids

Call SG the variety of monoids satisfying xω+1yxω = xωyxω+1 for all x, y

→ Intuition: we can swap the elements of any given subgroup of the monoid

Examples:

• All ZG monoids (where elements xω+1 commute with everything)
• All group-free monoids (where subgroups are trivial)
• Products of ZG monoids and group-free monoids

Theorem
The dynamic word problem for monoids in SG is in O(log log n)

13/23

O(log log n) upper bound for monoids

Call SG the variety of monoids satisfying xω+1yxω = xωyxω+1 for all x, y

→ Intuition: we can swap the elements of any given subgroup of the monoid

Examples:

• All ZG monoids (where elements xω+1 commute with everything)
• All group-free monoids (where subgroups are trivial)
• Products of ZG monoids and group-free monoids

Theorem
The dynamic word problem for monoids in SG is in O(log log n)

13/23

O(log log n) upper bound for monoids (proof sketch)

Example: Σ∗(ae∗a)Σ∗ on Σ = {a,b, e}

• Idea: maintain the count of factors ae∗a
• Problem: to do this, we need to “jump over” the e’s

→ Van Emde Boas tree data structure:
• maintain a subset of {1, . . . ,n} under insertions/deletions
• jump to the prev/next element in O(log log n)

Full proof: induction on J -classes and Rees-Sushkevich theorem

14/23

O(log log n) upper bound for monoids (proof sketch)

Example: Σ∗(ae∗a)Σ∗ on Σ = {a,b, e}

• Idea: maintain the count of factors ae∗a
• Problem: to do this, we need to “jump over” the e’s

→ Van Emde Boas tree data structure:
• maintain a subset of {1, . . . ,n} under insertions/deletions
• jump to the prev/next element in O(log log n)

Full proof: induction on J -classes and Rees-Sushkevich theorem

14/23

O(log log n) upper bound for monoids (proof sketch)

Example: Σ∗(ae∗a)Σ∗ on Σ = {a,b, e}

• Idea: maintain the count of factors ae∗a
• Problem: to do this, we need to “jump over” the e’s

→ Van Emde Boas tree data structure:
• maintain a subset of {1, . . . ,n} under insertions/deletions
• jump to the prev/next element in O(log log n)

Full proof: induction on J -classes and Rees-Sushkevich theorem

14/23

O(log log n) upper bound for monoids (proof sketch)

Example: Σ∗(ae∗a)Σ∗ on Σ = {a,b, e}

• Idea: maintain the count of factors ae∗a
• Problem: to do this, we need to “jump over” the e’s

→ Van Emde Boas tree data structure:
• maintain a subset of {1, . . . ,n} under insertions/deletions
• jump to the prev/next element in O(log log n)

Full proof: induction on J -classes and Rees-Sushkevich theorem

14/23

Lower bounds

All lower bounds reduce from the prefix problem for some language L:

• Maintain a word under substitution updates
• Answer queries asking if a given prefix of the current word is in L

Specifically:

• Prefix-Zd: for Σ = {0, . . . ,d − 1}, does the input prefix sum to 0 modulo d?
→ Known lower bound of Ω(log n/ log log n)

• Prefix-U1: for Σ = {0, 1}, does the queried prefix contain a 0?
→ We conjecture that this cannot be done in O(1)

Theorem (Lower bounds on a monoid M)

• If M is not in SG, then for some d ∈ N the Prefix-Zd problem reduces to the
dynamic word problem for M

• If M is in SG \ ZG, then Prefix-U1 reduces to the dynamic word problem for M

15/23

Lower bounds

All lower bounds reduce from the prefix problem for some language L:

• Maintain a word under substitution updates
• Answer queries asking if a given prefix of the current word is in L

Specifically:

• Prefix-Zd: for Σ = {0, . . . ,d − 1}, does the input prefix sum to 0 modulo d?
→ Known lower bound of Ω(log n/ log log n)

• Prefix-U1: for Σ = {0, 1}, does the queried prefix contain a 0?
→ We conjecture that this cannot be done in O(1)

