
Topological Sorting under Regular Constraints

Antoine Amarilli1, Charles Paperman2

December 7th, 2018
1Télécom ParisTech

2Université de Lille

1/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:

• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a

b a b b a
... not in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b

a b b a
... not in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a

b b a
... not in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b

b a
... not in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b b

a
... not in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b b a

... not in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b b a
... not in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a

b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b

a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a

b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b

a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a

b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b

... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Constrained Topological Sorting

• Fix an alphabet: e.g., Σ = {a,b}

• Fix a language: e.g., L = (ab)∗

• We study constrained topological sorting:
• Input: directed acyclic graph (DAG)
with vertices labeled with Σ

• Output: is there a topological sort
that falls in L?

• Question: when is this problem tractable?

a

b a b

b a

a b a b a b
... in L!

2/24



Motivation

• How we really ended up studying this problem:

2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

Possible answers

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

Possible answers

DAGs

Algebraic language theory?!

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

Possible answers

DAGs

Algebraic language theory?!

• Which a-posteriori motivation did we invent for the problem?

→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

Possible answers

DAGs

Algebraic language theory?!

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!

→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

Possible answers

DAGs

Algebraic language theory?!

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain!

(joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

Possible answers

DAGs

Algebraic language theory?!

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

Possible answers

DAGs

Algebraic language theory?!

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?

→ Natural problem and apparently nothing was known about it!

3/24



Motivation

• How we really ended up studying this problem:
2011 2012 2013 2014 2015 2016 2017 2018

Probabilistic XML
XML versioning

Order-uncertain databases
Top-k Aggregate queries

Possible answers

DAGs

Algebraic language theory?!

• Which a-posteriori motivation did we invent for the problem?
→ Scheduling with constraints! → Veri�cation for concurrent code!
→ Computational biology! → Blockchain! (joke)

• But why do we actually care?
→ Natural problem and apparently nothing was known about it!

3/24



Formal problem statement

• Fix a regular language L on an �nite alphabet Σ

• Constrained topological sort problem CTS(L):
• Input: a DAG G with vertices labeled by letters of Σ

• Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L

• Special case: the constrained shu�e problem CSh(L):
• Input: a set of words w1, . . . ,wn of Σ∗

• Output: is there a shu�e of w1, . . . ,wn which is in L

• This is like CTS but the input DAG is an union of paths
→ Question: What is the complexity of CTS(L) and CSh(L),

depending on the �xed language L?

4/24



Formal problem statement

• Fix a regular language L on an �nite alphabet Σ

• Constrained topological sort problem CTS(L):
• Input: a DAG G with vertices labeled by letters of Σ

• Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L

a

b a b

b a

• Special case: the constrained shu�e problem CSh(L):
• Input: a set of words w1, . . . ,wn of Σ∗

• Output: is there a shu�e of w1, . . . ,wn which is in L

• This is like CTS but the input DAG is an union of paths
→ Question: What is the complexity of CTS(L) and CSh(L),

depending on the �xed language L?

4/24



Formal problem statement

• Fix a regular language L on an �nite alphabet Σ

• Constrained topological sort problem CTS(L):
• Input: a DAG G with vertices labeled by letters of Σ

• Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L

a

b a b

b a

• Special case: the constrained shu�e problem CSh(L):
• Input: a set of words w1, . . . ,wn of Σ∗

• Output: is there a shu�e of w1, . . . ,wn which is in L

• This is like CTS but the input DAG is an union of paths
→ Question: What is the complexity of CTS(L) and CSh(L),

depending on the �xed language L?

4/24



Formal problem statement

• Fix a regular language L on an �nite alphabet Σ

• Constrained topological sort problem CTS(L):
• Input: a DAG G with vertices labeled by letters of Σ

• Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L

a

b a b

b a

• Special case: the constrained shu�e problem CSh(L):
• Input: a set of words w1, . . . ,wn of Σ∗

• Output: is there a shu�e of w1, . . . ,wn which is in L

• This is like CTS but the input DAG is an union of paths

a

a

b

b

b

a

→ Question: What is the complexity of CTS(L) and CSh(L),
depending on the �xed language L?

4/24



Formal problem statement

• Fix a regular language L on an �nite alphabet Σ

• Constrained topological sort problem CTS(L):
• Input: a DAG G with vertices labeled by letters of Σ

• Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L

a

b a b

b a

• Special case: the constrained shu�e problem CSh(L):
• Input: a set of words w1, . . . ,wn of Σ∗

• Output: is there a shu�e of w1, . . . ,wn which is in L

• This is like CTS but the input DAG is an union of paths

a

a

b

b

b

a

→ Question: What is the complexity of CTS(L) and CSh(L),
depending on the �xed language L?

4/24



Dichotomy

Conjecture

Conjecture

For every regular language L, exactly one of the following holds:

• L has [some nice property] and CTS(L) is in NL

• L has [some nasty property] and CTS(L) is NP-hard

Here’s what we actually know:

• CTS and CSh are NP-hard for some languages, including (ab)∗

• They are in NL for some language families (monomials, groups)
• Some languages are tractable for seemingly unrelated reasons
→ Very mysterious landscape! (to us)

5/24



Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

• L has [some nice property] and CTS(L) is in NL

• L has [some nasty property] and CTS(L) is NP-hard

Here’s what we actually know:

• CTS and CSh are NP-hard for some languages, including (ab)∗

• They are in NL for some language families (monomials, groups)
• Some languages are tractable for seemingly unrelated reasons
→ Very mysterious landscape! (to us)

5/24



Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

• L has [some nice property] and CTS(L) is in NL

• L has [some nasty property] and CTS(L) is NP-hard

Here’s what we actually know:

• CTS and CSh are NP-hard for some languages, including (ab)∗

• They are in NL for some language families (monomials, groups)
• Some languages are tractable for seemingly unrelated reasons
→ Very mysterious landscape! (to us)

