Problem statement	Undecidability	Decidability	Adding FDs	Conclusion
000	0000	00000	00000	00

Combining Existential Rules and Description Logics

Antoine Amarilli 1,2 , Michael Benedikt 2

¹Télécom ParisTech, Paris, France

 $^2 {\sf University}$ of Oxford, Oxford, United Kingdom

October 29, 2015

 Problem statement
 Undecidability
 Decidability
 Adding FDs
 Conclusion

 •oo
 Open-world query answering (QA)

Open-world query answering:

• We are given:

Relational instance I (ground facts) Constraints Σ Boolean conjunctive query q
 Problem statement
 Undecidability
 Decidability
 Adding FDs
 Conclusion

 •oo
 Open-world query answering (QA)

Open-world query answering:

• We are given:

Relational instance I (ground facts) Constraints Σ Boolean conjunctive query q

• We ask:

- Consider all possible completions $J \supseteq I$
- Restrict to those that satisfy the constraints $\boldsymbol{\Sigma}$
- \rightarrow Is q certain among them?

Open-world query answering: - query entailment or containment

• We are given:

Relational instance *I* (ground facts) – A-Box Logical constraints Σ – T-Box Boolean conjunctive query *q*

- We ask:
 - Consider all possible completions $J \supseteq I$
 - Restrict to those that satisfy the constraints $\boldsymbol{\Sigma}$
 - \rightarrow Is q certain among them?

 Problem statement
 Undecidability
 Decidability
 Adding FDs
 Conclusion

 0
 0
 0
 0
 0
 0

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

Decidable constraint languages for QA

Rich description logics (DLs) Frontier-guarded existential rules

 $\mathsf{Emp} \sqsubseteq \mathsf{CEO} \sqcup (\exists \mathsf{Mgr}^-.\mathsf{Emp}) \qquad \forall pwv \operatorname{Acpt}(p, w, v) \to \exists f \operatorname{Trip}(p, f, v)$

Problem statement	Undecidability 0000	Decidability 00000	Adding FDs	Conclusion
Destable and	and the state of the second			

Decidable constraint languages for QA

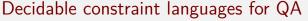
Rich description logics (DLs)	Frontier-guarded existential rules	
$Emp \sqsubseteq CEO \sqcup (\exists Mgr^Emp)$	$\forall pwv \operatorname{Acpt}(p, w, v) \rightarrow \exists f \operatorname{Trip}(p, f, v)$	
Arity-two only 🍞	Arbitrary arity 🔊	

Problem statement	Undecidability	Decidability	Adding FDs	Conclusion
○●○	0000	00000	00000	
Desideble serve	and the law man			

Decidable constraint languages for QA

Rich description logics (DLs)Frontier-guarded existential rules $Emp \sqsubseteq CEO \sqcup (\exists Mgr^-.Emp)$ $\forall pwv \operatorname{Acpt}(p, w, v) \rightarrow \exists f \operatorname{Trip}(p, f, v)$ Arity-two only ??Arbitrary arity Rich (disjunction, etc.)Poor (conjunction and implication)

Rich description logics (DLs)	Frontier-guarded existential rules
$Emp \sqsubseteq CEO \sqcup (\exists Mgr^Emp)$	$\forall pwv \operatorname{Acpt}(p, w, v) \rightarrow \exists f \operatorname{Trip}(p, f, v)$
Arity-two only プ	Arbitrary arity 💩
Rich (disjunction, etc.)	Poor (conjunction and implication)
Functionality asserts Funct(Mgr ⁻)	n/a



Rich description logics (DLs)	Frontier-guarded existential rules	
$Emp \sqsubseteq CEO \sqcup (\exists Mgr^Emp)$	$\forall pwv \operatorname{Acpt}(p, w, v) \rightarrow \exists f \operatorname{Trip}(p, f, v)$	
Arity-two only プ	Arbitrary arity 💩	
Rich (disjunction, etc.)	Poor (conjunction and implication)	
Functionality asserts Funct(Mgr ⁻)	n/a	

 $\rightarrow\,$ QA is decidable for either language

- QA is decidable for rich DLs (i.e., expressible in GC², guarded two-variable first-order logic with counting)
- QA is decidable for frontier-guarded existential rules

- QA is decidable for rich DLs (i.e., expressible in GC², guarded two-variable first-order logic with counting)
- QA is decidable for frontier-guarded existential rules
- \rightarrow Is QA decidable for rich DLs + some classes of rules?