Theorem (Lower bounds on a monoid M)

• If M is not in SG, then for some d ∈ N the Prefix-Zd problem reduces to the
dynamic word problem for M

• If M is in SG \ ZG, then Prefix-U1 reduces to the dynamic word problem for M

15/23

Lower bounds

All lower bounds reduce from the prefix problem for some language L:

• Maintain a word under substitution updates
• Answer queries asking if a given prefix of the current word is in L

Specifically:

• Prefix-Zd: for Σ = {0, . . . ,d − 1}, does the input prefix sum to 0 modulo d?
→ Known lower bound of Ω(log n/ log log n)

• Prefix-U1: for Σ = {0, 1}, does the queried prefix contain a 0?
→ We conjecture that this cannot be done in O(1)

Theorem (Lower bounds on a monoid M)

• If M is not in SG, then for some d ∈ N the Prefix-Zd problem reduces to the
dynamic word problem for M

• If M is in SG \ ZG, then Prefix-U1 reduces to the dynamic word problem for M
15/23

From monoids to semigroups

From monoids to semigroups

• Semigroup: like a monoid but possibly without a neutral element
• Dynamic word problem for semigroups: defined like for monoids

What is the difference?

• The language Σ∗(ae∗a)Σ∗ on Σ = {a,b, e} has a neutral letter e
that we intuitively need to “jump over”

• The language Σ∗aaΣ∗ on Σ = {a,b} without e
can be maintained in O(1) by counting the factors aa

16/23

Submonoids in semigroups

• A submonoid of a semigroup S is a subset of S that has a neutral element
→ If S has a submonoid M then the dynamic word problem for M reduces to S
→ Lower bounds on M thus apply to S

• Hence, we define:
• LSG: all submonoids are in SG
• LZG: all submonoids are in ZG

17/23

Submonoids in semigroups

• A submonoid of a semigroup S is a subset of S that has a neutral element
→ If S has a submonoid M then the dynamic word problem for M reduces to S
→ Lower bounds on M thus apply to S

• Hence, we define:
• LSG: all submonoids are in SG
• LZG: all submonoids are in ZG

17/23

Extending SG to semigroups

We can show that, for semigroups:

Lemma
A semigroup satisfies the equation of SG iff it is in LSG

Hence, as the algorithm for SG works for semigroups as well as monoids:

Theorem
For any semigroup S:

• If S is in SG, then the dynamic word problem is in O(log log n)
• Otherwise, the dynamic word problem is in Θ(log n/ log log n)

18/23

Case of ZG

We have ZG ̸= LZG, but we can still show:

Theorem
For any semigroup S:

• If S is in LZG, then the dynamic word problem is in O(1)
• Otherwise, it has a reduction from Prefix-U1

Proof sketch: only need to show the upper bound:

• We show the O(1) upper bound on the semidirect product ZG ∗ D
of ZG with definite semigroups

• We show an independent locality result: LZG = ZG ∗ D
→ Technical proof relying on finite categories and Straubing’s delay theorem

19/23

Case of ZG

We have ZG ̸= LZG, but we can still show:

Theorem
For any semigroup S:

• If S is in LZG, then the dynamic word problem is in O(1)
• Otherwise, it has a reduction from Prefix-U1

Proof sketch: only need to show the upper bound:

• We show the O(1) upper bound on the semidirect product ZG ∗ D
of ZG with definite semigroups

• We show an independent locality result: LZG = ZG ∗ D
→ Technical proof relying on finite categories and Straubing’s delay theorem

19/23

From semigroups to languages

From semigroups to languages

We now move back to dynamic membership for regular languages

• Dynamic membership for a regular language L is like the dynamic word
problem for its syntactic semigroup
→ This is like the transition monoid but without the neutral element

• Difference: not all elements of the syntactic semigroup can be achieved as
one letter

→ We use instead the stable semigroup, which intuitively groups letters
together into blocks of a constant size

20/23

From semigroups to languages (cont’d)

