PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion

Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli¹, Pierre Bourhis², Pierre Senellart^{1,3}

¹Télécom ParisTech

²CNRS-LIFL

³National University of Singapore

March 6th, 2015

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

General idea

- We consider a query and a relational instance
- Often it is not sufficient to merely evaluate the query:
 - $\rightarrow\,$ We need quantitative information
 - $\rightarrow\,$ We need the link from the <code>output</code> to the <code>input</code> data

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

General idea

- We consider a query and a relational instance
- Often it is not sufficient to merely evaluate the query:
 - $\rightarrow\,$ We need quantitative information
 - $\rightarrow\,$ We need the link from the <code>output</code> to the <code>input</code> data
- \rightarrow Compute query provenance!

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000 Conclusion 00

Example 1: security for a conjunctive query

		R	
а	b		
b	С		
d	е		
е	d		
f	f		

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000 Conclusion 00

Example 1: security for a conjunctive query

Consider the conjunctive query: $\exists xyz \ R(x, y) \land R(y, z)$.

		R	
а	b		
b	С		
d	е		
е	d		
f	f		

• Result: true

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 1: security for a conjunctive query

R			
а	b	Public	
b	С	Secret	
d	е	Confidential	
е	d	Confidential	
f	f	Top secret	

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 1: security for a conjunctive query

R		
а	b	Public
b	С	Secret
d	е	Confidential
е	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 1: security for a conjunctive query

R		
а	b	Public
b	С	Secret
d	е	Confidential
е	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 1: security for a conjunctive query

R		
а	b	Public
b	С	Secret
d	е	Confidential
е	d	Confidential
f	f	Top secret

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 1: security for a conjunctive query

R			
а	b	Public	
b	С	Secret	
d	е	Confidential	
е	d	Confidential	
f	f	Top secret	

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 1: security for a conjunctive query

R			
а	b	Public	
b	С	Secret	
d	е	Confidential	
е	d	Confidential	
f	f	Top secret	

- Result: true
- Add security annotations: Public, Confidential, Secret, Top secret, Never available
- What is the minimal security clearance required?
- → Result: Confidential

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 2: bag queries

	R	
а	b	
b	С	
d	е	
е	d	
f	f	

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 2: bag queries

Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.

	R	
а	b	
b	С	
d	е	
е	d	
f	f	

• Result: true

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example 2: bag queries

	R	
а	Ь	1
b	С	1
d	е	1
е	d	1
f	f	1

- Result: true
- Add multiplicity annotations

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion

Example 2: bag queries

	R	
а	Ь	1
b	С	1
d	е	1
е	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Example 2: bag queries

	R	
а	Ь	1
b	С	1
d	е	1
е	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- \rightarrow Result: 1

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Example 2: bag queries

	R	
а	Ь	1
b	С	1
d	е	1
е	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- \rightarrow Result: 1 + 1

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Example 2: bag queries

	R	
а	Ь	1
b	С	1
d	е	1
е	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- \rightarrow Result: 1 + 1 + 1

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion

Example 2: bag queries

	R	
а	Ь	1
Ь	С	1
d	е	1
е	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- \rightarrow Result: 1 + 1 + 1 + 1

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion

Example 2: bag queries

	R	
а	Ь	1
b	С	1
d	е	1
е	d	1
f	f	1

- Result: true
- Add multiplicity annotations
- How many query matches?
- → Result: 1 + 1 + 1 + 1 = 4

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Example 3: uncertain facts

	R	
а	b	
b	С	
d	е	
е	d	
f	f	

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 3: uncertain facts

Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.

