Query Evaluation on Probabilistic Data A Story of Dichotomies

Antoine Amarilli

May 19, 2020

Télécom Paris

Table of contents

Introduction and problem statement

```
Existing results
More general queries: Dichotomy on homomorphism-closed queries
More restricted instances: Words, trees and bounded treewidth
More restricted instances: Unweighted instances
Conclusion and open problems
```


Uncertain data management

Relational databases manage data, represented here as a labeled graph

Uncertain data management

Relational databases manage data, represented here as a labeled graph
WorksAt

Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	
Télécom Paris Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

A. Télécom Paris ParisTech	
B. Paris Sud	
B. IP Paris	
i. Technion Paris-Saclay	
	U. Oxford

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt		
Antoine	Télécom Paris	
Antoine	Paris Sud	
Benny	Paris Sud	
Benny	Technion	
İsmail	U. Oxford	
MemberOf		
Télécom Paris		
Télécom Paris	IP Paris	
Paris Sud	IP Paris	
Paris Sud	Paris-Saclay	
Technion	CESAER	

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

\rightarrow Problem: we are not certain about the true state of the data

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W : subset of facts

Uncertain data model

A. \longrightarrow Télécom Paris ----> ParisTech

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts

Uncertain data model

A. \longrightarrow Télécom Paris ----> ParisTech

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W : subset of facts
- What is the probability of this possible world?

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world?

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world? 0.03\%

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world? 0.03\%

$$
\operatorname{Pr}(W)=\left(\prod_{F \in W} \operatorname{Pr}(F)\right) \times\left(\prod_{F \notin W}(1-\operatorname{Pr}(F))\right)
$$

Queries

A central task in databases is to evaluate queries

Queries

A central task in databases is to evaluate queries

- Query: maps a graph (without probabilities) to YES/NO

Queries

A central task in databases is to evaluate queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$

Queries

A central task in databases is to evaluate queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
\rightarrow Formally: an existentially quantified conjunction of atoms (edges)

Queries

A central task in databases is to evaluate queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
\rightarrow Formally: an existentially quantified conjunction of atoms (edges)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\rightarrow e.g., $(\exists x y z x \longrightarrow y \longrightarrow z) \vee(\exists x y z w x \longrightarrow y \quad z \longrightarrow w)$

Queries

A central task in databases is to evaluate queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern?
- e.g., $\exists x y z x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
\rightarrow Formally: an existentially quantified conjunction of atoms (edges)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\rightarrow e.g., $(\exists x y z x \longrightarrow y \longrightarrow z) \vee(\exists x y z w x \longrightarrow y \quad z \longrightarrow w)$
- Formally: a finite disjunction of CQs

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q: x \longrightarrow y$ Z
- The input is a TID D:

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$:
 $y \longrightarrow z$
- The input is a TID D :

- The output is the total probability of the worlds which satisfy the query:

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$:
 Z
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ:

- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W=Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$:
 Z
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME):

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q:$
 $\rightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): 1 -

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: \qquad y \qquad $\rightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W=Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): $1-(1-80 \%) \times$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q:$
 $\rightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \in Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): $1-(1-80 \%) \times(1-$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$:

\qquad
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W=Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): $1-(1-80 \%) \times(1-($

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$:
 Z
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W=Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): $1-(1-80 \%) \times(1-(1-$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$: \qquad y \qquad \longrightarrow Z
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-40 \%)) \times$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$:
 y \qquad $\rightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W=Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-40 \%)) \times$ $(1-(1-50 \%) \times(1-90 \%)))$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$:
 y \qquad Z
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-40 \%)) \times$ $(1-(1-50 \%) \times(1-90 \%))) \times(1-80 \% \times(1-(1-90 \%) \times(1-90 \%)))$,

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the $C Q$: \qquad y \qquad Z
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
- We can always compute the probability in exponential time (go over all possibilities)
- Here we can do better (in PTIME): $1-(1-80 \%) \times(1-(1-(1-10 \%) \times(1-40 \%)) \times$ $(1-(1-50 \%) \times(1-90 \%))) \times(1-80 \% \times(1-(1-90 \%) \times(1-90 \%)))$, i.e., 97.65792%

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data In this talk: several dichotomies on the PQE problem:

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data In this talk: several dichotomies on the PQE problem:

- Existing results:
- $\operatorname{PQE}(Q)$ is in \#P for any UCQ Q and is \#P-hard for some CQs
- Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either \#P-hard or PTIME