Call QLZG and QSG the languages whose stable semigroup is in LZG and SG

Theorem
Our results on semigroups in SG and LZG extend to regular languages in QSG
and QLZG

For any regular language L:

• If L is in QLZG then dynamic membership is in O(1)
• If L is in QSG \ QLZG then dynamic membership is in O(log log n) and has a

reduction from prefix-U1

• If L is not in QSG then dynamic membership is in Θ(log n/ log log n)

21/23

From semigroups to languages (cont’d)

Call QLZG and QSG the languages whose stable semigroup is in LZG and SG

Theorem
Our results on semigroups in SG and LZG extend to regular languages in QSG
and QLZG

For any regular language L:

• If L is in QLZG then dynamic membership is in O(1)
• If L is in QSG \ QLZG then dynamic membership is in O(log log n) and has a

reduction from prefix-U1

• If L is not in QSG then dynamic membership is in Θ(log n/ log log n)

21/23

Conclusion and future work

Summary and open problems

We have shown a (conditional) trichotomy on the dynamic word problem for
monoids and semigroups, and on dynamic membership for regular languages

• Can one show a superconstant lower bound on prefix-U1?
→ Help welcome! but new techniques probably needed

• What about intermediate cases between O(1) and O(log log n)
• Yes with randomization: one language in Θ(log log n) and one in O(

√
log log n)

• Question: can the intermediate classes be characterized?

• Meta-dichotomy: what is the complexity of finding which case occurs?
→ Probably PSPACE-complete (depends on the representation)

• What about a dichotomy for the prefix problem or infix problem?
→ We have an inelegant characterization

• Is there an intuitive way to understand QSG and QLZG?

22/23

Summary and open problems

We have shown a (conditional) trichotomy on the dynamic word problem for
monoids and semigroups, and on dynamic membership for regular languages

• Can one show a superconstant lower bound on prefix-U1?
→ Help welcome! but new techniques probably needed

• What about intermediate cases between O(1) and O(log log n)
• Yes with randomization: one language in Θ(log log n) and one in O(

√
log log n)

• Question: can the intermediate classes be characterized?

• Meta-dichotomy: what is the complexity of finding which case occurs?
→ Probably PSPACE-complete (depends on the representation)

• What about a dichotomy for the prefix problem or infix problem?
→ We have an inelegant characterization

• Is there an intuitive way to understand QSG and QLZG?

22/23

Summary and open problems

We have shown a (conditional) trichotomy on the dynamic word problem for
monoids and semigroups, and on dynamic membership for regular languages

• Can one show a superconstant lower bound on prefix-U1?
→ Help welcome! but new techniques probably needed

• What about intermediate cases between O(1) and O(log log n)
• Yes with randomization: one language in Θ(log log n) and one in O(

√
log log n)

• Question: can the intermediate classes be characterized?

• Meta-dichotomy: what is the complexity of finding which case occurs?
→ Probably PSPACE-complete (depends on the representation)

• What about a dichotomy for the prefix problem or infix problem?
→ We have an inelegant characterization

• Is there an intuitive way to understand QSG and QLZG?

22/23

Summary and open problems

We have shown a (conditional) trichotomy on the dynamic word problem for
monoids and semigroups, and on dynamic membership for regular languages

• Can one show a superconstant lower bound on prefix-U1?
→ Help welcome! but new techniques probably needed

• What about intermediate cases between O(1) and O(log log n)
• Yes with randomization: one language in Θ(log log n) and one in O(

√
log log n)

• Question: can the intermediate classes be characterized?

• Meta-dichotomy: what is the complexity of finding which case occurs?
→ Probably PSPACE-complete (depends on the representation)

• What about a dichotomy for the prefix problem or infix problem?
→ We have an inelegant characterization

• Is there an intuitive way to understand QSG and QLZG?

22/23

Summary and open problems

We have shown a (conditional) trichotomy on the dynamic word problem for
monoids and semigroups, and on dynamic membership for regular languages

• Can one show a superconstant lower bound on prefix-U1?
→ Help welcome! but new techniques probably needed

• What about intermediate cases between O(1) and O(log log n)
• Yes with randomization: one language in Θ(log log n) and one in O(

√
log log n)

• Question: can the intermediate classes be characterized?

