
Query Evaluation on Probabilistic Data
A Story of Dichotomies

Antoine Amarilli
May 19, 2020

Télécom Paris

1/42

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

2/42

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/42

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/42

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/42

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/42

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/42

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data

3/42

Uncertain data management

Relational databases manage data, represented here as a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we are not certain about the true state of the data 3/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world?

0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world?

0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Each fact (edge) carries a probability

• Each fact exists with its given probability

• All facts are independent

• Possible world W: subset of facts

• What is the probability of this possible
world? 0.03%

Pr(W) =

(∏
F∈W

Pr(F)
)
×

(∏
F/∈W

(
1− Pr(F)

))

4/42

Queries

A central task in databases is to evaluate queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
→ e.g.,

(
∃x y z x y z

)
∨
(
∃x y z w x y z w

)
• Formally: a finite disjunction of CQs

5/42

Queries

A central task in databases is to evaluate queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
→ e.g.,

(
∃x y z x y z

)
∨
(
∃x y z w x y z w

)
• Formally: a finite disjunction of CQs

5/42

Queries

A central task in databases is to evaluate queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z

→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
→ e.g.,

(
∃x y z x y z

)
∨
(
∃x y z w x y z w

)
• Formally: a finite disjunction of CQs

5/42

Queries

A central task in databases is to evaluate queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
→ e.g.,

(
∃x y z x y z

)
∨
(
∃x y z w x y z w

)
• Formally: a finite disjunction of CQs

5/42

Queries

A central task in databases is to evaluate queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
→ e.g.,

(
∃x y z x y z

)
∨
(
∃x y z w x y z w

)

• Formally: a finite disjunction of CQs

5/42

Queries

A central task in databases is to evaluate queries

• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern?
• e.g., ∃x y z x y z
→ We want a homomorphism from the pattern to the graph (not necessarily injective)
→ Formally: an existentially quantified conjunction of atoms (edges)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
→ e.g.,

(
∃x y z x y z

)
∨
(
∃x y z w x y z w

)
• Formally: a finite disjunction of CQs

5/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:

• Formally:
∑

W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME):

1− (1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1−

(1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)×

(1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1−

(

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (

1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)

× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (1−

(1− 10%)× (1− 40%)

)×
(

1− (1− 50%)× (1− 90%))

)

× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (1− (1− 10%)× (1− 40%))×
(

1− (1− 50%)× (1− 90%))

)

× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (1− (1− 10%)× (1− 40%))×
(1− (1− 50%)× (1− 90%)))

× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (1− (1− 10%)× (1− 40%))×
(1− (1− 50%)× (1− 90%)))× (1−80%× (1− (1− 90%)× (1− 90%))),

i.e., 97.65792%

6/42

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: x y z

• The input is a TID D: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds which satisfy the query:
• Formally:

∑
W⊆D,W|=Q Pr(W)

→ Intuition: the probability that the query is true

• We can always compute the probability in exponential time (go over all possibilities)

• Here we can do better (in PTIME): 1− (1− 80%)× (1− (1− (1− 10%)× (1− 40%))×
(1− (1− 50%)× (1− 90%)))× (1−80%× (1− (1− 90%)× (1− 90%))), i.e., 97.65792%

6/42

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

In this talk: several dichotomies on the PQE problem:

• Existing results:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• More general queries: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• Restricted instances: PQE(Q) for MSO queries...
• Is in PTIME if the input data is restricted to have bounded treewidth
• Is intractable otherwise under some assumptions

• Restricted instances: if all probabilities are 50% then the complexity is the same

7/42

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

In this talk: several dichotomies on the PQE problem:

• Existing results:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• More general queries: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• Restricted instances: PQE(Q) for MSO queries...
• Is in PTIME if the input data is restricted to have bounded treewidth
• Is intractable otherwise under some assumptions

• Restricted instances: if all probabilities are 50% then the complexity is the same

7/42

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

In this talk: several dichotomies on the PQE problem:

• Existing results:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• More general queries: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• Restricted instances: PQE(Q) for MSO queries...
• Is in PTIME if the input data is restricted to have bounded treewidth
• Is intractable otherwise under some assumptions

• Restricted instances: if all probabilities are 50% then the complexity is the same