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data
In this talk: several dichotomies on the PQE problem:

- Existing results:
- PQE(Q) is in \#P for any UCQ Q and is \#P-hard for some CQs
- Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either \#P-hard or PTIME
- More general queries: dichotomy on homomorphism-closed queries
- $\operatorname{PQE}(Q)$ is \#P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data
In this talk: several dichotomies on the PQE problem:

- Existing results:
- PQE(Q) is in \#P for any UCQ Q and is \#P-hard for some CQs
- Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either \#P-hard or PTIME
- More general queries: dichotomy on homomorphism-closed queries
- PQE(Q) is \#P-hard for all homomorphism-closed queries not equivalent to a safe UCQ
- Restricted instances: $\operatorname{PQE}(Q)$ for MSO queries...
- Is in PTIME if the input data is restricted to have bounded treewidth
- Is intractable otherwise under some assumptions

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Note that we study data complexity, i.e., Q is fixed and the input is the data
In this talk: several dichotomies on the PQE problem:

- Existing results:
- PQE(Q) is in \#P for any UCQ Q and is \#P-hard for some CQs
- Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either \#P-hard or PTIME
- More general queries: dichotomy on homomorphism-closed queries
- PQE(Q) is \#P-hard for all homomorphism-closed queries not equivalent to a safe UCQ
- Restricted instances: $\operatorname{PQE}(Q)$ for MSO queries...
- Is in PTIME if the input data is restricted to have bounded treewidth
- Is intractable otherwise under some assumptions
- Restricted instances: if all probabilities are 50% then the complexity is the same

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

Basic complexity results

- Whenever we can evaluate Q in PTIME, then $\operatorname{PQE}(Q)$ is in \#P

Basic complexity results

- Whenever we can evaluate Q in PTIME, then $\operatorname{PQE}(Q)$ is in \#P
- \#P: counting class of problems expressible as the number of accepting paths of a nondeterministic polynomial-time Turing Machine
\rightarrow Nondeterministically guess a possible world, then test the query
\rightarrow In particular, $\operatorname{PQE}(Q)$ is in \#P for any UCQ Q

Basic complexity results

- Whenever we can evaluate Q in PTIME, then $\operatorname{PQE}(Q)$ is in \#P
- \#P: counting class of problems expressible as the number of accepting paths of a nondeterministic polynomial-time Turing Machine
\rightarrow Nondeterministically guess a possible world, then test the query
\rightarrow In particular, PQE(Q) is in \#P for any UCQ Q
- For some queries Q, the task $\operatorname{PQE}(Q)$ is in PTIME

Basic complexity results

- Whenever we can evaluate Q in PTIME, then $\operatorname{PQE}(Q)$ is in \# P
- \#P: counting class of problems expressible as the number of accepting paths of a nondeterministic polynomial-time Turing Machine
\rightarrow Nondeterministically guess a possible world, then test the query
\rightarrow In particular, PQE(Q) is in \#P for any UCQ Q
- For some queries Q, the task $\operatorname{PQE}(Q)$ is in PTIME
\rightarrow e.g., single-atom CQs
\rightarrow e.g., x \qquad y \rightarrow Z

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ Q :

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$

PQE is sometimes \#P-hard

Let us show that PQE (Q) is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

$$
\begin{aligned}
& a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} \\
& a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} \\
& a_{3}^{\prime} \xrightarrow{1 / 2} a_{3}
\end{aligned}
$$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

$$
\begin{array}{ll}
a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} & b_{1} \xrightarrow{1 / 2} b_{1}^{\prime} \\
a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} & \\
a_{3}^{\prime} \xrightarrow{1 / 2} a_{3} & b_{2} \xrightarrow{1 / 2} b_{2}^{\prime}
\end{array}
$$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

PQE is sometimes \#P-hard

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the $\mathrm{CQ} Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

Idea: Satisfying valuations of ϕ correspond to possible worlds with a match of Q

The "small" Dalvi and Suciu dichotomy

- Self-join-free CQ: only one edge of each color (no repeated color)

The "small" Dalvi and Suciu dichotomy

- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)

Let Q be a self-join-free CQ:

- If Q is a star, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

The "small" Dalvi and Suciu dichotomy

- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)

Let Q be a self-join-free CQ:

- If Q is a star, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard
- A star is a CQ where each connected component has a separator variable that occurs in every edge of the component

The "small" Dalvi and Suciu dichotomy

- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)

Let Q be a self-join-free CQ:

- If Q is a star, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard
- A star is a CQ where each connected component has a separator variable that occurs in every edge of the component

- The dichotomy generalizes to higher-arity data (hierarchical queries)

Proving the small dichotomy (upper bound)

$x \rightleftarrows y \longleftrightarrow{ }_{z}^{W} \quad u \longrightarrow v \quad$ How to solve $\operatorname{PQE}(Q)$ for Q a self-join-free star?