5/24



Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

• L has [some nice property] and CTS(L) is in NL

• L has [some nasty property] and CTS(L) is NP-hard

Here’s what we actually know:

• CTS and CSh are NP-hard for some languages, including (ab)∗

• They are in NL for some language families (monomials, groups)

• Some languages are tractable for seemingly unrelated reasons
→ Very mysterious landscape! (to us)

5/24



Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

• L has [some nice property] and CTS(L) is in NL

• L has [some nasty property] and CTS(L) is NP-hard

Here’s what we actually know:

• CTS and CSh are NP-hard for some languages, including (ab)∗

• They are in NL for some language families (monomials, groups)
• Some languages are tractable for seemingly unrelated reasons

→ Very mysterious landscape! (to us)

5/24



Dichotomy Conjecture

Conjecture
For every regular language L, exactly one of the following holds:

• L has [some nice property] and CTS(L) is in NL

• L has [some nasty property] and CTS(L) is NP-hard

Here’s what we actually know:

• CTS and CSh are NP-hard for some languages, including (ab)∗

• They are in NL for some language families (monomials, groups)
• Some languages are tractable for seemingly unrelated reasons
→ Very mysterious landscape! (to us)

5/24



Hardness Results



Existing Hardness Result

... but the target is a word which is provided as input!

→ Does not directly apply for us, because we �x the target language

6/24



Existing Hardness Result

... but the target is a word which is provided as input!

→ Does not directly apply for us, because we �x the target language

6/24



Existing Hardness Result

... but the target is a word which is provided as input!

→ Does not directly apply for us, because we �x the target language

6/24



Hardness for CTS

• We can reduce their problem to CSh for the language (aA+ bB)∗

• To determine if the shu�e of aab and bb contains ababb ...

solve the CSh-problem for aab and bb and ABABB
→ CSh((aA+ bB)∗) is NP-hard and the same holds for CTS

• Similar technique: CSh((ab)∗) is NP-hard

• Custom reduction technique to show NP-hardness

7/24



Hardness for CTS

• We can reduce their problem to CSh for the language (aA+ bB)∗

• To determine if the shu�e of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB

→ CSh((aA+ bB)∗) is NP-hard and the same holds for CTS

• Similar technique: CSh((ab)∗) is NP-hard

• Custom reduction technique to show NP-hardness

7/24



Hardness for CTS

• We can reduce their problem to CSh for the language (aA+ bB)∗

• To determine if the shu�e of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB

→ CSh((aA+ bB)∗) is NP-hard and the same holds for CTS

• Similar technique: CSh((ab)∗) is NP-hard

• Custom reduction technique to show NP-hardness

7/24



Hardness for CTS

• We can reduce their problem to CSh for the language (aA+ bB)∗

• To determine if the shu�e of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB

→ CSh((aA+ bB)∗) is NP-hard and the same holds for CTS

• Similar technique: CSh((ab)∗) is NP-hard

• Custom reduction technique to show NP-hardness

7/24



Hardness for CTS

• We can reduce their problem to CSh for the language (aA+ bB)∗

• To determine if the shu�e of aab and bb contains ababb ...
solve the CSh-problem for aab and bb and ABABB

→ CSh((aA+ bB)∗) is NP-hard and the same holds for CTS

• Similar technique: CSh((ab)∗) is NP-hard

• Custom reduction technique to show NP-hardness

7/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



The reduction technique

G
a

b a b

b a

P
b
c
a
c
b
c
a
c
b
c
a
c

• Say we want to solve CTS for (ab)∗ (NP-hard)

• Say we know how to solve CTS for (abc)∗

• Take an instance G for (ab)∗, with 2n vertices

• Add the path P: (bcac)n

• A topsort of G ∪ P achieving (abc)∗

gives a topsort of G achieving (ab)∗

• Conversely, any topsort of G achieving (ab)∗

extends to a topsort of G+ P achieving (abc)∗

• Hence, CTS((abc)∗) is NP-hard

8/24



Formalizing the reduction

De�nition
A language L shu�e-reduces to a language L′ if, given any n in unary,
we can compute in PTIME a word Pi having the following property:

for any word w of length n, we have w ∈ L
i� the shu�e of w and Pi contains a word of L′.

Theorem
If L shu�e-reduces to L′ then:

• CSh(L) reduces in PTIME to CSh(L′)

• CTS(L) reduces in PTIME to CTS(L′)

9/24



Formalizing the reduction

De�nition
A language L shu�e-reduces to a language L′ if, given any n in unary,
we can compute in PTIME a word Pi having the following property:
for any word w of length n, we have w ∈ L
i� the shu�e of w and Pi contains a word of L′.

Theorem
If L shu�e-reduces to L′ then:

• CSh(L) reduces in PTIME to CSh(L′)

• CTS(L) reduces in PTIME to CTS(L′)

9/24



Formalizing the reduction

De�nition
A language L shu�e-reduces to a language L′ if, given any n in unary,
we can compute in PTIME a word Pi having the following property:
for any word w of length n, we have w ∈ L
i� the shu�e of w and Pi contains a word of L′.

Theorem
If L shu�e-reduces to L′ then:

• CSh(L) reduces in PTIME to CSh(L′)

• CTS(L) reduces in PTIME to CTS(L′)

9/24



Other hard languages

• The reduction shows hardness for:
• (ab+ b)∗ (also simpler argument)
• (aa+ bb)∗ with P2i = (ab)i

• u∗ if u contains two di�erent letters

• Conjecture: if F is �nite then CTS(F∗) is NP-hard
unless it contains a power of each of its letters

• Idea: reason about consumption rates of letters?
• Not even complete for F∗ languages, as (aa+ bb)∗ is NP-hard

10/24



Other hard languages

• The reduction shows hardness for:
• (ab+ b)∗ (also simpler argument)
• (aa+ bb)∗ with P2i = (ab)i

• u∗ if u contains two di�erent letters

• Conjecture: if F is �nite then CTS(F∗) is NP-hard
unless it contains a power of each of its letters

• Idea: reason about consumption rates of letters?
• Not even complete for F∗ languages, as (aa+ bb)∗ is NP-hard

10/24



Other hard languages

• The reduction shows hardness for:
• (ab+ b)∗ (also simpler argument)
• (aa+ bb)∗ with P2i = (ab)i

• u∗ if u contains two di�erent letters

• Conjecture: if F is �nite then CTS(F∗) is NP-hard
unless it contains a power of each of its letters

• Idea: reason about consumption rates of letters?