7/42

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

In this talk: several dichotomies on the PQE problem:

• Existing results:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• More general queries: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• Restricted instances: PQE(Q) for MSO queries...
• Is in PTIME if the input data is restricted to have bounded treewidth
• Is intractable otherwise under some assumptions

• Restricted instances: if all probabilities are 50% then the complexity is the same

7/42

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

In this talk: several dichotomies on the PQE problem:

• Existing results:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• More general queries: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• Restricted instances: PQE(Q) for MSO queries...
• Is in PTIME if the input data is restricted to have bounded treewidth
• Is intractable otherwise under some assumptions

• Restricted instances: if all probabilities are 50% then the complexity is the same

7/42

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

In this talk: several dichotomies on the PQE problem:

• Existing results:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• More general queries: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• Restricted instances: PQE(Q) for MSO queries...
• Is in PTIME if the input data is restricted to have bounded treewidth
• Is intractable otherwise under some assumptions

• Restricted instances: if all probabilities are 50% then the complexity is the same

7/42

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Note that we study data complexity, i.e., Q is fixed and the input is the data

In this talk: several dichotomies on the PQE problem:

• Existing results:
• PQE(Q) is in #P for any UCQ Q and is #P-hard for some CQs
• Dichotomy by Dalvi and Suciu: PQE(Q) for a UCQ Q is either #P-hard or PTIME

• More general queries: dichotomy on homomorphism-closed queries
• PQE(Q) is #P-hard for all homomorphism-closed queries not equivalent to a safe UCQ

• Restricted instances: PQE(Q) for MSO queries...
• Is in PTIME if the input data is restricted to have bounded treewidth
• Is intractable otherwise under some assumptions

• Restricted instances: if all probabilities are 50% then the complexity is the same
7/42

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

8/42

Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P

• #P: counting class of problems expressible as the number of accepting paths
of a nondeterministic polynomial-time Turing Machine

→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME
→ e.g., single-atom CQs
→ e.g., x y z

9/42

Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P
• #P: counting class of problems expressible as the number of accepting paths

of a nondeterministic polynomial-time Turing Machine
→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME
→ e.g., single-atom CQs
→ e.g., x y z

9/42

Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P
• #P: counting class of problems expressible as the number of accepting paths

of a nondeterministic polynomial-time Turing Machine
→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME

→ e.g., single-atom CQs
→ e.g., x y z

9/42

Basic complexity results

• Whenever we can evaluate Q in PTIME, then PQE(Q) is in #P
• #P: counting class of problems expressible as the number of accepting paths

of a nondeterministic polynomial-time Turing Machine
→ Nondeterministically guess a possible world, then test the query
→ In particular, PQE(Q) is in #P for any UCQ Q

• For some queries Q, the task PQE(Q) is in PTIME
→ e.g., single-atom CQs
→ e.g., x y z

9/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q :

x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:

• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q

10/42

PQE is sometimes #P-hard

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: φ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea: Satisfying valuations of φ correspond to possible worlds with a match of Q 10/42

The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)

11/42

The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)

11/42

The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)

11/42

The “small” Dalvi and Suciu dichotomy

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem (Dalvi and Suciu, see Dalvi and Suciu 2007)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

• A star is a CQ where each connected component has a separator variable that
occurs in every edge of the component

x y
z

w
u v

• The dichotomy generalizes to higher-arity data (hierarchical queries)
11/42

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately

→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately

→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments

→ Independent conjunction over the facts

12/42

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately

→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately

→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments

→ Independent conjunction over the facts

12/42

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately

→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately

→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments

→ Independent conjunction over the facts

12/42

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately

→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately

→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments

→ Independent conjunction over the facts

12/42

Proving the small dichotomy (upper bound)

x y
z

w
u v How to solve PQE(Q) for Q a self-join-free star?

x y
z

w • We consider each connected component separately

→ Independent conjunction over the connected components

x a
z

w • We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

x a • For every match, we consider every other variable separately

→ Independent conjunction over the variables

b a
• We consider every value for the other variable
→ Independent disjunction over the possible assignments

→ Independent conjunction over the facts 12/42

Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

x y z w

We can use this to reduce from #SAT like before:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