Proving the small dichotomy (upper bound)

$$
\begin{array}{ll}
x \rightleftarrows y \longleftrightarrow w & u \longrightarrow v \quad \text { How to solve PQE(} Q \text {) for } Q \text { a self-join-free star? } \\
x \rightleftarrows y \longleftrightarrow w & \\
z & \text { • We consider each connected component separately } \\
z & \rightarrow \text { Independent conjunction over the connected components }
\end{array}
$$

Proving the small dichotomy (upper bound)

$x \rightleftarrows y \longleftrightarrow{ }_{z}^{w}$	$u \longrightarrow v$ How to solve $\operatorname{PQE}(Q)$ for Q a self-join-free star?
$x \rightleftarrows y \rightleftarrows{ }_{z}^{w}$	- We consider each connected component separately \rightarrow Independent conjunction over the connected components
$x \rightleftarrows a ゝ w$	- We can test all possible values of the separator variable \rightarrow Independent disjunction over the values of the separator

Proving the small dichotomy (upper bound)

$x \rightleftarrows y \leftrightharpoons{ }_{z}^{w}$	$u \longrightarrow v$ How to solve $\operatorname{PQE}(Q)$ for Q a self-join-free star?
$x \rightleftarrows y \rightleftarrows{ }_{z}^{w}$	- We consider each connected component separately \rightarrow Independent conjunction over the connected components
$x \rightleftarrows \boldsymbol{a} \leftrightharpoons{ }_{z}$	- We can test all possible values of the separator variable \rightarrow Independent disjunction over the values of the separator
$x \rightleftarrows a$	- For every match, we consider every other variable separately \rightarrow Independent conjunction over the variables

Proving the small dichotomy (upper bound)

$x \longrightarrow a$
$U \longrightarrow V$
How to solve $\operatorname{PQE}(Q)$ for Q a self-join-free star?

- We consider each connected component separately
\rightarrow Independent conjunction over the connected components
- We can test all possible values of the separator variable
\rightarrow Independent disjunction over the values of the separator
- For every match, we consider every other variable separately
\rightarrow Independent conjunction over the variables
- We consider every value for the other variable
\rightarrow Independent disjunction over the possible assignments
\rightarrow Independent conjunction over the facts

Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

We can use this to reduce from \#SAT like before:

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)

Let Q be a UCQ:

- If Q is handled by a complicated algorithm $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)

Let Q be a UCQ:

- If Q is handled by a complicated algorithm $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

This result is far more complicated (but still generalizes to higher arity)

- Upper bound:
- an algorithm generalizing the previous case with inclusion-exclusion
- many unpleasant details (e.g., a ranking transformation)
- Lower bound: hardness proof on minimal cases where the algorithm does not work

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

- Work by Fink and Olteanu 2016 about negation
- Some work on ontology-mediated query answering (Jung and Lutz 2012)

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

- Work by Fink and Olteanu 2016 about negation
- Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- Queries with negations or inequalities are not homomorphism-closed

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- Queries with negations or inequalities are not homomorphism-closed
- Homomorphism-closed queries can equivalently be seen as infinite unions of CQs (corresponding to their models)

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and $P Q E(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \xrightarrow{*}$

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and $P Q E(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \xrightarrow{*}$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \xrightarrow{*}$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$
- Hence, $\mathrm{PQE}(Q)$ is \#P-hard

Our result

We show:

Theorem (Amarilli and Ceylan 2020)

For any query Q closed under homomorphisms:

- Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \xrightarrow{*}$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$
- Hence, $\mathrm{PQE}(Q)$ is \#P-hard

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Theorem

Any unbounded query closed under homomorphisms has a tight pattern

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

- If Q becomes false at one step, then we have found a tight pattern

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q
- $D^{\prime \prime}$ has a homomorphism back to D

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q
- $D^{\prime \prime}$ has a homomorphism back to D
- This contradicts the minimality of the large D

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

is coded as

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

is coded as

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

is coded as

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

is coded as

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query $Q . .$.
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0}

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query $Q . .$.
... except we need more from the tight pattern!