	R	
а	b	
Ь	С	
d	е	
е	d	
f	f	

• Result: true

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example 3: uncertain facts

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example 3: uncertain facts

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Example 3: uncertain facts

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \land f_2)$

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example 3: uncertain facts

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \wedge f_2) \lor (f_3 \wedge f_4)$

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example 3: uncertain facts

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \wedge f_2) \lor (f_3 \wedge f_4)$

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example 3: uncertain facts

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \land f_2) \lor (f_3 \land f_4) \lor f_5$

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example 3: uncertain facts

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

- Result: true
- Assume facts are uncertain, give them atomic annotations
- For which subinstances does the query hold?
- \rightarrow Result: $(f_1 \wedge f_2) \lor (f_3 \wedge f_4) \lor f_5$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Semiring provenance [Green et al., 2007]

• Semiring $(K, \oplus, \otimes, 0, 1)$

- (\mathcal{K},\oplus) commutative monoid with identity 0
- $({\it K},\otimes)$ commutative monoid with identity 1
- $\bullet \ \otimes \ {\sf distributes} \ {\sf over} \ \oplus \\$
- $\bullet \ 0$ absorptive for \otimes

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Semiring provenance [Green et al., 2007]

• Semiring $(K, \oplus, \otimes, 0, 1)$

- (\mathcal{K},\oplus) commutative monoid with identity 0
- $({\it K},\otimes)$ commutative monoid with identity 1
- $\bullet \ \otimes \ {\sf distributes} \ {\sf over} \ \oplus \\$
- 0 absorptive for \otimes
- Idea: Maintain annotations on tuples while evaluating:
 - Union: annotation is the sum of union tuples
 - Select: select as usual
 - Project: annotation is the sum of projected tuples
 - Product: annotation is the product

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	Ь	f_1
Ь	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Result:

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	b	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Result:

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	b	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2)$
PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	Ь	f_1
Ь	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4)$

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	Ь	f_1
Ь	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 $\rightarrow \mathsf{Result:} \ (f_1 \otimes f_2) \oplus (f_3 \otimes f_4) \oplus (f_4 \otimes f_3)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4) \oplus (f_4 \otimes f_3)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

R		
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 $\rightarrow \mathsf{Result:} (f_1 \otimes f_2) \oplus (f_3 \otimes f_4) \oplus (f_4 \otimes f_3) \oplus (f_5 \otimes f_5)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

The universal semiring: $\mathbb{N}[X]$

- Consider again: $\exists xyz \ R(x, y) \land R(y, z)$.
- Annotate input facts with atomic annotations $X = f_1, \ldots, f_n$
- Most general semiring: $\mathbb{N}[X]$ of polynomials on X

	R	
а	Ь	f_1
b	С	f_2
d	е	f_3
е	d	f_4
f	f	f_5

 \rightarrow Result: $(f_1 \otimes f_2) \oplus (f_3 \otimes f_4) \oplus (f_4 \otimes f_3) \oplus (f_5 \otimes f_5)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Specialization and homomorphisms

- The first three examples can be captured using semirings:
 - security semiring (*K*, min, max, Public, Never available)
 - bag semiring $(\mathbb{N}, +, \times, 0, 1)$
 - Boolean semiring $(\text{PosBool}[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Specialization and homomorphisms

- The first three examples can be captured using semirings:
 - security semiring (*K*, min, max, Public, Never available)
 - bag semiring $(\mathbb{N},+,\times,0,1)$
 - Boolean semiring $(\text{PosBool}[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- $\mathbb{N}[X]$ is the universal semiring:
 - The provenance for $\mathbb{N}[X]$ can be specialized to any $\mathcal{K}[X]$
 - By commutation with homomorphisms, atomic annotations in *X* can be replaced by their value in *K*

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Specialization and homomorphisms

- The first three examples can be captured using semirings:
 - security semiring (*K*, min, max, Public, Never available)
 - bag semiring $(\mathbb{N},+,\times,0,1)$
 - Boolean semiring $(\text{PosBool}[X], \lor, \land, \mathfrak{f}, \mathfrak{t})$
- $\mathbb{N}[X]$ is the universal semiring:
 - The provenance for $\mathbb{N}[X]$ can be specialized to any $\mathcal{K}[X]$
 - By commutation with homomorphisms, atomic annotations in *X* can be replaced by their value in *K*
- \rightarrow Computing $\mathbb{N}[X]$ provenance subsumes all tasks
- $\rightarrow\,$ It can be done in <code>PTIME</code> data complexity for CQs