- QA is decidable for rich DLs (i.e., expressible in GC², guarded two-variable first-order logic with counting)
- QA is decidable for frontier-guarded existential rules
- \rightarrow Is QA decidable for rich DLs + some classes of rules?

We show:

- QA is decidable for rich DLs (i.e., expressible in GC², guarded two-variable first-order logic with counting)
- QA is decidable for frontier-guarded existential rules
- \rightarrow Is QA decidable for rich DLs + some classes of rules?

We show:

- QA is undecidable for rich DLs and frontier-guarded rules
- QA with rich DLs is decidable for some new rule classes
- Functional dependencies can be added under some conditions

Problem statement	Undecidability	Decidability	Adding FDs	Conclusion
	0000	00000	00000	00
Table of cor	itents			

Problem statement

- Ondecidability
 - 3 Decidability

5 Conclusion

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Problem:

- DLs can express Funct (\leftrightarrow functional dependencies, FDs)
- Frontier-guarded can express inclusion dependencies (IDs)
- Implication of IDs and FDs is undecidable [Mitchell, 1983]
- Implication reduces to QA [Calì et al., 2003]

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Problem:

- DLs can express Funct (\leftrightarrow functional dependencies, FDs)
- Frontier-guarded can express inclusion dependencies (IDs)
- Implication of IDs and FDs is undecidable [Mitchell, 1983]
- Implication reduces to QA [Calì et al., 2003]
- \rightarrow Restrict to frontier-one rules: $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z})$

Undecidability of frontier-one plus DLs

- Restrict to frontier-one rules: $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z})$
- QA for frontier-one IDs plus FDs is decidable (separability)

Undecidability of frontier-one plus DLs

- Restrict to frontier-one rules: $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z})$
- QA for frontier-one IDs plus FDs is decidable (separability)

However:

Theorem

QA is undecidable for rich DLs and frontier-one rules

Undecidability of frontier-one plus DLs

- Restrict to frontier-one rules: $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z})$
- QA for frontier-one IDs plus FDs is decidable (separability)

However:

Theorem

QA is undecidable for rich DLs and frontier-one rules

Problem:

- Rule heads and bodies may contain cycles
- We have Funct assertions
- \rightarrow We can build a grid and encode tiling problems

Problem statement	Undecidability	Decidability	Adding FDs	Conclusion
	○○●○	00000	00000	00
Undecidability	of frontier-on	e plus DLs:	proof	

● finite set of colors: ■, ■, ■

Problem statement	Undecidability ○○●○	Decidability 00000	Adding FDs	Conclusion
Undecidability	of frontier-on	e plus DLs:	proof	

- finite set of colors: ■, ■, ■
- horizontal and vertical allowed pairs:

- finite set of colors: ■, ■, ■
- horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

|--|--|--|

Problem statement	Undecidability 0000	Decidability 00000	Adding FDs	Conclusion
Undecidability	of frontier-o	one plus DL	s proof	

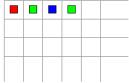
- finite set of colors: ■, ■, ■
- horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

|--|--|--|

• output: is there an infinite tiling?



Problem statement	Undecidability ○○●○	Decidability 00000	Adding FDs	Conclusion
Undecidability	of frontier-on	e plus DLs:	proof	

- finite set of colors: ■, ■, ■
- horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

|--|--|--|

• output: is there an infinite tiling?

Problem statement	Undecidability ○○●○	Decidability 00000	Adding FDs	Conclusion
Undecidability	of frontier-on	e plus DLs:	proof	

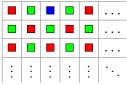
- finite set of colors: ■, ■, ■
- horizontal and vertical allowed pairs:

The tiling problem is:

• input: initial configuration:

|--|

• output: is there an infinite tiling?