Rescuing the proof

We know that we have a tight pattern:

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates for each $n \in \mathbb{N}$:

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates for each $n \in \mathbb{N}$:

Rescuing the proof

Case 1: some iterate violates the query:

Rescuing the proof

Case 1: some iterate violates the query:

Rescuing the proof

Case 1: some iterate violates the query:

$$
\begin{aligned}
& (\bullet \rightarrow \bullet \leftarrow \bullet)_{\rightarrow \bullet}^{i} \quad(\bullet \rightarrow \bullet \leftarrow \bullet)^{i+1} \rightarrow \bullet \\
& \rightarrow \text { Reduce from } \operatorname{PQE}\left(Q_{0}\right) \text { as we explained }
\end{aligned}
$$

Case 2: all iterates satisfy the query:

but

Rescuing the proof

Case 1: some iterate violates the query:

$$
\begin{aligned}
& (\bullet \rightarrow \bullet \leftarrow \bullet)_{\rightarrow \bullet}^{i} \quad(\bullet \rightarrow \bullet \leftarrow \bullet)^{i+1} \rightarrow \bullet \\
& \rightarrow \text { Reduce from } \operatorname{PQE}\left(Q_{0}\right) \text { as we explained }
\end{aligned}
$$

Case 2: all iterates satisfy the query:

\rightarrow Call this an iterable pattern

Using iterable patterns to show hardness of PQE

Using iterable patterns to show hardness of PQE

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

Using iterable patterns to show hardness of PQE

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $1 / 2$
- Output: what is the probability that the source and target are connected?

is coded as

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $1 / 2$
- Output: what is the probability that the source and target are connected?

is coded as

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)

Let $k \in \mathbb{N}$ be a constant bound, and let Q be a Boolean monadic second-order query. Then $\operatorname{PQE}(Q)$ is in PTIME on input TID instances with treewidth $\leq k$

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)

Let $k \in \mathbb{N}$ be a constant bound, and let Q be a Boolean monadic second-order query. Then $\operatorname{PQE}(Q)$ is in PTIME on input TID instances with treewidth $\leq k$

Conversely, there is a query Q for which $\mathrm{PQE}(Q)$ is intractable on any input instance family of unbounded treewidth (under some technical assumptions)

Reminder: Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Reminder: Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$
? Query Q: in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

"Is there both a pink and a blue node?"
$\exists x$ y $P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Reminder: Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$
? Query Q: in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

"Is there both a pink and a blue node?"
$\exists x$ y $P_{\bigcirc}(x) \wedge P_{\circ}(y)$
1 Result: YES/NO indicating if the tree T satisfies the query Q

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

Tree automata

Tree alphabet: $\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Theorem (Thatcher and Wright 1968)

MSO and tree automata have the same expressive power on trees

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
? Query Q: in monadic second-order logic (MSO)

$\exists x y P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
? Query Q: in monadic second-order logic (MSO)

$$
\exists x \text { y } P_{\bigcirc}(x) \wedge P_{\circ}(y)
$$

1 Result: probability that the probabilistic tree T satisfies the query Q

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
$?$ Query Q: in monadic second-order logic (MSO)

$$
\exists x \text { y } P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
$$

1 Result: probability that the probabilistic tree T satisfies the query Q

Theorem

For any fixed MSO query Q, the problem $\operatorname{PQE}(Q)$ on trees is in PTIME

Uncertain trees: capturing how the query result depends on the choices

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{2,3,7 \mapsto 1, * \mapsto 0\}$

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{\mathbf{2} \mapsto 1, * \mapsto 0\}$

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"
The query Q returns YES

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$
Q: "Is there both a pink and a blue node?"
The query Q returns NO

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"
The query Q returns YES

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Formal definition of provenance circuits:

- Boolean query Q, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then $\nu(C)$ iff $\nu(T)$ satisfies Q

Provenance circuits on trees

```
Theorem
For any bottom-up tree automaton \(A\) and input tree \(T\), we can build a Boolean provenance circuit of \(A\) on \(T\) in \(O(|A| \times|T|)\)
```


Provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a Boolean provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a Boolean provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a Boolean provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a Boolean provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a Boolean provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a Boolean provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a Boolean provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$

- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a circuit and a probability P for each variable (= tree node)
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- $P(x)=40 \%$
- $P(y)=50 \%$
- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
\rightarrow The circuit that we constructed falls in a restricted class satisfying such conditions

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF
d-DNNF requirements

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF
d-DNNF requirements

- (gates only have variables as inputs

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF
d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF
d-DNNF requirements

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- $($ gates are all on independent inputs

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF
d-DNNF requirements
... make probability computation easy!