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion

- Reading the provenance directly:
 - Security annotations
 - Number of matches

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

- Reading the provenance directly:
 - Security annotations
 - Number of matches
- Using the provenance (here, PosBool[X]):
 - Computing the probability of a query:

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

- Reading the provenance directly:
 - Security annotations
 - Number of matches
- Using the provenance (here, PosBool[X]):
 - Computing the probability of a query:
 - Fixed CQ q, and input:

R		
а	b	0.6
Ь	с	0.9

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Applications of provenance

- Reading the provenance directly:
 - Security annotations
 - Number of matches
- Using the provenance (here, PosBool[X]):
 - Computing the probability of a query:
 - Fixed CQ q, and input:

R		
а	Ь	0.6
Ь	С	0.9

→ Computing the probability of the PosBool[X]-provenance → #P-hard

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- Reading the provenance directly:
 - Security annotations
 - Number of matches
- Using the provenance (here, PosBool[X]):
 - Computing the probability of a query:
 - Fixed CQ q, and input:

R		
а	Ь	0.6
Ь	С	0.9

- → Computing the probability of the PosBool[X]-provenance → #P-hard
- Counting the query results

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Trees and treelike instances

• Idea: restrict the instances to trees and treelike instances

- Tree decomposition of an instance: cover all facts
- Treewidth: minimal width (bag size) of a decomposition
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and k-grids have treewidth k-1
- Treelike: the treewidth is bounded by a constant

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Trees and treelike instances

• Idea: restrict the instances to trees and treelike instances

- Tree decomposition of an instance: cover all facts
- Treewidth: minimal width (bag size) of a decomposition
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and k-grids have treewidth k-1
- Treelike: the treewidth is bounded by a constant
- If the PosBool[X] provenance is treelike, we can:
 - Compute its probability efficiently (message passing)
 - Count the results by reducing to probability computation

 $\mathbb{N}[X]$ -provenance

Problem statement

- Many tasks have tractable data complexity on treelike instances:
 - MSO query evaluation is linear [Courcelle et al., 2001]
 - MSO result counting is linear [Arnborg et al., 1991]
 - Probability evaluation is linear for trees [Cohen et al., 2009]

 $\mathbb{N}[X]$ -provenance

Problem statement

- Many tasks have tractable data complexity on treelike instances:
 - MSO query evaluation is linear [Courcelle et al., 2001]
 - MSO result counting is linear [Arnborg et al., 1991]
 - Probability evaluation is linear for trees [Cohen et al., 2009]
- \rightarrow Can we explain this tractability with provenance?
 - Idea: queries on treelike instances have treelike provenance?
- \rightarrow Can we extend tractability to more quantitative tasks?
- \rightarrow Can we define and compute provenance for MSO?

 $\mathbb{N}[X]$ -provenance

Conclusion

Table of contents

- Introduction
 - Provenance examples
 - Semiring provenance
 - Problem statement
- PosBool[X]-provenance
 - Prerequisites
 - Trees
 - Treelike instances
- $\Im \mathbb{N}[X]$ -provenance
 - Problems
 - Results

4 Conclusion

 $\mathbb{N}[X]$ -provenance

General idea

- PosBool[X]-provenance on trees and treelike instances
- The world of trees:
 - Query: MSO on trees
 - Encode to a tree automaton
- The world of treelike instances:
 - Query: MSO/GSO on the instance
 - Reduce to trees [Courcelle et al., 2001]