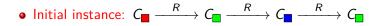
 \rightarrow Undecidable for some sets of colors and configurations

- Functional relations D for down and R for right
- Unary predicate T for tiles and C_{\Box} for each color

- Functional relations D for down and R for right
- Unary predicate T for tiles and C_{\Box} for each color

• Initial instance:
$$C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare}$$

- Functional relations D for down and R for right
- Unary predicate T for tiles and C_{\Box} for each color



- DL constraints for the pairs, e.g., $C_{\blacksquare} \sqcap \exists R. C_{\blacksquare} \sqsubseteq \bot$
- Disjunction to color tiles: $T \sqsubseteq C_{\blacksquare} \sqcup C_{\blacksquare} \sqcup C_{\blacksquare}$

- Functional relations D for down and R for right
- Unary predicate T for tiles and C_{\Box} for each color
- Initial instance: $C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare}$
- DL constraints for the pairs, e.g., $C_{\blacksquare} \sqcap \exists R. C_{\blacksquare} \sqsubseteq \bot$
- Disjunction to color tiles: $T \sqsubseteq C_{\blacksquare} \sqcup C_{\blacksquare} \sqcup C_{\blacksquare}$

• Frontier-one rule:
$$\forall x \ T(x) \Rightarrow \exists yzw$$
 $\begin{array}{c} T(x) & \xrightarrow{R} & T(y) \\ \downarrow D & & \downarrow D \\ T(z) & \xrightarrow{R} & T(w) \end{array}$

- Undecidability of frontier-one plus DLs: proof, cont'd
 - Functional relations D for down and R for right
 - Unary predicate T for tiles and C_{\Box} for each color
 - Initial instance: $C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare} \xrightarrow{R} C_{\blacksquare}$
 - DL constraints for the pairs, e.g., $C_{\blacksquare} \sqcap \exists R. C_{\blacksquare} \sqsubseteq \bot$
 - Disjunction to color tiles: $T \sqsubseteq C_{\blacksquare} \sqcup C_{\blacksquare} \sqcup C_{\blacksquare}$

 \rightarrow There is an extension of the instance iff there is a tiling

Problem statement

Undecidability

Decidability

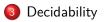
Adding FDs

Conclusion

Table of contents

Problem statement

2 Undecidability



5 Conclusion

Idea: prohibit cycles in existential rules:

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle

Idea: prohibit cycles in existential rules:

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle

Formally:

• Berge cycle: cycle in the atom-variable incidence graph

R(x, y)

T(z, x)

S(v, z)

Idea: prohibit cycles in existential rules:

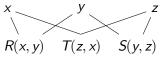
- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle

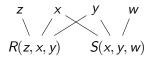
Formally:

• Berge cycle: cycle in the atom-variable incidence graph

Idea: prohibit cycles in existential rules:

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle



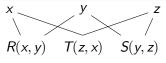


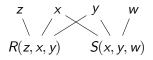
Formally:

• Berge cycle: cycle in the atom-variable incidence graph

Idea: prohibit cycles in existential rules:

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle



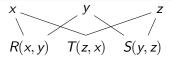


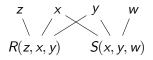
Formally:

- Berge cycle: cycle in the atom-variable incidence graph
- Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
- Non-looping frontier-one: non-looping body and head

Idea: prohibit cycles in existential rules:

- R(x, y) S(y, z) T(z, x) is a cycle
- R(z, x, y) S(x, y, w) is also a cycle





Formally:

- Berge cycle: cycle in the atom-variable incidence graph
- Non-looping atoms: no Berge cycle except, e.g., R(x, y) S(x, y)
- Non-looping frontier-one: non-looping body and head

Theorem

QA is decidable for non-looping frontier-one rules + rich DLs

• Shred *R*(*a*, *b*, *c*) to *R*₁(*f*, *a*), *R*₂(*f*, *b*), *R*₃(*f*, *c*)

- Shred *R*(*a*, *b*, *c*) to *R*₁(*f*, *a*), *R*₂(*f*, *b*), *R*₃(*f*, *c*)
- Axiomatize the R_i , e.g., $\forall f \exists^{=1} x R_1(f, x)$

- Shred *R*(*a*, *b*, *c*) to *R*₁(*f*, *a*), *R*₂(*f*, *b*), *R*₃(*f*, *c*)
- Axiomatize the R_i , e.g., $\forall f \exists^{=1} x R_1(f, x)$
- \rightarrow QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query