• Meta-dichotomy: what is the complexity of finding which case occurs?
→ Probably PSPACE-complete (depends on the representation)

• What about a dichotomy for the prefix problem or infix problem?
→ We have an inelegant characterization

• Is there an intuitive way to understand QSG and QLZG?

22/23

Summary and open problems

We have shown a (conditional) trichotomy on the dynamic word problem for
monoids and semigroups, and on dynamic membership for regular languages

• Can one show a superconstant lower bound on prefix-U1?
→ Help welcome! but new techniques probably needed

• What about intermediate cases between O(1) and O(log log n)
• Yes with randomization: one language in Θ(log log n) and one in O(

√
log log n)

• Question: can the intermediate classes be characterized?

• Meta-dichotomy: what is the complexity of finding which case occurs?
→ Probably PSPACE-complete (depends on the representation)

• What about a dichotomy for the prefix problem or infix problem?
→ We have an inelegant characterization

• Is there an intuitive way to understand QSG and QLZG?
22/23

Big-picture directions

• Extending from words to trees
→ Probably challenging: the algebraic tools for trees are not as powerful

• Extending from regular languages to context-free languages
→ Also missing algebraic tools; probably related to trees

• Supporting more expressive updates: insertion, deletion, cut and paste (?)
→ May be able to support insert/delete in a “linked list” model
→ Other interesting setting: insert/delete at the extremities (streaming)

• Going beyond Boolean queries
→ Natural questions: counting matches, or enumerating matches
→ Idea: achieve efficient enumeration under updates

Thanks for your attention!

23/23

Big-picture directions

• Extending from words to trees
→ Probably challenging: the algebraic tools for trees are not as powerful

• Extending from regular languages to context-free languages
→ Also missing algebraic tools; probably related to trees

• Supporting more expressive updates: insertion, deletion, cut and paste (?)
→ May be able to support insert/delete in a “linked list” model
→ Other interesting setting: insert/delete at the extremities (streaming)

• Going beyond Boolean queries
→ Natural questions: counting matches, or enumerating matches
→ Idea: achieve efficient enumeration under updates

Thanks for your attention!

23/23

Big-picture directions

• Extending from words to trees
→ Probably challenging: the algebraic tools for trees are not as powerful

• Extending from regular languages to context-free languages
→ Also missing algebraic tools; probably related to trees

• Supporting more expressive updates: insertion, deletion, cut and paste (?)
→ May be able to support insert/delete in a “linked list” model
→ Other interesting setting: insert/delete at the extremities (streaming)

• Going beyond Boolean queries
→ Natural questions: counting matches, or enumerating matches
→ Idea: achieve efficient enumeration under updates

Thanks for your attention!

23/23

Big-picture directions

• Extending from words to trees
→ Probably challenging: the algebraic tools for trees are not as powerful

• Extending from regular languages to context-free languages
→ Also missing algebraic tools; probably related to trees

• Supporting more expressive updates: insertion, deletion, cut and paste (?)
→ May be able to support insert/delete in a “linked list” model
→ Other interesting setting: insert/delete at the extremities (streaming)

• Going beyond Boolean queries
→ Natural questions: counting matches, or enumerating matches
→ Idea: achieve efficient enumeration under updates

Thanks for your attention!