 $\mathbb{N}[X]$ -provenance 000000

General idea

- PosBool[X]-provenance on trees and treelike instances
- The world of trees:
 - Query: MSO on trees
 - Encode to a tree automaton
- The world of treelike instances:
 - Query: MSO/GSO on the instance
 - Reduce to trees [Courcelle et al., 2001]
- \rightarrow Start with $\operatorname{PosBool}[X]$ -provenance for tree automata on trees

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Tree automata

Tree alphabet: 🔵 🔴 🔵

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{\top\}$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{\top\}$
- Initial function:

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- States: $\{\perp, G, R, \top\}$
- Final states: $\{\top\}$
- Initial function:

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

PosBool[X]-provenance ○●○○○○○○○○ $\mathbb{N}[X]$ -provenance

Conclusion 00

PosBool[X]-provenance 00000000000

 $\mathbb{N}[X]$ -provenance

Tree automata

- bNTA: bottom-up nondeterministic tree automaton
- "Is there both a red and green
- States: $\{\perp, G, R, \top\}$
- Final states: $\{\top\}$
- Initial function:

• Transitions (examples):

PosBool[X]-provenance

ℕ[*X*]-provenance 000000 Conclusion

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Keep: $\{1, 2, 3, 4, 5, 6, 7\}$

The bNTA accepts

PosBool[X]-provenance

ℕ[*X*]-provenance 000000 Conclusion 00

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Keep: $\{1, 2, 5, 6\}$

The bNTA rejects

PosBool[X]-provenance

ℕ[*X*]-provenance 000000 Conclusion 00

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Keep: $\{2,7\}$

The bNTA accepts

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Provenance circuits

- $X = \{g_1, g_2, g_3, g_4, g_5, g_6, g_7\}$
- PosBool[X]-provenance of a bNTA A on tree T:
 - $\bullet\,$ monotone Boolean formula $\phi\,$
 - on variables X
 - $\rightarrow \nu(\mathbf{T})$ is accepted by A iff $\nu(\phi)$ is true

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Provenance circuits

- $X = \{g_1, g_2, g_3, g_4, g_5, g_6, g_7\}$
- PosBool[X]-provenance of a bNTA A on tree T:
 - $\bullet\,$ monotone Boolean formula $\phi\,$
 - on variables X
 - $\rightarrow \nu(T)$ is accepted by A iff $\nu(\phi)$ is true
- Represent as a circuit [Deutch et al., 2014]
 - monotone Boolean circuit C
 - with input gates X
 - $\rightarrow \nu(T)$ is accepted by A iff $\nu(C)$ is true (output gate)

Example

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

• bNTA: is there both a red and a green node?
Example

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

- bNTA: is there both a red and a green node?
- PosBool[X]-provenance: $(g_2 \lor g_3) \land g_7$

Example

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

- bNTA: is there both a red and a green node?
- PosBool[X]-provenance: $(g_2 \lor g_3) \land g_7$
- PosBool[X] provenance circuit:

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Constructing the provenance circuit

 \rightarrow Construct a Boolean provenance circuit bottom-up

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Constructing the provenance circuit

 \rightarrow Construct a Boolean provenance circuit bottom-up

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Our results on trees

- A PosBool[X] provenance circuit of a bNTA on a tree:
 - $\rightarrow\,$ can be computed in linear time in the bNTA and tree
 - $\rightarrow\,$ does not depend on the bNTA for a fixed query
 - $\rightarrow\,$ has treewidth only dependent on the bNTA
 - \rightarrow is actually a Bool[X]-circuit (more soon)
 - $\rightarrow\,$ in terms of queries, works for MSO

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Our results on trees

- A PosBool[X] provenance circuit of a bNTA on a tree:
 - $\rightarrow\,$ can be computed in linear time in the bNTA and tree
 - $\rightarrow\,$ does not depend on the bNTA for a fixed query
 - $\rightarrow\,$ has treewidth only dependent on the bNTA
 - \rightarrow is actually a Bool[X]-circuit (more soon)
 - \rightarrow in terms of queries, works for MSO
- \rightarrow Let's extend this to treelike instances!