- Shred *R*(*a*, *b*, *c*) to *R*₁(*f*, *a*), *R*₂(*f*, *b*), *R*₃(*f*, *c*)
- Axiomatize the R_i , e.g., $\forall f \exists^{=1} x R_1(f, x)$
- \rightarrow QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query
 - Rewrite shredded non-looping frontier-one rules to GC²:
 - Rewrite $\forall \mathbf{x} \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \text{ to } \forall \mathbf{x} \ \phi'(\mathbf{x}) \Rightarrow \psi'(\mathbf{x})$,

- Shred *R*(*a*, *b*, *c*) to *R*₁(*f*, *a*), *R*₂(*f*, *b*), *R*₃(*f*, *c*)
- Axiomatize the R_i , e.g., $\forall f \exists^{=1} x R_1(f, x)$
- \rightarrow QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query
 - Rewrite shredded non-looping frontier-one rules to GC²:
 - Rewrite $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \text{ to } \forall \mathbf{x} \ \phi'(\mathbf{x}) \Rightarrow \psi'(\mathbf{x}),$ with $\phi'(\mathbf{x})$ and $\psi'(\mathbf{x})$ the shredding of $\forall \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{y})$

- Shred *R*(*a*, *b*, *c*) to *R*₁(*f*, *a*), *R*₂(*f*, *b*), *R*₃(*f*, *c*)
- Axiomatize the R_i , e.g., $\forall f \exists = 1 \times R_1(f, x)$
- $\rightarrow\,$ QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query
 - Rewrite shredded non-looping frontier-one rules to GC²:
 - Rewrite $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \text{ to } \forall \mathbf{x} \ \phi'(\mathbf{x}) \Rightarrow \psi'(\mathbf{x}),$ with $\phi'(\mathbf{x})$ and $\psi'(\mathbf{x})$ the shredding of $\forall \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{y})$
 - Exemple: $\phi(\mathbf{x}) = \exists yz \ T(\mathbf{x}, y) \land R(\mathbf{x}, \mathbf{x}, z) \land A(z)$

- Shred *R*(*a*, *b*, *c*) to *R*₁(*f*, *a*), *R*₂(*f*, *b*), *R*₃(*f*, *c*)
- Axiomatize the R_i , e.g., $\forall f \exists^{=1} x R_1(f, x)$
- $\rightarrow\,$ QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query
 - Rewrite shredded non-looping frontier-one rules to GC²:
 - Rewrite $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \text{ to } \forall \mathbf{x} \ \phi'(\mathbf{x}) \Rightarrow \psi'(\mathbf{x}),$ with $\phi'(\mathbf{x})$ and $\psi'(\mathbf{x})$ the shredding of $\forall \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{y})$
 - Exemple: $\phi(\mathbf{x}) = \exists yz \ T(\mathbf{x}, y) \land R(\mathbf{x}, \mathbf{x}, z) \land A(z)$

 $\rightarrow \exists yzf \ T(\mathbf{x}, y) \land R_1(f, \mathbf{x}) \land R_2(f, \mathbf{x}) \land R_3(f, z) \land A(z)$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists^{=1} x R_1(f, x)$
- $\rightarrow\,$ QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query
 - Rewrite shredded non-looping frontier-one rules to GC²:
 - Rewrite $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \text{ to } \forall \mathbf{x} \ \phi'(\mathbf{x}) \Rightarrow \psi'(\mathbf{x}),$ with $\phi'(\mathbf{x})$ and $\psi'(\mathbf{x})$ the shredding of $\forall \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{y})$
 - Exemple: $\phi(\mathbf{x}) = \exists yz \ T(\mathbf{x}, y) \land R(\mathbf{x}, \mathbf{x}, z) \land A(z)$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists^{=1} x R_1(f, x)$
- $\rightarrow\,$ QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query
 - Rewrite shredded non-looping frontier-one rules to GC²:
 - Rewrite $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \text{ to } \forall \mathbf{x} \ \phi'(\mathbf{x}) \Rightarrow \psi'(\mathbf{x}),$ with $\phi'(\mathbf{x})$ and $\psi'(\mathbf{x})$ the shredding of $\forall \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{y})$
 - Exemple: $\phi(\mathbf{x}) = \exists yz \ T(\mathbf{x}, \mathbf{y}) \land R(\mathbf{x}, \mathbf{x}, \mathbf{z}) \land A(\mathbf{z})$