• Not even complete for F∗ languages, as (aa+ bb)∗ is NP-hard

10/24



Other hard languages

• The reduction shows hardness for:
• (ab+ b)∗ (also simpler argument)
• (aa+ bb)∗ with P2i = (ab)i

• u∗ if u contains two di�erent letters

• Conjecture: if F is �nite then CTS(F∗) is NP-hard
unless it contains a power of each of its letters

• Idea: reason about consumption rates of letters?
• Not even complete for F∗ languages, as (aa+ bb)∗ is NP-hard

10/24



Tractability Results



Tractability for Monomials

• Monomial: language of the form A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• Union of monomials: union of �nitely many such languages

• Example: pattern matching Σ∗ word1 Σ∗ + Σ∗ word2 Σ∗

• Logical interpretation: languages de�nable in Σ2[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

11/24



Tractability for Monomials

• Monomial: language of the form A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• Union of monomials: union of �nitely many such languages
• Example: pattern matching Σ∗ word1 Σ∗ + Σ∗ word2 Σ∗

• Logical interpretation: languages de�nable in Σ2[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

11/24



Tractability for Monomials

• Monomial: language of the form A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• Union of monomials: union of �nitely many such languages
• Example: pattern matching Σ∗ word1 Σ∗ + Σ∗ word2 Σ∗

• Logical interpretation: languages de�nable in Σ2[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

11/24



Tractability for Monomials

• Monomial: language of the form A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• Union of monomials: union of �nitely many such languages
• Example: pattern matching Σ∗ word1 Σ∗ + Σ∗ word2 Σ∗

• Logical interpretation: languages de�nable in Σ2[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL

11/24



Proof Idea for Monomials

• Tractable languages are clearly closed under union
so it su�ces to consider a monomial: A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• We can guess the positions of the individual ai
• Check that the other vertices can �t in the A∗i (uses NL = co-NL)

• Check that the descendants of an are all in An+1
• Find the vertices that must be enumerated before an

• The ancestors of the ai
• The ancestors of vertices with a letter not in An+1

• Inductively solve the problem for these vertices and
A∗1 a1 A∗2 a2 · · · A∗n

12/24



Proof Idea for Monomials

• Tractable languages are clearly closed under union
so it su�ces to consider a monomial: A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• We can guess the positions of the individual ai

• Check that the other vertices can �t in the A∗i (uses NL = co-NL)
• Check that the descendants of an are all in An+1
• Find the vertices that must be enumerated before an

• The ancestors of the ai
• The ancestors of vertices with a letter not in An+1

• Inductively solve the problem for these vertices and
A∗1 a1 A∗2 a2 · · · A∗n

12/24



Proof Idea for Monomials

• Tractable languages are clearly closed under union
so it su�ces to consider a monomial: A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• We can guess the positions of the individual ai
• Check that the other vertices can �t in the A∗i (uses NL = co-NL)

• Check that the descendants of an are all in An+1
• Find the vertices that must be enumerated before an

• The ancestors of the ai
• The ancestors of vertices with a letter not in An+1

• Inductively solve the problem for these vertices and
A∗1 a1 A∗2 a2 · · · A∗n

12/24



Proof Idea for Monomials

• Tractable languages are clearly closed under union
so it su�ces to consider a monomial: A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• We can guess the positions of the individual ai
• Check that the other vertices can �t in the A∗i (uses NL = co-NL)

• Check that the descendants of an are all in An+1

• Find the vertices that must be enumerated before an
• The ancestors of the ai
• The ancestors of vertices with a letter not in An+1

• Inductively solve the problem for these vertices and
A∗1 a1 A∗2 a2 · · · A∗n

12/24



Proof Idea for Monomials

• Tractable languages are clearly closed under union
so it su�ces to consider a monomial: A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• We can guess the positions of the individual ai
• Check that the other vertices can �t in the A∗i (uses NL = co-NL)

• Check that the descendants of an are all in An+1
• Find the vertices that must be enumerated before an

• The ancestors of the ai
• The ancestors of vertices with a letter not in An+1

• Inductively solve the problem for these vertices and
A∗1 a1 A∗2 a2 · · · A∗n

12/24



Proof Idea for Monomials

• Tractable languages are clearly closed under union
so it su�ces to consider a monomial: A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• We can guess the positions of the individual ai
• Check that the other vertices can �t in the A∗i (uses NL = co-NL)

• Check that the descendants of an are all in An+1
• Find the vertices that must be enumerated before an

• The ancestors of the ai

• The ancestors of vertices with a letter not in An+1
• Inductively solve the problem for these vertices and
A∗1 a1 A∗2 a2 · · · A∗n

12/24



Proof Idea for Monomials

• Tractable languages are clearly closed under union
so it su�ces to consider a monomial: A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• We can guess the positions of the individual ai
• Check that the other vertices can �t in the A∗i (uses NL = co-NL)

• Check that the descendants of an are all in An+1
• Find the vertices that must be enumerated before an

• The ancestors of the ai
• The ancestors of vertices with a letter not in An+1

• Inductively solve the problem for these vertices and
A∗1 a1 A∗2 a2 · · · A∗n

12/24



Proof Idea for Monomials

• Tractable languages are clearly closed under union
so it su�ces to consider a monomial: A∗1 a1 A∗2 a2 · · · A∗n an A∗n+1
where a1, . . . ,an ∈ Σ and A1, . . . ,An+1 ⊆ Σ

• We can guess the positions of the individual ai
• Check that the other vertices can �t in the A∗i (uses NL = co-NL)

• Check that the descendants of an are all in An+1
• Find the vertices that must be enumerated before an

• The ancestors of the ai
• The ancestors of vertices with a letter not in An+1

• Inductively solve the problem for these vertices and
A∗1 a1 A∗2 a2 · · · A∗n

12/24



The Algebraic Approach

Fails

Can we just study algebraically the tractable languages?