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- $($ gates are all on independent inputs

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF
d-DNNF requirements

- (gates only have variables as inputs
... make probability computation easy!

- V gates always have mutually exclusive inputs
- $($ gates are all on independent inputs

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF
d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- $($ gates are all on independent inputs
... make probability computation easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF
d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
... make probability computation easy!

- $($ gates are all on independent inputs

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
... make probability computation easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

$$
P(g):=P\left(g_{1}^{\prime}\right)+P\left(g_{2}^{\prime}\right)
$$

- $($ gates are all on independent inputs

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- $($ gates are all on independent inputs
... make probability computation easy!

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- $($ gates are all on independent inputs
... make probability computation easy!
P(g):=1-P($\left.g^{\prime}\right)$

d-DNNFs

Lemma

For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- $($ gates are all on independent inputs
... make probability computation easy!

\rightarrow Connections to other circuit classes in the field of knowledge compilation

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and ($k-1$)-grids have treewidth $k-1$

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and ($k-1$)-grids have treewidth $k-1$
\rightarrow Treelike: the treewidth is bounded by a constant

Courcelle's theorem and extension to PQE

[^0]
Courcelle's theorem and extension to PQE

Treelike data

MSO query

Courcelle's theorem and extension to PQE

Treelike data Tree encoding

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Theorem (Courcelle 1990)

For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can compute in linear time in D whether D satisfies Q

Courcelle's theorem and extension to PQE

MSO query

$$
\begin{gathered}
\exists x y \\
P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
\end{gathered}
$$

Courcelle's theorem and extension to PQE

Probabilistic

 treelike data

Courcelle's theorem and extension to PQE

MSO query
Tree automaton
$\underset{P_{O}(x) \wedge P_{O}(y)}{\exists x y} \rightarrow$

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can solve the PQE problem in linear time (assuming constant-time arithmetics)

Why is this a dichotomy? Where's the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)

For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs

Why is this a dichotomy? Where's the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)

For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$

Why is this a dichotomy? Where's the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)

For any set of edge colors, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME

Why is this a dichotomy? Where's the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)

For any set of edge colors, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability

Why is this a dichotomy? Where's the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)

For any set of edge colors, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability
\rightarrow This result does not generalize to arity-two!

Why is this a dichotomy? Where's the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)

For any set of edge colors, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for Q and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability
\rightarrow This result does not generalize to arity-two!
\rightarrow Proof idea: extract wall graphs as topological minors (Chekuri and Chuzhoy 2014) and adapt a technique of Ganian, Hlineny, Langer, Obdrzalek, Rossmanith, and

Table of contents

```
Introduction and problem statement
Existing results
More general queries: Dichotomy on homomorphism-closed queries
More restricted instances: Words, trees and bounded treewidth
More restricted instances: Unweighted instances
```

Conclusion and open problems

Problem statement

What if we restricted probabilities on input instances to always be $1 / 2$?

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the subgraph counting (SC) problem:
$\rightarrow \mathrm{SC}(Q)$: given a graph, how many of its subgraphs satisfy Q

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the subgraph counting (SC) problem:
$\rightarrow \mathrm{SC}(Q)$: given a graph, how many of its subgraphs satisfy Q
- The SC problem reduces to $P Q E$, but no obvious reduction in the other direction

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the subgraph counting (SC) problem:
$\rightarrow \mathrm{SC}(Q)$: given a graph, how many of its subgraphs satisfy Q
- The SC problem reduces to $P Q E$, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the "small" Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)

Let Q be a self-join-free CQ:

- If Q is a star, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, even $\mathrm{SC}(Q)$ is \#P-hard
\rightarrow This also extends beyond arity two (hierarchical queries)

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\mathrm{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\operatorname{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}
- Show that each N_{i} is a linear function of X_{1}, \ldots, X_{k}, so:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\operatorname{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}
- Show that each N_{i} is a linear function of X_{1}, \ldots, X_{k}, so:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- Show invertibility of this matrix to recover the X_{i} from the N_{i}