- Shred *R*(*a*, *b*, *c*) to *R*₁(*f*, *a*), *R*₂(*f*, *b*), *R*₃(*f*, *c*)
- Axiomatize the R_i , e.g., $\forall f \exists = 1 \times R_1(f, x)$
- \rightarrow QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query
 - Rewrite shredded non-looping frontier-one rules to GC^2 :
 - Rewrite $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \text{ to } \forall \mathbf{x} \ \phi'(\mathbf{x}) \Rightarrow \psi'(\mathbf{x}),$ with $\phi'(\mathbf{x})$ and $\psi'(\mathbf{x})$ the shredding of $\forall \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{y})$
 - Exemple: $\phi(\mathbf{x}) = \exists yz \ T(\mathbf{x}, \mathbf{y}) \land R(\mathbf{x}, \mathbf{x}, \mathbf{z}) \land A(\mathbf{z})$

- Shred R(a, b, c) to $R_1(f, a), R_2(f, b), R_3(f, c)$
- Axiomatize the R_i , e.g., $\forall f \exists^{=1} x R_1(f, x)$
- $\rightarrow\,$ QA for the shredded instance, rules, query, and axioms is equivalent to QA for the original instance, rules, query
 - Rewrite shredded non-looping frontier-one rules to GC^2 :
 - Rewrite $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \Rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z}) \text{ to } \forall \mathbf{x} \ \phi'(\mathbf{x}) \Rightarrow \psi'(\mathbf{x}),$ with $\phi'(\mathbf{x})$ and $\psi'(\mathbf{x})$ the shredding of $\forall \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y})$ and $\exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{y})$
 - Exemple: $\phi(\mathbf{x}) = \exists yz \ T(\mathbf{x}, \mathbf{y}) \land R(\mathbf{x}, \mathbf{x}, \mathbf{z}) \land A(\mathbf{z})$
 - $\rightarrow \exists yzf \ T(x,y) \land R_1(f,x) \land R_2(f,x) \land R_3(f,z) \land A(z) \\ \rightarrow (\exists y \ T(x,y)) \land (\exists f \ R_1(f,x) \land R_2(f,x) \land (\exists z \ R_3(f,z) \land A(z)))$

 \rightarrow Reduces to QA for GC²: decidable [Pratt-Hartmann, 2009]

Problem statement	Undecidability 0000	Decidability 00000	Adding FDs 00000	Conclusion
Decidability of	head-non-loc	ping frontier	-one and DL	s

Head-non-looping frontier-one rules: no cycles in head

Problem statement	Undecidability	Decidability	Adding FDs Conclusion	
000	0000	00000	00000 00	
D. C. L. L. M.				

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one rules: no cycles in head

Theorem

QA is decidable for head-non-looping frontier-one rules + rich DLs

Proble 000	Problem statement Undecidability 000 000		Decidability 00000		Adding FDs 00000	Conclusion		
-		C 1			~			

Decidability of head-non-looping frontier-one and DLs

Head-non-looping frontier-one rules: no cycles in head

Theorem

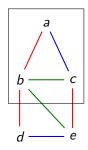
QA is decidable for head-non-looping frontier-one rules + rich DLs

Basic idea:

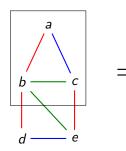
- If there is a counterexample model to QA, we can unravel it
 - \rightarrow It is still a counterexample
 - \rightarrow It has no cycles (except in the instance part)

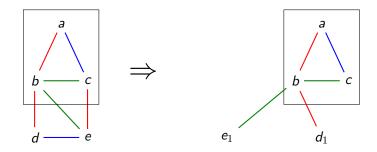
 \rightarrow Looping rule bodies can only match on the instance part

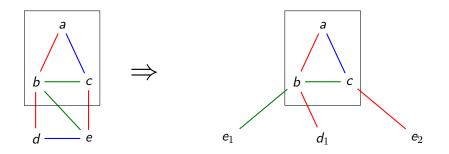
Problem statement	Undecidability 0000	Decidability 00000	Adding FDs	Conclusion
Head-non-loop	ing frontier-	one and DLs	: unraveling	