Not really...

• Not closed under intersection
• Not closed under complement
• Not closed under inverse morphism
• Not closed under concatenation
(not in paper, only known for CTS)

• For CSh: not closed under quotient

13/24



The Algebraic Approach Fails

Can we just study algebraically the tractable languages? Not really...

• Not closed under intersection
• Not closed under complement
• Not closed under inverse morphism
• Not closed under concatenation
(not in paper, only known for CTS)

• For CSh: not closed under quotient

13/24



The Algebraic Approach Fails

Can we just study algebraically the tractable languages? Not really...

• Not closed under intersection
• Not closed under complement
• Not closed under inverse morphism
• Not closed under concatenation
(not in paper, only known for CTS)

• For CSh: not closed under quotient

13/24



Side Remark: CTS and CSh are Di�erent

Consider the language L = bΣ∗ + aaΣ∗ + (ab)∗

• CTS(L) is NP-hard because (ab)−1L = (ab)∗

• CSh(L) is in NL: trivial if there is more than one word

Hence, some languages are tractable for CSh and hard for CTS

14/24



Side Remark: CTS and CSh are Di�erent

Consider the language L = bΣ∗ + aaΣ∗ + (ab)∗

• CTS(L) is NP-hard because (ab)−1L = (ab)∗

• CSh(L) is in NL: trivial if there is more than one word

Hence, some languages are tractable for CSh and hard for CTS

14/24



Side Remark: CTS and CSh are Di�erent

Consider the language L = bΣ∗ + aaΣ∗ + (ab)∗

• CTS(L) is NP-hard because (ab)−1L = (ab)∗

• CSh(L) is in NL: trivial if there is more than one word

Hence, some languages are tractable for CSh and hard for CTS

14/24



Side Remark: CTS and CSh are Di�erent

Consider the language L = bΣ∗ + aaΣ∗ + (ab)∗

• CTS(L) is NP-hard because (ab)−1L = (ab)∗

• CSh(L) is in NL: trivial if there is more than one word

Hence, some languages are tractable for CSh and hard for CTS

14/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N

→ Need k counters to remember the current position in each word,
plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...

15/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N
→ Need k counters to remember the current position in each word,

plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...

15/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N
→ Need k counters to remember the current position in each word,

plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...

15/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N
→ Need k counters to remember the current position in each word,

plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...

15/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N
→ Need k counters to remember the current position in each word,

plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...

15/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N
→ Need k counters to remember the current position in each word,

plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...

15/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N
→ Need k counters to remember the current position in each word,

plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...

15/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N
→ Need k counters to remember the current position in each word,

plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...

15/24



Tractability Based on Width

• CSh(L) is in NL for any regular language L if we assume that
there are at most k input words w1, . . . ,wk for a constant k ∈ N
→ Need k counters to remember the current position in each word,

plus automaton state

• CTS(L) is in in NL for any regular language L if
the input DAG G has width ≤ k for constant k ∈ N

• Width: size of the largest antichain
(subset of pairwise incomparable vertices)

→ Partition G in k chains (Dilworth’s theorem),
and conclude by NL algorithm

a

b a b

b a

→ These results are making an additional assumption, but...
15/24



Tractability Based on Width (2)

• Fix Σ = {a,b}, take any regular language L and constant k ∈ N,
we know that CTS is in NL for L+ Σ∗(ak + bk)Σ∗

• If the input DAG has width < 2k, use the result for bounded width
• Otherwise we can achieve ak or bk with a large antichain

• A similar technique shows that (ab)∗ + Σ∗aaΣ∗ is tractable

→ Does it su�ce to bound the width of all letters but one?
→ Unknown for L+ Σ∗akΣ∗ with arbitrary L and k > 2!

16/24



Tractability Based on Width (2)

• Fix Σ = {a,b}, take any regular language L and constant k ∈ N,
we know that CTS is in NL for L+ Σ∗(ak + bk)Σ∗

• If the input DAG has width < 2k, use the result for bounded width

• Otherwise we can achieve ak or bk with a large antichain

• A similar technique shows that (ab)∗ + Σ∗aaΣ∗ is tractable

→ Does it su�ce to bound the width of all letters but one?
→ Unknown for L+ Σ∗akΣ∗ with arbitrary L and k > 2!

16/24



Tractability Based on Width (2)

• Fix Σ = {a,b}, take any regular language L and constant k ∈ N,
we know that CTS is in NL for L+ Σ∗(ak + bk)Σ∗

• If the input DAG has width < 2k, use the result for bounded width
• Otherwise we can achieve ak or bk with a large antichain

• A similar technique shows that (ab)∗ + Σ∗aaΣ∗ is tractable

→ Does it su�ce to bound the width of all letters but one?
→ Unknown for L+ Σ∗akΣ∗ with arbitrary L and k > 2!

16/24



Tractability Based on Width (2)

• Fix Σ = {a,b}, take any regular language L and constant k ∈ N,
we know that CTS is in NL for L+ Σ∗(ak + bk)Σ∗

• If the input DAG has width < 2k, use the result for bounded width
• Otherwise we can achieve ak or bk with a large antichain

• A similar technique shows that (ab)∗ + Σ∗aaΣ∗ is tractable

→ Does it su�ce to bound the width of all letters but one?