Introduct	tion 00000	F	PosBo	ol[X]-pro ∖ ⊃⊙●000	/enance	2		ℕ[X]-pro 000000	ovenance	Concl 00	usion
-						L CI			1.5.7	 10001	

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

Γ	J
а	b
b	С
С	d
d	е
е	f
S	5
а	С
b	е

Introduction 000000000	PosBool[X]-provenance	$\mathbb{N}[X]$ -provenance	Conclusion 00
Encoding tree	elike instances	[Chaudhuri and Vardi,	1992]

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion

- Tree encodings: represent treelike instances as trees
- Encoding the query:
 - MSO/GSO on the treelike instance...
 - ... translates to MSO on the tree encoding (Courcelle) ...
 - ... translates to a bNTA on the encoding.

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- Tree encodings: represent treelike instances as trees
- Encoding the query:
 - MSO/GSO on the treelike instance...
 - ... translates to MSO on the tree encoding (Courcelle) ...
 - ... translates to a bNTA on the encoding.
- Uncertain instance: each fact can be present or absent
- $\rightarrow\,$ Possible subinstances are possible valuations of the encoding

F	2	$R(a_1, a_2)$
а	b	
b	с	$P(z_1, z_2)$ $P(z_2, z_2)$
b	d	$R(d_2,d_3)$ $R(d_2,d_3)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- Tree encodings: represent treelike instances as trees
- Encoding the query:
 - MSO/GSO on the treelike instance...
 - ... translates to MSO on the tree encoding (Courcelle) ...
 - ... translates to a bNTA on the encoding.
- Uncertain instance: each fact can be present or absent
- \rightarrow Possible subinstances are possible valuations of the encoding

F	2	$R(a_1, a_2)$
a	_b	
b	С	$P(z_1, z_2)$ $P(z_2, z_3)$
b	d	$R(d_2,d_3)$ $R(d_2,d_3)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- Tree encodings: represent treelike instances as trees
- Encoding the query:
 - MSO/GSO on the treelike instance...
 - ... translates to MSO on the tree encoding (Courcelle) ...
 - ... translates to a bNTA on the encoding.
- Uncertain instance: each fact can be present or absent
- $\rightarrow\,$ Possible subinstances are possible valuations of the encoding

F	R	$R(a_1, a_2)$
а	b	
b	-c	P(z, z) $P(z, z)$
b	_d	$\pi(a_2, a_3)$ $\pi(a_2, a_3)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

- Tree encodings: represent treelike instances as trees
- Encoding the query:
 - MSO/GSO on the treelike instance...
 - ... translates to MSO on the tree encoding (Courcelle) ...
 - ... translates to a bNTA on the encoding.
- Uncertain instance: each fact can be present or absent
- $\rightarrow\,$ Possible subinstances are possible valuations of the encoding

F	2	$R(a_1, a_2)$
а	b	
b	с	$P(z_1, z_2)$ $P(z_2, z_2)$
b	d	$R(d_2,d_3)$ $R(d_2,d_3)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Our result and consequences

• Compute a Bool[X]-provenance circuit for a fixed MSO query on a treelike instance in linear time in the instance

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Our result and consequences

- Compute a Bool[X]-provenance circuit for a fixed MSO query on a treelike instance in linear time in the instance
- → Linear time data complexity for MSO probabilistic query evaluation on treelike instances (assuming unit-cost arithmetics)
- \rightarrow Covers many known probabilistic data models:
 - TID instances
 - BID instances
 - pc-instances (decomposing the annotations)