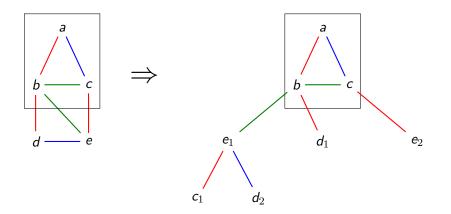


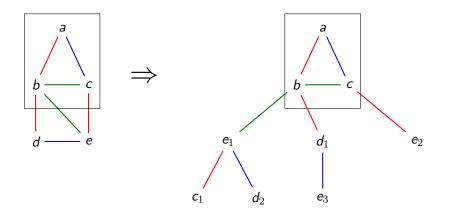
Problem statement	Undecidability 0000	Decidability 00000	Adding FDs	Conclusion
Head-non-loop	ing frontier-	one and DLs	: unraveling	

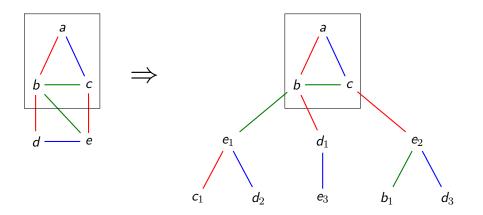


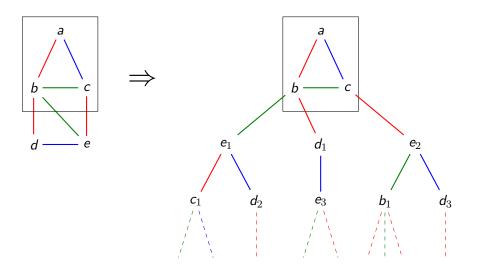












For every frontier-one rule with a looping body:

For every frontier-one rule with a looping body:

- Consider all possible self-homomorphisms of the body
 - \rightarrow Ex.: $R(x, y) \land S(y, z) \land T(z, x)$ gives $R(x, y) \land S(y, x) \land T(x, x)$

For every frontier-one rule with a looping body:

- Consider all possible self-homomorphisms of the body \rightarrow Ex.: $R(x, y) \land S(y, z) \land T(z, x)$ gives $R(x, y) \land S(y, x) \land T(x, x)$
- Consider all possible mappings to the instance

$$\rightarrow \text{ Ex.: } R(x, y) \land S(y, z) \land T(z, x) \text{ gives } R(x, y) \land S(y', z) \land T(z', x') \\ \land x = a \land x' = a \land y = b \land y' = b \land z = c \land z' = c$$

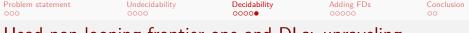
Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:

- Consider all possible self-homomorphisms of the body \rightarrow Ex.: $R(x, y) \land S(y, z) \land T(z, x)$ gives $R(x, y) \land S(y, x) \land T(x, x)$
- Consider all possible mappings to the instance

 $\rightarrow \text{ Ex.: } R(x, y) \land S(y, z) \land T(z, x) \text{ gives } R(x, y) \land S(y', z) \land T(z', x') \\ \land x = a \land x' = a \land y = b \land y' = b \land z = c \land z' = c$

 \rightarrow Keep the resulting fully non-looping rules



Head-non-looping frontier-one and DLs: unraveling

For every frontier-one rule with a looping body:

- Consider all possible self-homomorphisms of the body \rightarrow Ex.: $R(x, y) \land S(y, z) \land T(z, x)$ gives $R(x, y) \land S(y, x) \land T(x, x)$
- Consider all possible mappings to the instance

 $\rightarrow \text{ Ex.: } R(x, y) \land S(y, z) \land T(z, x) \text{ gives } R(x, y) \land S(y', z) \land T(z', x') \\ \land x = a \land x' = a \land y = b \land y' = b \land z = c \land z' = c$

 \rightarrow Keep the resulting fully non-looping rules

 $\rightarrow\,$ QA for the shredded instance, treefied rules, query, and axioms is equivalent to QA for the original instance, rules, query

Problem statement	Undecidability 0000	Decidability 00000	Adding FDs	Conclusion
Table of con	tents			