13/42

Proving the small dichotomy (lower bound)

Every non-star self-join-free CQ contains a pattern essentially like:

x y z w

We can use this to reduce from #SAT like before:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

13/42

The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)
Let Q be a UCQ:

• If Q is handled by a complicated algorithm PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more complicated (but still generalizes to higher arity)

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work

14/42

The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem (Dalvi and Suciu 2012)
Let Q be a UCQ:

• If Q is handled by a complicated algorithm PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more complicated (but still generalizes to higher arity)

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work
14/42

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

15/42

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

16/42

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

16/42

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

16/42

Going to more general queries

The case of UCQs is settled! but what about more expressive queries?

• Work by Fink and Olteanu 2016 about negation

• Some work on ontology-mediated query answering (Jung and Lutz 2012)

We study the case of queries closed under homomorphisms

16/42

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

17/42

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

17/42

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

17/42

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

17/42

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

17/42

Our result

We show:

Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

18/42

Our result

We show:

Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

18/42

Our result

We show:

Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

18/42

Our result

We show:

Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N

• Hence, PQE(Q) is #P-hard

18/42

Our result

We show:

Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

18/42

Our result

We show:

Theorem (Amarilli and Ceylan 2020)
For any query Q closed under homomorphisms:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

18/42

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

19/42

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

19/42

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but

•

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

19/42

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

19/42

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

19/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•

to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
•

to •
•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates

• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q

• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D

• This contradicts the minimality of the large D

20/42

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models

• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′
• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

20/42

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

21/42

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

21/42

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

21/42

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

21/42

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

21/42

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

21/42

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern! 21/42

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0
i� the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern! 21/42

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i

satisfies Q

but
•

• • • •

•

()i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

22/42

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i

satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

22/42

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i

satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

22/42

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i

satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

22/42

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i

satisfies Q

but
•

• • • •

•

()i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

22/42

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i

satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

22/42

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i

satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

22/42

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i

satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern
22/42

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

23/42

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

23/42

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

23/42

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

23/42

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right

23/42

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right 23/42

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right 23/42

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n

satisfies Q for all n ∈ N

but
•

•
•
•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
i� the query Q is satisfied in the corresponding possible world of the TID at the right 23/42

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

24/42

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

25/42

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

25/42

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

25/42

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

25/42

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
Let k ∈ N be a constant bound, and let Q be a Boolean monadic second-order query.
Then PQE(Q) is in PTIME on input TID instances with treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input instance
family of unbounded treewidth (under some technical assumptions)

25/42

Reminder: Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

26/42

Reminder: Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

26/42

Reminder: Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

26/42

Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet:
>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Tree automata

Tree alphabet:
>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}

• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

>

BP

⊥

⊥⊥

Theorem (Thatcher and Wright 1968)
MSO and tree automata have the same expressive power on trees

27/42

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in PTIME

28/42

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in PTIME

28/42

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in PTIME

28/42

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in PTIME

28/42

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in PTIME

28/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

29/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

29/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

29/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

29/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

29/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

29/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns YES

29/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns NO

29/42

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns YES

29/42

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) i� ν(T) satisfies Q

30/42

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) i� ν(T) satisfies Q

30/42

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) i� ν(T) satisfies Q

30/42

Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

31/42

Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

31/42

Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

31/42

Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

31/42

Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

31/42

Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

31/42

Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧

∧
¬

31/42

Provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a Boolean provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

31/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent

• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%

60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent

• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%

60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)

• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)

• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

Computing the probability of the circuit

• We now have a circuit and a probability P for each variable (= tree node)

• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

32/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′

P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2

P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2

P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation

33/42

d-DNNFs

Lemma
For unambiguous automata, the provenance circuit that we compute is a d-DNNF

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ Connections to other circuit classes in the field of knowledge compilation
33/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

34/42

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant
34/42

Courcelle’s theorem and extension to PQE

MSO query

Treelike data

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automatonMSO query

Treelike data

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data

linear

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem (Courcelle 1990)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

MSO query

treelike data
Probabilistic

50%20%

10%

80%
50%

30%

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automatonMSO query

treelike data
Probabilistic

50%20%

10%

80%
50%

30%

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data

linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

50% 30%

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Probability
95%

linear

50% 30%

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

35/42

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Probability
95%

linear

50% 30%

Theorem (Amarilli, Bourhis, and Senellart 2015; Amarilli, Bourhis, and Senellart 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can solve the PQE problem in linear time (assuming constant-time arithmetics)

35/42

Why is this a dichotomy? Where’s the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)
For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to arity-two!