→ Unknown for L+ Σ∗akΣ∗ with arbitrary L and k > 2!

16/24



Tractability Based on Width (2)

• Fix Σ = {a,b}, take any regular language L and constant k ∈ N,
we know that CTS is in NL for L+ Σ∗(ak + bk)Σ∗

• If the input DAG has width < 2k, use the result for bounded width
• Otherwise we can achieve ak or bk with a large antichain

• A similar technique shows that (ab)∗ + Σ∗aaΣ∗ is tractable

→ Does it su�ce to bound the width of all letters but one?
→ Unknown for L+ Σ∗akΣ∗ with arbitrary L and k > 2!

16/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):
• If we want an a, take the next one (no choice)
• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L... right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):
• If we want an a, take the next one (no choice)
• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L... right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):
• If we want an a, take the next one (no choice)
• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L... right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):

• If we want an a, take the next one (no choice)
• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L... right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):
• If we want an a, take the next one (no choice)

• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L... right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):
• If we want an a, take the next one (no choice)
• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L... right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):
• If we want an a, take the next one (no choice)
• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L...

right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):
• If we want an a, take the next one (no choice)
• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L... right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



An Annoying Open Problem

a

a

a

a

b

b
b

b

b

• Fix the alphabet Σ = {a,b}

• Assume that the input DAG has a-width 1, i.e.,
there is a total order on the a-labeled elements

• Easy greedy PTIME algorithm for CTS((ab)∗):
• If we want an a, take the next one (no choice)
• If we want a b, take an available b-vertex
whose �rst a-descendant is as high as possible
(idea: consume the most blocking b’s)

• Should generalizes to CTS(L) for any L... right?!

Open problem
Fix Σ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24



Tractability Based on the Structure of Groups

• Group language: the underlying monoid is a �nite group
→ Automata where each letter acts bijectively

• District group monomial: language G1 a1 · · · Gn an Gn+1
where a1, . . . ,an ∈ Σ and G1, . . . ,Gn are group languages
on subsets of the alphabet Σ

Theorem
For any union L of district group monomials, CSh(L) is in NL

→ Only for CSh; complexity for CTS is unknown!

18/24



Tractability Based on the Structure of Groups

• Group language: the underlying monoid is a �nite group
→ Automata where each letter acts bijectively

• District group monomial: language G1 a1 · · · Gn an Gn+1
where a1, . . . ,an ∈ Σ and G1, . . . ,Gn are group languages
on subsets of the alphabet Σ

Theorem
For any union L of district group monomials, CSh(L) is in NL

→ Only for CSh; complexity for CTS is unknown!

18/24



Tractability Based on the Structure of Groups

• Group language: the underlying monoid is a �nite group
→ Automata where each letter acts bijectively

• District group monomial: language G1 a1 · · · Gn an Gn+1
where a1, . . . ,an ∈ Σ and G1, . . . ,Gn are group languages
on subsets of the alphabet Σ

Theorem
For any union L of district group monomials, CSh(L) is in NL

→ Only for CSh; complexity for CTS is unknown!

18/24



Tractability Based on the Structure of Groups

• Group language: the underlying monoid is a �nite group
→ Automata where each letter acts bijectively

• District group monomial: language G1 a1 · · · Gn an Gn+1
where a1, . . . ,an ∈ Σ and G1, . . . ,Gn are group languages
on subsets of the alphabet Σ

Theorem
For any union L of district group monomials, CSh(L) is in NL

→ Only for CSh; complexity for CTS is unknown!

18/24



Proof Structure for Groups

• By far the most technical proof of the paper

• From district group monomials to group languages:
• Guess the vertices where the ai are mapped
• Guess (in succession) how each input word is split

• For groups: distinguish the rare and frequent letters of Σ
• Rare letters are in constantly many strings: NL algorithm on them
• Frequent letters are in enough strings to generate anything
→ Key (CSh): �nd an antichain with all frequent letters many times

• Two main challenges:
• Even on frequent letters, we can only achieve all group elements
up to commutative information
→ E.g., in a group G× (Z/2Z) with generators of the form (gi, 1),

a large odd number of generators will never achieve (g,0)

→ Antichain lemma: Constantly many elements su�ce to achieve
anything in the spanned subgroup up to “commutative information”

• When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions

19/24



Proof Structure for Groups

• By far the most technical proof of the paper• From district group monomials to group languages:
• Guess the vertices where the ai are mapped
• Guess (in succession) how each input word is split

• For groups: distinguish the rare and frequent letters of Σ
• Rare letters are in constantly many strings: NL algorithm on them
• Frequent letters are in enough strings to generate anything
→ Key (CSh): �nd an antichain with all frequent letters many times

• Two main challenges:
• Even on frequent letters, we can only achieve all group elements
up to commutative information
→ E.g., in a group G× (Z/2Z) with generators of the form (gi, 1),

a large odd number of generators will never achieve (g,0)

→ Antichain lemma: Constantly many elements su�ce to achieve
anything in the spanned subgroup up to “commutative information”

• When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions

19/24



Proof Structure for Groups

• By far the most technical proof of the paper• From district group monomials to group languages:
• Guess the vertices where the ai are mapped
• Guess (in succession) how each input word is split

• For groups: distinguish the rare and frequent letters of Σ

• Rare letters are in constantly many strings: NL algorithm on them
• Frequent letters are in enough strings to generate anything
→ Key (CSh): �nd an antichain with all frequent letters many times

• Two main challenges:
• Even on frequent letters, we can only achieve all group elements
up to commutative information
→ E.g., in a group G× (Z/2Z) with generators of the form (gi, 1),

a large odd number of generators will never achieve (g,0)

→ Antichain lemma: Constantly many elements su�ce to achieve
anything in the spanned subgroup up to “commutative information”