Table of contents

```
Introduction and problem statement
Existing results
More general queries: Dichotomy on homomorphism-closed queries
More restricted instances: Words, trees and bounded treewidth
More restricted instances: Unweighted instances
Conclusion and open problems
```


Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries
- Understand unweighted subgraph counting for more general classes

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries
- Understand unweighted subgraph counting for more general classes
- Extending to arbitrary-arity data

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries
- Understand unweighted subgraph counting for more general classes
- Extending to arbitrary-arity data
- Other query features: negation, inequalities, etc.

Conclusion and open problems

We have seen:

- PQE is \#P-hard for all homomorphism-closed queries except safe UCQs
- PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise
- PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

- Understanding tractable UCQs better, especially the connection to circuits
- Tractable approximation algorithms, especially for recursive queries
- Understand unweighted subgraph counting for more general classes
- Extending to arbitrary-arity data
- Other query features: negation, inequalities, etc.
- Connections to other problems, especially enumeration of query results and maintenance under updates

Advertisement: TCS4F and "No free view? No review!"

Are you concerned about how academic research in theoretical computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)
www.tcs4f.org
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Advertisement: TCS4F and "No free view? No review!"

Are you concerned about how academic research in theoretical computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)
www.tcs4f.org
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

NO FREE VIEW?

NO REVIEW!

Are you tired of doing reviewing work for conferences and journals that do not publish their research online?

If so, sign the pledge "No free view? No review!"
www.nofreeviewnoreview.org
(with Antonin Delpeuch)

Advertisement: TCS4F and "No free view? No review!"

Are you concerned about how academic research in theoretical computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)
www.tcs4f.org
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

NO FREE VIEW?

NO REVIEW!

Are you tired of doing reviewing work for conferences and journals that do not publish their research online?

If so, sign the pledge "No free view? No review!"
www.nofreeviewnoreview.org
(with Antonin Delpeuch)

Bibliography i

Amarilli, Antoine, Pierre Bourhis, and Pierre Senellart (2015). "Provenance Circuits for Trees and Treelike Instances". In: ICALP.

- (2016). "Tractable Lineages on Treelike Instances: Limits and Extensions". In: PODS. Amarilli, Antoine and Ismail Ilkan Ceylan (2020). "A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs". In: ICDT.
Amarilli, Antoine and Benny Kimelfeld (2020). "Uniform Reliability of Self-Join-Free Conjunctive Queries". Preprint: https://arxiv.org/abs/1908.07093.
Chekuri, Chandra and Julia Chuzhoy (2014). "Polynomial bounds for the grid-minor theorem". In: STOC. DOI: 10.1145/2591796.2591813. URL: http://doi.acm.org/10.1145/2591796.2591813.

Bibliography ii

Courcelle, Bruno (1990). "The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs". In: Inf. Comput. 85.1. DOI: 10.1016/0890-5401 (90) 90043-H. URL: http://dx.doi.org/10.1016/0890-5401(90) 90043-H.
Dalvi, Nilesh and Dan Suciu (2007). "The dichotomy of conjunctive queries on probabilistic structures". In: Proc. PODS.

- (2012). "The dichotomy of probabilistic inference for unions of conjunctive queries". In: J. ACM 59.6.

Fink, Robert and Dan Olteanu (2016). "Dichotomies for queries with negation in probabilistic databases". In: 41.1, 4:1-4:47.
Ganian, Robert, Petr Hlineny, Alexander Langer, Jan Obdrzalek, Peter Rossmanith, and Somnath Sikdar (2014). "Lower bounds on the complexity of MSO1 model-checking". In: JCSS 1.80.

Bibliography iif

Jung, Jean Christoph and Carsten Lutz (2012). "Ontology-based access to probabilistic data with OWL QL". In: Proceedings of the 11th International Conference on The Semantic Web - Volume Part I, pp. 182-197.
Thatcher, James W. and Jesse B. Wright (1968). "Generalized Finite Automata Theory with an Application to a Decision Problem of Second-Order Logic". In: Mathematical systems theory 2.1, pp. 57-81.

[^0]: Treelike data

 MSO query

 $$
 \begin{gathered}
 \exists x y \\
 P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
 \end{gathered}
 $$