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Our result and consequences

- Compute a Bool[X]-provenance circuit for a fixed MSO query on a treelike instance in linear time in the instance
- → Linear time data complexity for MSO probabilistic query evaluation on treelike instances (assuming unit-cost arithmetics)
- \rightarrow Covers many known probabilistic data models:
 - TID instances
 - BID instances
 - pc-instances (decomposing the annotations)
 - We can reduce counting to probabilistic evaluation
- $\rightarrow\,$ Re-proves that MSO counting has linear-time data complexity

PosBool[X]-provenance ○○○○○○○○● $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example: block-independent disjoint (BID) instances

<u>name</u>	city	iso	p
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	јр	0.1
icalp	kyoto	jp	0.9

PosBool[X]-provenance ○○○○○○○○●

 $\mathbb{N}[X]$ -provenance 000000

Conclusion 00

Example: block-independent disjoint (BID) instances

name	city	iso	р
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	јр	0.1
icalp	kyoto	jp	0.9

• Evaluating a fixed CQ is #P-hard in general

PosBool[X]-provenance ○○○○○○○○● $\mathbb{N}[X]$ -provenance

Conclusion 00

Example: block-independent disjoint (BID) instances

name	city	iso	р
pods	melbourne	au	0.8
pods	sydney	au	0.2
icalp	tokyo	јр	0.1
icalp	kyoto	jp	0.9

● Evaluating a fixed CQ is #P-hard in general
 → For a treelike instance, linear time!

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Table of contents

- Introduction
 - Provenance examples
 - Semiring provenance
 - Problem statement
- 2 PosBool[X]-provenance
 - Prerequisites
 - Trees
 - Treelike instances
- ③ ℕ[X]-provenance
 Problems
 - Results

4) Conclusion

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

First problem: non-monotone queries

- We want to generalize from $\operatorname{PosBool}[X]$ to $\mathbb{N}[X]$
- Semirings have bad support for negation [Amsterdamer et al., 2011]
- Our previous construction uses negation

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance \bigcirc 00000 Conclusion

First problem: non-monotone queries

- We want to generalize from $\operatorname{PosBool}[X]$ to $\mathbb{N}[X]$
- Semirings have bad support for negation [Amsterdamer et al., 2011]
- Our previous construction uses negation
- \rightarrow *q* monotone if $I \models q$ implies $I' \models q$ for all $I' \supseteq I$
- \rightarrow bNTA A monotone on tree encodings if a node with a fact can do all transitions of a node with no fact

 $\mathbb{N}[X]$ -provenance $\bigcirc 00000$

First problem: non-monotone queries

- We want to generalize from $\operatorname{PosBool}[X]$ to $\mathbb{N}[X]$
- Semirings have bad support for negation [Amsterdamer et al., 2011]
- Our previous construction uses negation
- \rightarrow *q* monotone if $I \models q$ implies $I' \models q$ for all $I' \supseteq I$
- \rightarrow bNTA A monotone on tree encodings if a node with a fact can do all transitions of a node with no fact
- \rightarrow We can encode monotone queries to monotone bNTAs
- $\rightarrow\,$ Provenance circuits for monotone automata can be monotone

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Second problem: intrinsic definition

- Boolean provenance has an intrinsic definition: "Characterize which subinstances satisfy the query"
 - $\rightarrow\,$ Independent from how the query is written
 - $\rightarrow\,$ Independent from the <code>bNTA</code> that encodes it
- $\mathbb{N}[X]$ -provenance was defined operationally
 - \rightarrow Depends on how the query is written

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Second problem: intrinsic definition

- Boolean provenance has an intrinsic definition: "Characterize which subinstances satisfy the query"
 - $\rightarrow\,$ Independent from how the query is written
 - $\rightarrow\,$ Independent from the <code>bNTA</code> that encodes it
- $\mathbb{N}[X]$ -provenance was defined operationally
 - $\rightarrow\,$ Depends on how the query is written
- \rightarrow We restrict to (Boolean) UCQs from now on

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Provenance of a Boolean CQ

	R	
а	а	x_1
b	С	x_2
С	b	x_3

• Query: $q: \exists xy \ R(x, y) \land R(y, x)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