• When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions

19/24



Proof Structure for Groups

• By far the most technical proof of the paper• From district group monomials to group languages:
• Guess the vertices where the ai are mapped
• Guess (in succession) how each input word is split

• For groups: distinguish the rare and frequent letters of Σ
• Rare letters are in constantly many strings: NL algorithm on them
• Frequent letters are in enough strings to generate anything

→ Key (CSh): �nd an antichain with all frequent letters many times
• Two main challenges:

• Even on frequent letters, we can only achieve all group elements
up to commutative information
→ E.g., in a group G× (Z/2Z) with generators of the form (gi, 1),

a large odd number of generators will never achieve (g,0)

→ Antichain lemma: Constantly many elements su�ce to achieve
anything in the spanned subgroup up to “commutative information”

• When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions

19/24



Proof Structure for Groups

• By far the most technical proof of the paper• From district group monomials to group languages:
• Guess the vertices where the ai are mapped
• Guess (in succession) how each input word is split

• For groups: distinguish the rare and frequent letters of Σ
• Rare letters are in constantly many strings: NL algorithm on them
• Frequent letters are in enough strings to generate anything
→ Key (CSh): �nd an antichain with all frequent letters many times

• Two main challenges:
• Even on frequent letters, we can only achieve all group elements
up to commutative information
→ E.g., in a group G× (Z/2Z) with generators of the form (gi, 1),

a large odd number of generators will never achieve (g,0)

→ Antichain lemma: Constantly many elements su�ce to achieve
anything in the spanned subgroup up to “commutative information”

• When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions

19/24



Proof Structure for Groups

• By far the most technical proof of the paper• From district group monomials to group languages:
• Guess the vertices where the ai are mapped
• Guess (in succession) how each input word is split

• For groups: distinguish the rare and frequent letters of Σ
• Rare letters are in constantly many strings: NL algorithm on them
• Frequent letters are in enough strings to generate anything
→ Key (CSh): �nd an antichain with all frequent letters many times

• Two main challenges:
• Even on frequent letters, we can only achieve all group elements
up to commutative information
→ E.g., in a group G× (Z/2Z) with generators of the form (gi, 1),

a large odd number of generators will never achieve (g,0)

→ Antichain lemma: Constantly many elements su�ce to achieve
anything in the spanned subgroup up to “commutative information”

• When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions

19/24



Proof Structure for Groups

• By far the most technical proof of the paper• From district group monomials to group languages:
• Guess the vertices where the ai are mapped
• Guess (in succession) how each input word is split

• For groups: distinguish the rare and frequent letters of Σ
• Rare letters are in constantly many strings: NL algorithm on them
• Frequent letters are in enough strings to generate anything
→ Key (CSh): �nd an antichain with all frequent letters many times

• Two main challenges:
• Even on frequent letters, we can only achieve all group elements
up to commutative information
→ E.g., in a group G× (Z/2Z) with generators of the form (gi, 1),

a large odd number of generators will never achieve (g,0)

→ Antichain lemma: Constantly many elements su�ce to achieve
anything in the spanned subgroup up to “commutative information”

• When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions

19/24



Proof Structure for Groups

• By far the most technical proof of the paper• From district group monomials to group languages:
• Guess the vertices where the ai are mapped
• Guess (in succession) how each input word is split

• For groups: distinguish the rare and frequent letters of Σ
• Rare letters are in constantly many strings: NL algorithm on them
• Frequent letters are in enough strings to generate anything
→ Key (CSh): �nd an antichain with all frequent letters many times

• Two main challenges:
• Even on frequent letters, we can only achieve all group elements
up to commutative information
→ E.g., in a group G× (Z/2Z) with generators of the form (gi, 1),

a large odd number of generators will never achieve (g,0)

→ Antichain lemma: Constantly many elements su�ce to achieve
anything in the spanned subgroup up to “commutative information”

• When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions 19/24



Tractability Based on All Sorts of Strange Reasons

• (aa+ b)∗ is in NL for CSh:

• Ad-hoc greedy algorithm: consume string with most odd a blocks
• Complexity open for CTS!
• Complexity open for (ak + b)∗ for k > 2!
• What about similar languages like (aa+ bb+ ab)∗?

• (caa)∗d(cbb)∗dΣ∗ + Σ∗ccΣ∗ is in NL for CSh but NP-hard for CTS
• Tractability argument: another ad hoc greedy algorithm
• Hardness argument: from k-clique encoded to a bipartite graph

20/24



Tractability Based on All Sorts of Strange Reasons

• (aa+ b)∗ is in NL for CSh:
• Ad-hoc greedy algorithm: consume string with most odd a blocks

• Complexity open for CTS!
• Complexity open for (ak + b)∗ for k > 2!
• What about similar languages like (aa+ bb+ ab)∗?

• (caa)∗d(cbb)∗dΣ∗ + Σ∗ccΣ∗ is in NL for CSh but NP-hard for CTS
• Tractability argument: another ad hoc greedy algorithm
• Hardness argument: from k-clique encoded to a bipartite graph

20/24



Tractability Based on All Sorts of Strange Reasons

• (aa+ b)∗ is in NL for CSh:
• Ad-hoc greedy algorithm: consume string with most odd a blocks
• Complexity open for CTS!

• Complexity open for (ak + b)∗ for k > 2!
• What about similar languages like (aa+ bb+ ab)∗?

• (caa)∗d(cbb)∗dΣ∗ + Σ∗ccΣ∗ is in NL for CSh but NP-hard for CTS
• Tractability argument: another ad hoc greedy algorithm
• Hardness argument: from k-clique encoded to a bipartite graph

20/24



Tractability Based on All Sorts of Strange Reasons

• (aa+ b)∗ is in NL for CSh:
• Ad-hoc greedy algorithm: consume string with most odd a blocks
• Complexity open for CTS!
• Complexity open for (ak + b)∗ for k > 2!

• What about similar languages like (aa+ bb+ ab)∗?