→ Proof idea: extract wall graphs as topological minors (Chekuri and Chuzhoy 2014)
and adapt a technique of Ganian, Hlineny, Langer, Obdrzalek, Rossmanith, and
Sikdar 2014

36/42

Why is this a dichotomy? Where’s the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)
For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to arity-two!

→ Proof idea: extract wall graphs as topological minors (Chekuri and Chuzhoy 2014)
and adapt a technique of Ganian, Hlineny, Langer, Obdrzalek, Rossmanith, and
Sikdar 2014

36/42

Why is this a dichotomy? Where’s the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)
For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to arity-two!

→ Proof idea: extract wall graphs as topological minors (Chekuri and Chuzhoy 2014)
and adapt a technique of Ganian, Hlineny, Langer, Obdrzalek, Rossmanith, and
Sikdar 2014

36/42

Why is this a dichotomy? Where’s the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)
For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to arity-two!

→ Proof idea: extract wall graphs as topological minors (Chekuri and Chuzhoy 2014)
and adapt a technique of Ganian, Hlineny, Langer, Obdrzalek, Rossmanith, and
Sikdar 2014

36/42

Why is this a dichotomy? Where’s the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)
For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to arity-two!

→ Proof idea: extract wall graphs as topological minors (Chekuri and Chuzhoy 2014)
and adapt a technique of Ganian, Hlineny, Langer, Obdrzalek, Rossmanith, and
Sikdar 2014

36/42

Why is this a dichotomy? Where’s the lower bound?

Theorem (Amarilli, Bourhis, and Senellart 2016)
For any set of edge colors, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to arity-two!

→ Proof idea: extract wall graphs as topological minors (Chekuri and Chuzhoy 2014)
and adapt a technique of Ganian, Hlineny, Langer, Obdrzalek, Rossmanith, and
Sikdar 2014

36/42

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

37/42

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

38/42

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

38/42

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)

38/42

Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the subgraph counting (SC) problem:
→ SC(Q): given a graph, how many of its subgraphs satisfy Q

• The SC problem reduces to PQE, but no obvious reduction in the other direction

We study to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to SC:

Theorem (Amarilli and Kimelfeld 2020)
Let Q be a self-join-free CQ:

• If Q is a star, then PQE(Q) is in PTIME

• Otherwise, even SC(Q) is #P-hard

→ This also extends beyond arity two (hierarchical queries)
38/42

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk

• Create unweighted copies of G modified with some parameterized gadgets
→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =

α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk

• Show invertibility of this matrix to recover the Xi from the Ni

39/42

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk

• Create unweighted copies of G modified with some parameterized gadgets
→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =

α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk

• Show invertibility of this matrix to recover the Xi from the Ni

39/42

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk

• Create unweighted copies of G modified with some parameterized gadgets
→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =

α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk

• Show invertibility of this matrix to recover the Xi from the Ni

39/42

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk

• Create unweighted copies of G modified with some parameterized gadgets
→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =

α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk

• Show invertibility of this matrix to recover the Xi from the Ni

39/42

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk

• Create unweighted copies of G modified with some parameterized gadgets
→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =

α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk

• Show invertibility of this matrix to recover the Xi from the Ni 39/42

Table of contents

Introduction and problem statement

Existing results

More general queries: Dichotomy on homomorphism-closed queries

More restricted instances: Words, trees and bounded treewidth

More restricted instances: Unweighted instances

Conclusion and open problems

40/42

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs

• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise

• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates

41/42

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs

• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise

• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits

• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates

41/42

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs

• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise

• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates

41/42

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs

• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise

• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates

41/42

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs

• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise

• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data

• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates

41/42

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs

• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise

• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates

41/42

Conclusion and open problems

We have seen:

• PQE is #P-hard for all homomorphism-closed queries except safe UCQs

• PQE is in PTIME for MSO on bounded-treewidth graphs and intractable otherwise

• PQE behaves like unweighted subgraph counting for self-join-free CQs

Future directions:

• Understanding tractable UCQs better, especially the connection to circuits
• Tractable approximation algorithms, especially for recursive queries

• Understand unweighted subgraph counting for more general classes

• Extending to arbitrary-arity data
• Other query features: negation, inequalities, etc.