	R	
а	а	x_1
b	С	x_2
С	b	x_3

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance:

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

R		
а	а	x_1
b	С	x_2
С	b	x_3

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance: $(x_1 \otimes x_1)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

R		
а	а	x_1
b	С	x_2
С	b	x_3

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance:
 - $(x_1 \otimes x_1)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

R		
а	а	x_1
b	С	x_2
С	b	x 3

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

R		
а	а	x_1
b	С	x_2
С	b	x_3

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3)$

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

R		
а	а	x_1
b	С	x ₂
С	b	X 3

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3) \oplus (x_3 \otimes x_2)$

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

R		
а	а	x_1
b	С	x_2
С	b	x_3

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3) \oplus (x_3 \otimes x_2)$ aka $x_1^2 + 2x_2x_3$
PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Provenance of a Boolean CQ

R			
а	а	x_1	
b	С	x_2	
С	b	x_3	

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3) \oplus (x_3 \otimes x_2)$ aka $x_1^2 + 2x_2x_3$
- Definition:
 - Sum over query matches
 - Multiply over matched facts

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Provenance of a Boolean CQ

R			
а	а	x_1	
b	С	x_2	
С	b	x_3	

- Query: $q: \exists xy \ R(x, y) \land R(y, x)$
- Provenance: $(x_1 \otimes x_1) \oplus (x_2 \otimes x_3) \oplus (x_3 \otimes x_2)$ aka $x_1^2 + 2x_2x_3$
- Definition:
 - Sum over query matches
 - Multiply over matched facts

How is $\mathbb{N}[X]$ more expressive than $\operatorname{PosBool}[X]$?

- \rightarrow Coefficients: counting multiple derivations
- \rightarrow Exponents: using facts multiple times
- \rightarrow (Non-absorptivity: $a \oplus (a \otimes b) \neq a$)

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Supporting coefficients

- In the world of trees
 - The same valuation can be accepted multiple times
 - $\rightarrow\,$ Number of accepting runs of the bNTA
- In the world of treelike instances
 - The same match can be the image of multiple homomorphisms

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Supporting coefficients

- In the world of trees
 - The same valuation can be accepted multiple times
 - $\rightarrow\,$ Number of accepting runs of the bNTA
- In the world of treelike instances
 - The same match can be the image of multiple homomorphisms
- \rightarrow Add assignment facts to represent possible assignments
- \rightarrow Encode to a bNTA that guesses them

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Supporting exponents

- In the world of trees
 - The same fact can be used multiple times
 - Annotate nodes with a multiplicity
 - The bNTA is monotone for that multiplicity
 - Use each input gate as many times as we read its fact
- In the world of treelike instances
 - The same fact can be the image of multiple atoms
 - Maximal multiplicity is query-dependent but instance-independent

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Supporting exponents

- In the world of trees
 - The same fact can be used multiple times
 - Annotate nodes with a multiplicity
 - The bNTA is monotone for that multiplicity
 - Use each input gate as many times as we read its fact
- In the world of treelike instances
 - The same fact can be the image of multiple atoms
 - Maximal multiplicity is query-dependent but instance-independent
- \rightarrow Encodes CQs to bNTAs that read multiplicities
 - Consider all possible CQ self-homomorphisms
 - Count the multiplicities of identical atoms
 - Rewrite relations to add multiplicities
 - Usual compilation on the modified signature

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Our result for $\mathbb{N}[X]$ -provenance circuits

We can compute in linear time data complexity a $\mathbb{N}[X]$ provenance circuit (arithmetic circuit) for UCQs.

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion 00

Our result for $\mathbb{N}[X]$ -provenance circuits

We can compute in linear time data complexity a $\mathbb{N}[X]$ provenance circuit (arithmetic circuit) for UCQs.