• (caa)∗d(cbb)∗dΣ∗ + Σ∗ccΣ∗ is in NL for CSh but NP-hard for CTS
• Tractability argument: another ad hoc greedy algorithm
• Hardness argument: from k-clique encoded to a bipartite graph

20/24



Tractability Based on All Sorts of Strange Reasons

• (aa+ b)∗ is in NL for CSh:
• Ad-hoc greedy algorithm: consume string with most odd a blocks
• Complexity open for CTS!
• Complexity open for (ak + b)∗ for k > 2!
• What about similar languages like (aa+ bb+ ab)∗?

• (caa)∗d(cbb)∗dΣ∗ + Σ∗ccΣ∗ is in NL for CSh but NP-hard for CTS
• Tractability argument: another ad hoc greedy algorithm
• Hardness argument: from k-clique encoded to a bipartite graph

20/24



Tractability Based on All Sorts of Strange Reasons

• (aa+ b)∗ is in NL for CSh:
• Ad-hoc greedy algorithm: consume string with most odd a blocks
• Complexity open for CTS!
• Complexity open for (ak + b)∗ for k > 2!
• What about similar languages like (aa+ bb+ ab)∗?

• (caa)∗d(cbb)∗dΣ∗ + Σ∗ccΣ∗ is in NL for CSh but NP-hard for CTS
• Tractability argument: another ad hoc greedy algorithm
• Hardness argument: from k-clique encoded to a bipartite graph

20/24



A Kind of Dichotomy



Prelude to the Kind of Dichotomy

• We were aiming for a dichotomy, but...

• Let’s try to make the problem simpler

• Idea: If we don’t �x a target language but a language “family”
then we can hope for a coarser dichotomy

• We can restrict to “families” closed under algebraic operations
and go back to the algebraic approach

21/24



Prelude to the Kind of Dichotomy

• We were aiming for a dichotomy, but...
• Let’s try to make the problem simpler

• Idea: If we don’t �x a target language but a language “family”
then we can hope for a coarser dichotomy

• We can restrict to “families” closed under algebraic operations
and go back to the algebraic approach

21/24



Prelude to the Kind of Dichotomy

• We were aiming for a dichotomy, but...
• Let’s try to make the problem simpler

• Idea: If we don’t �x a target language but a language “family”
then we can hope for a coarser dichotomy

• We can restrict to “families” closed under algebraic operations
and go back to the algebraic approach

21/24



A Kind of Dichotomy

• Fix a semiautomaton S = (Q,Σ, δ) with Q the set of states,
with Σ a �nite alphabet, and with δ the transitions.

• Idea: we will give in the input a speci�cation, i.e.,
a set {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• We specify the initial and �nal states (= closure by quotient)
• We can toggle the �nal states (= closure by complement)
• We will do a conjunction over the (ij, Fj) (= closure by intersection)

• Semiautomaton Constrained topological sort problem CTS(S):
• Input:

• a DAG G with vertices labeled by letters of Σ,
• a speci�cation of S, i.e., {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• Output: is there a topological sort of G such that
the sequence of vertex labels is accepted by the automaton
(Q,Σ, δ, ij, Fj) for all 1 ≤ j ≤ k

22/24



A Kind of Dichotomy

• Fix a semiautomaton S = (Q,Σ, δ) with Q the set of states,
with Σ a �nite alphabet, and with δ the transitions.

• Idea: we will give in the input a speci�cation, i.e.,
a set {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• We specify the initial and �nal states (= closure by quotient)
• We can toggle the �nal states (= closure by complement)
• We will do a conjunction over the (ij, Fj) (= closure by intersection)

• Semiautomaton Constrained topological sort problem CTS(S):
• Input:

• a DAG G with vertices labeled by letters of Σ,
• a speci�cation of S, i.e., {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• Output: is there a topological sort of G such that
the sequence of vertex labels is accepted by the automaton
(Q,Σ, δ, ij, Fj) for all 1 ≤ j ≤ k

22/24



A Kind of Dichotomy

• Fix a semiautomaton S = (Q,Σ, δ) with Q the set of states,
with Σ a �nite alphabet, and with δ the transitions.

• Idea: we will give in the input a speci�cation, i.e.,
a set {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• We specify the initial and �nal states (= closure by quotient)
• We can toggle the �nal states (= closure by complement)
• We will do a conjunction over the (ij, Fj) (= closure by intersection)

• Semiautomaton Constrained topological sort problem CTS(S):
• Input:

• a DAG G with vertices labeled by letters of Σ,
• a speci�cation of S, i.e., {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• Output: is there a topological sort of G such that
the sequence of vertex labels is accepted by the automaton
(Q,Σ, δ, ij, Fj) for all 1 ≤ j ≤ k

22/24



A Kind of Dichotomy

• Fix a semiautomaton S = (Q,Σ, δ) with Q the set of states,
with Σ a �nite alphabet, and with δ the transitions.

• Idea: we will give in the input a speci�cation, i.e.,
a set {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• We specify the initial and �nal states (= closure by quotient)

• We can toggle the �nal states (= closure by complement)
• We will do a conjunction over the (ij, Fj) (= closure by intersection)

• Semiautomaton Constrained topological sort problem CTS(S):
• Input:

• a DAG G with vertices labeled by letters of Σ,
• a speci�cation of S, i.e., {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• Output: is there a topological sort of G such that
the sequence of vertex labels is accepted by the automaton
(Q,Σ, δ, ij, Fj) for all 1 ≤ j ≤ k

22/24



A Kind of Dichotomy

• Fix a semiautomaton S = (Q,Σ, δ) with Q the set of states,
with Σ a �nite alphabet, and with δ the transitions.