23/23

Big-picture directions

• Extending from words to trees
→ Probably challenging: the algebraic tools for trees are not as powerful

• Extending from regular languages to context-free languages
→ Also missing algebraic tools; probably related to trees

• Supporting more expressive updates: insertion, deletion, cut and paste (?)
→ May be able to support insert/delete in a “linked list” model
→ Other interesting setting: insert/delete at the extremities (streaming)

• Going beyond Boolean queries
→ Natural questions: counting matches, or enumerating matches
→ Idea: achieve efficient enumeration under updates

Thanks for your attention!
23/23

References i

Amarilli, A., Jachiet, L., and Paperman, C. (2021).
Dynamic Membership for Regular Languages.
In ICALP.
Amarilli, A. and Paperman, C. (2021).
Locality and Centrality: The Variety ZG.
Under review.
Fredman, M. and Saks, M. (1989).
The cell probe complexity of dynamic data structures.
In STOC.

http://arxiv.org/abs/2102.07728
https://easyconferences.eu/icalp2021/
http://arxiv.org/abs/2102.07724

References ii

Patrascu, M. (2008).
Lower bound techniques for data structures.
PhD thesis, Massachusetts Institute of Technology.

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).
Dynamic word problems.
JACM, 44(2).

Other research themes

- 00
- 01
- 10 ...

• Enumeration algorithms, links to circuit classes
• Enumeration for regular spanners and grammars
• In-order enumeration
• Connections to knowledge compilation

0 0 0 1
1

• Efficient maintenance of query results on dynamic data
• Supporting membership queries, counts, enumeration structures...
• For regular languages, regular tree languages, context-free languages...
• On words, trees, graphs...
• Under substitution updates or other updates

0?
1?

50%
50%

• Query evaluation on probabilistic data
• Dichotomies for homomorphism-closed queries
• Uniform model counting
• Treewidth-based and grid-minor-based methods

• Database theory, provenance, logics...

Other research themes

- 00
- 01
- 10 ...

• Enumeration algorithms, links to circuit classes
• Enumeration for regular spanners and grammars
• In-order enumeration
• Connections to knowledge compilation

0 0 0 1
1

• Efficient maintenance of query results on dynamic data
• Supporting membership queries, counts, enumeration structures...
• For regular languages, regular tree languages, context-free languages...
• On words, trees, graphs...
• Under substitution updates or other updates

0?
1?

50%
50%

• Query evaluation on probabilistic data
• Dichotomies for homomorphism-closed queries
• Uniform model counting
• Treewidth-based and grid-minor-based methods

• Database theory, provenance, logics...

Other research themes

- 00
- 01
- 10 ...

• Enumeration algorithms, links to circuit classes
• Enumeration for regular spanners and grammars
• In-order enumeration
• Connections to knowledge compilation

0 0 0 1
1

• Efficient maintenance of query results on dynamic data
• Supporting membership queries, counts, enumeration structures...
• For regular languages, regular tree languages, context-free languages...
• On words, trees, graphs...
• Under substitution updates or other updates

0?
1?

50%
50%

• Query evaluation on probabilistic data
• Dichotomies for homomorphism-closed queries
• Uniform model counting
• Treewidth-based and grid-minor-based methods

• Database theory, provenance, logics...

Other research themes

- 00
- 01
- 10 ...

• Enumeration algorithms, links to circuit classes
• Enumeration for regular spanners and grammars
• In-order enumeration
• Connections to knowledge compilation

0 0 0 1
1

• Efficient maintenance of query results on dynamic data
• Supporting membership queries, counts, enumeration structures...
• For regular languages, regular tree languages, context-free languages...
• On words, trees, graphs...
• Under substitution updates or other updates

0?
1?

50%
50%

• Query evaluation on probabilistic data
• Dichotomies for homomorphism-closed queries
• Uniform model counting
• Treewidth-based and grid-minor-based methods

• Database theory, provenance, logics...

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaël Fijalkow)

A pledge to reduce the carbon footprint of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

A pledge not to review for conferences and journals that do not
publish their research as open access

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaël Fijalkow)

A pledge to reduce the carbon footprint of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

A pledge not to review for conferences and journals that do not
publish their research as open access

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

A new open-access journal for theoretical computer science
(managing editor with Nathanaël Fijalkow)

A pledge to reduce the carbon footprint of your research travels

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

A pledge not to review for conferences and journals that do not
publish their research as open access

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

www.tcs4f.org
www.nofreeviewnoreview.org

	Results on monoids
	From monoids to semigroups
	From semigroups to languages
	Conclusion and future work
	Appendix