- \rightarrow What fails for MSO/Datalog?
 - Unbounded maximal multiplicity
 - Logical definition of fact multiplicity?

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Table of contents

- Introduction
 - Provenance examples
 - Semiring provenance
 - Problem statement
- 2 PosBool[X]-provenance
 - Prerequisites
 - Trees
 - Treelike instances
- \bigcirc $\mathbb{N}[X]$ -provenance
 - Problems
 - Results

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion •0

Summary

- Result:
 - → Linear time provenance circuit computation on trees/treelike instances:
 - for MSO, Bool[X]
 - for monotone MSO, PosBool[X]
 - for UCQ, $\mathbb{N}[X]$
 - \rightarrow cheaper than on arbitrary instances (linear vs PTIME)
 - $\rightarrow\,$ not more expensive than counting or query evaluation

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion •0

Summary

- Result:
 - → Linear time provenance circuit computation on trees/treelike instances:
 - for MSO, Bool[X]
 - for monotone MSO, PosBool[X]
 - for UCQ, $\mathbb{N}[X]$
 - \rightarrow cheaper than on arbitrary instances (linear vs PTIME)
 - $\rightarrow\,$ not more expensive than counting or query evaluation
- Techniques:
 - Creative provenance representations (arithmetic circuits)
 - Intrinsic definitions of provenance (rather than operational)
 - Extending provenance to MSO (PosBool[X] only for now)
 - Provenance-preserving encoding of queries to bNTAs

PosBool[*X*]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion •0

Summary

- Result:
 - → Linear time provenance circuit computation on trees/treelike instances:
 - for MSO, Bool[X]
 - for monotone MSO, PosBool[X]
 - for UCQ, $\mathbb{N}[X]$
 - \rightarrow cheaper than on arbitrary instances (linear vs PTIME)
 - $\rightarrow\,$ not more expensive than counting or query evaluation
- Techniques:
 - Creative provenance representations (arithmetic circuits)
 - Intrinsic definitions of provenance (rather than operational)
 - Extending provenance to MSO (PosBool[X] only for now)
 - Provenance-preserving encoding of queries to bNTAs
- Applications:
 - \rightarrow Capture counting results
 - (decouple symbolic and numerical computation)
 - \rightarrow Extend to new applications (probabilities)

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance 000000

Future work

- Monadic Datalog [Gottlob et al., 2010] to avoid high combined complexity
- A neater approach for counting and probabilities
- Extend $\mathbb{N}[X]$ beyond CQs (e.g., formal series, multiplicities)
- Other applications? aggregation, enumeration?

PosBool[X]-provenance

 $\mathbb{N}[X]$ -provenance

Conclusion

Future work

- Monadic Datalog [Gottlob et al., 2010] to avoid high combined complexity
- A neater approach for counting and probabilities
- Extend $\mathbb{N}[X]$ beyond CQs (e.g., formal series, multiplicities)
- Other applications? aggregation, enumeration?

Thanks for your attention!

References I

- Amsterdamer, Y., Deutch, D., and Tannen, V. (2011). On the limitations of provenance for queries with difference. In *TaPP*.
- Arnborg, S., Lagergren, J., and Seese, D. (1991).
 Easy problems for tree-decomposable graphs.
 J. Algorithms, 12(2):308–340.
- Chaudhuri, S. and Vardi, M. Y. (1992). On the equivalence of recursive and nonrecursive Datalog programs. In PODS.
- Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009). Running tree automata on probabilistic XML. In *PODS*.

References II

Courcelle, B., Makowsky, J. A., and Rotics, U. (2001). On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. *Discrete Applied Mathematics*, 108(1-2):23–52.

- Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014). Circuits for datalog provenance. In *ICDT*.
- Gottlob, G., Pichler, R., and Wei, F. (2010). Monadic datalog over finite structures of bounded treewidth. *TOCL*, 12(1):3.

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
 Provenance semirings.
 In *PODS*.