• Connections to other problems, especially enumeration of query results and
maintenance under updates

41/42

Advertisement: TCS4F and “No free view? No review!”

Are you concerned about how academic research in theoretical
computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Are you tired of doing reviewing work for conferences and journals
that do not publish their research online?

If so, sign the pledge “No free view? No review!”

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

Thanks for your attention!

42/42

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

Are you concerned about how academic research in theoretical
computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Are you tired of doing reviewing work for conferences and journals
that do not publish their research online?

If so, sign the pledge “No free view? No review!”

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

Thanks for your attention!

42/42

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

Are you concerned about how academic research in theoretical
computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée)

Are you tired of doing reviewing work for conferences and journals
that do not publish their research online?

If so, sign the pledge “No free view? No review!”

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

Thanks for your attention!42/42

www.tcs4f.org
www.nofreeviewnoreview.org

Bibliography i

Amarilli, Antoine, Pierre Bourhis, and Pierre Senellart (2015). “Provenance Circuits for
Trees and Treelike Instances”. In: ICALP.

– (2016). “Tractable Lineages on Treelike Instances: Limits and Extensions”. In: PODS.
Amarilli, Antoine and Ismail Ilkan Ceylan (2020). “A Dichotomy for

Homomorphism-Closed Queries on Probabilistic Graphs”. In: ICDT.
Amarilli, Antoine and Benny Kimelfeld (2020). “Uniform Reliability of Self-Join-Free

Conjunctive Queries”. Preprint: https://arxiv.org/abs/1908.07093.
Chekuri, Chandra and Julia Chuzhoy (2014). “Polynomial bounds for the grid-minor

theorem”. In: STOC. doi: 10.1145/2591796.2591813. url:
http://doi.acm.org/10.1145/2591796.2591813.

https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1910.02048
https://diku-dk.github.io/edbticdt2020/
https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1908.07093
https://doi.org/10.1145/2591796.2591813
http://doi.acm.org/10.1145/2591796.2591813

Bibliography ii

Courcelle, Bruno (1990). “The Monadic Second-Order Logic of Graphs. I. Recognizable
Sets of Finite Graphs”. In: Inf. Comput. 85.1. doi: 10.1016/0890-5401(90)90043-H. url:
http://dx.doi.org/10.1016/0890-5401(90)90043-H.

Dalvi, Nilesh and Dan Suciu (2007). “The dichotomy of conjunctive queries on
probabilistic structures”. In: Proc. PODS.

– (2012). “The dichotomy of probabilistic inference for unions of conjunctive queries”. In:
J. ACM 59.6.

Fink, Robert and Dan Olteanu (2016). “Dichotomies for queries with negation in
probabilistic databases”. In: 41.1, 4:1–4:47.

Ganian, Robert, Petr Hlineny, Alexander Langer, Jan Obdrzalek, Peter Rossmanith, and
Somnath Sikdar (2014). “Lower bounds on the complexity of MSO1 model-checking”. In:
JCSS 1.80.

https://doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5240&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5240&rep=rep1&type=pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf

Bibliography iii

Jung, Jean Christoph and Carsten Lutz (2012). “Ontology-based access to probabilistic
data with OWL QL”. In: Proceedings of the 11th International Conference on The
Semantic Web - Volume Part I, pp. 182–197.

Thatcher, James W. and Jesse B. Wright (1968). “Generalized Finite Automata Theory with
an Application to a Decision Problem of Second-Order Logic”. In: Mathematical
systems theory 2.1, pp. 57–81.

https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf

	Introduction and problem statement
	Existing results
	More general queries: Dichotomy on homomorphism-closed queries
	More restricted instances: Words, trees and bounded treewidth
	More restricted instances: Unweighted instances
	Conclusion and open problems
	Appendix
	
	References