• Idea: we will give in the input a speci�cation, i.e.,
a set {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• We specify the initial and �nal states (= closure by quotient)
• We can toggle the �nal states (= closure by complement)

• We will do a conjunction over the (ij, Fj) (= closure by intersection)

• Semiautomaton Constrained topological sort problem CTS(S):
• Input:

• a DAG G with vertices labeled by letters of Σ,
• a speci�cation of S, i.e., {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• Output: is there a topological sort of G such that
the sequence of vertex labels is accepted by the automaton
(Q,Σ, δ, ij, Fj) for all 1 ≤ j ≤ k

22/24



A Kind of Dichotomy

• Fix a semiautomaton S = (Q,Σ, δ) with Q the set of states,
with Σ a �nite alphabet, and with δ the transitions.

• Idea: we will give in the input a speci�cation, i.e.,
a set {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• We specify the initial and �nal states (= closure by quotient)
• We can toggle the �nal states (= closure by complement)
• We will do a conjunction over the (ij, Fj) (= closure by intersection)

• Semiautomaton Constrained topological sort problem CTS(S):
• Input:

• a DAG G with vertices labeled by letters of Σ,
• a speci�cation of S, i.e., {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• Output: is there a topological sort of G such that
the sequence of vertex labels is accepted by the automaton
(Q,Σ, δ, ij, Fj) for all 1 ≤ j ≤ k

22/24



A Kind of Dichotomy

• Fix a semiautomaton S = (Q,Σ, δ) with Q the set of states,
with Σ a �nite alphabet, and with δ the transitions.

• Idea: we will give in the input a speci�cation, i.e.,
a set {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• We specify the initial and �nal states (= closure by quotient)
• We can toggle the �nal states (= closure by complement)
• We will do a conjunction over the (ij, Fj) (= closure by intersection)

• Semiautomaton Constrained topological sort problem CTS(S):
• Input:

• a DAG G with vertices labeled by letters of Σ,
• a speci�cation of S, i.e., {(i1, F1), . . . , (ik, Fk)} with (ij, Fj) ∈ Q× 2Q

• Output: is there a topological sort of G such that
the sequence of vertex labels is accepted by the automaton
(Q,Σ, δ, ij, Fj) for all 1 ≤ j ≤ k

22/24



A Kind of Dichotomy (2)

Theorem
For every semiautomaton S, exactly one of the following
holds:

• The transition semigroup of S belongs to ... and CTS(S) is in NL

• The transition semigroup of S is not in ... and CTS(S) is NP-hard

• DA is a classic variety of semigroups
• Counterfree is equivalent to being �rst-order de�nable and
“not containing any groups”

• DO,DS are much less well understood varieties of semigroups

23/24



A Kind of Dichotomy (2)

Theorem
For every counterfree semiautomaton S, exactly one of the following
holds:

• The transition semigroup of S belongs to DA and CTS(S) is in NL

• The transition semigroup of S is not in DA and CTS(S) is NP-hard

• DA is a classic variety of semigroups

• Counterfree is equivalent to being �rst-order de�nable and
“not containing any groups”

• DO,DS are much less well understood varieties of semigroups

23/24



A Kind of Dichotomy (2)

Theorem
For every counterfree semiautomaton S, exactly one of the following
holds:

• The transition semigroup of S belongs to DA and CTS(S) is in NL

• The transition semigroup of S is not in DA and CTS(S) is NP-hard

• DA is a classic variety of semigroups

• Counterfree is equivalent to being �rst-order de�nable and
“not containing any groups”

• DO,DS are much less well understood varieties of semigroups

23/24



A Kind of Dichotomy (2)

Theorem
For every counterfree semiautomaton S, exactly one of the following
holds:

• The transition semigroup of S belongs to DA and CTS(S) is in NL

• The transition semigroup of S is not in DA and CTS(S) is NP-hard

• DA is a classic variety of semigroups
• Counterfree is equivalent to being �rst-order de�nable and
“not containing any groups”

• DO,DS are much less well understood varieties of semigroups

23/24



A Kind of Dichotomy (2)

Theorem
For every ///////////////counterfree semiautomaton S, exactly one of the following
holds:

• The transition semigroup of S belongs to DO and CSh(S) is in NL

• The transition semigroup of S is not in DS and CSh(S) is NP-hard

• DA is a classic variety of semigroups
• Counterfree is equivalent to being �rst-order de�nable and
“not containing any groups”

• DO,DS are much less well understood varieties of semigroups
23/24



Conclusion



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention!

24/24



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention!

24/24



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention!

24/24



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention!

24/24



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention!

24/24



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention!

24/24



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention!

24/24



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention!

24/24



Summary and Future Work

Language CSh (shu�e) CTS (top. sort)

(ab)∗, u∗ with di�erent letters NP-hard NP-hard

Monomials A∗1a1 · · ·A∗nanA∗n+1 in NL in NL
Groups, district group monomials in NL

bΣ∗ + aaΣ∗ + (ab)∗ in NL NP-hard

L+ Σ∗(ak + bk)Σ∗ in NL in NL
(ab)∗ + Σ∗a2Σ∗ in NL in NL
L+ Σ∗akΣ∗

(aa+ bb)∗, (ab+ a)∗ NP-hard NP-hard
(aa+ b)∗ in NL
(ak + b)∗

Essentially all other languages...

Thanks for your attention! 24/24



References

Amarilli, A. and Paperman, C. (2018).
Topological Sorting under Regular Constraints.
In ICALP.
Warmuth, M. K. and Haussler, D. (1984).
On the complexity of iterated shu�e.
JCSS, 28(3).

https://arxiv.org/abs/1707.04310
https://iuuk.mff.cuni.cz/~icalp2018/


Image Credits

Super-Dupont (slide 24) : Oui nide iou, Superdupont, Lob & Gotlib,
drawn by Neal Adams, Alexis, Al Coutelis, Daniel Goossens, Solé,
Gotlib. Fair use.


	Hardness Results
	Tractability Results
	A Kind of Dichotomy
	Conclusion
	Appendix