Problem statement

Ondecidability

3 Decidability

4 Adding FDs

 Problem statement
 Undecidability
 Decidability
 Adding FDs
 Conclusion

 Adding functional dependencies

We have shown:

Theorem

QA is *decidable* for head-non-looping frontier-one rules + rich DLs

Problem statement Undecidability Occord Decidability Occord Adding FDs Conclusion Occord Conclusion

We have shown:

Theorem

QA is decidable for head-non-looping frontier-one rules + rich DLs

- We have functional dependencies Funct(R) on binary relations
- Could we also allow FDs on higher-arity relations? Ex.: Talk[*speaker*, *session*] determines Talk[*title*]

Undecidability of linear frontier-one and FDs

Linear: single-atom head and body: implies non-looping.

Linear: single-atom head and body: implies non-looping.

Theorem

QA for FDs and linear frontier-one rules is undecidable.

Linear: single-atom head and body: implies non-looping.

Theorem QA for FDs and linear frontier-one rules is undecidable.

Proof ideas:

- Reduce from implication of unary FDs and frontier-2 IDs
- Leverage variable reuse and FDs to export two variables: to encode the ID $R[1,2] \subseteq R[3,4]$ with the FD $R[1] \rightarrow R[2]$, write $R(x, y, z, w) \Rightarrow R(x, y', x, y')$: we must have y = y'
- \rightarrow We need an additional restriction for decidability

Problem stat	tement	Undecidability 0000	Decidability 00000	Adding FDs 00●00	Conclusion
N.L	(11) t			1 0010]	

Consider QA under single-head rules Σ and FDs Φ

• Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - \overline{S} := positions with an existentially quantified variable

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - \overline{S} := positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :

- Σ and Φ are separable if $\mathsf{QA}(\Sigma, \Phi) \Leftrightarrow \mathsf{QA}(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail

- Σ and Φ are separable if $\mathsf{QA}(\Sigma, \Phi) \Leftrightarrow \mathsf{QA}(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail
 - \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail
 - \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail
 - \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

Examples: for the FD $R[1] \rightarrow R[3]$:

• $T(\mathbf{x}) \Rightarrow R(\mathbf{y}, \mathbf{y}, \mathbf{x})$ is...

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail
 - \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

Examples: for the FD $R[1] \rightarrow R[3]$:

• $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail
 - \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(\mathbf{x}, \mathbf{y}) \Rightarrow R(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is...

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - \overline{S} := positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail

 \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - \overline{S} := positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail

 \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(\mathbf{x}) \Rightarrow R(\mathbf{x}, y, z)$ is...

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail

 \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :

$$\rightarrow$$
 if $S' \subsetneq S$, fail

 \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting
- $T(\mathbf{x}) \Rightarrow R(\mathbf{x}, \mathbf{y}, \mathbf{y})$ is...

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - $\overline{S} :=$ positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :

$$\rightarrow$$
 if $S' \subsetneq S$, fail

 \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting
- $T(x) \Rightarrow R(x, y, y)$ is... conflicting (variable reuse)

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - \overline{S} := positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail

 \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting
- $T(x) \Rightarrow R(x, y, y)$ is... conflicting (variable reuse)
- $T(\mathbf{y}) \Rightarrow R(\mathbf{x}, \mathbf{y}, \mathbf{z}) U(\mathbf{z})$ is...

Consider QA under single-head rules Σ and FDs Φ

- Σ and Φ are separable if $QA(\Sigma, \Phi) \Leftrightarrow QA(\Sigma)$ when $I \models \Phi$
- Separability guaranteed under the non-conflicting condition:
 - For every rule head $H = R(x_1, \ldots, x_n)$:
 - S := positions of H with a frontier variable
 - \overline{S} := positions with an existentially quantified variable
 - For each FD $R[S'] \rightarrow R[i]$ of Φ :
 - \rightarrow if $S' \subsetneq S$, fail

 \rightarrow if S' = S and some variable occurs twice in \overline{S} , fail

- $T(x) \Rightarrow R(y, y, x)$ is... non-conflicting
- $T(x, y) \Rightarrow R(x, y, z)$ is... conflicting (superset)
- $T(x) \Rightarrow R(x, y, z)$ is... non-conflicting
- $T(x) \Rightarrow R(x, y, y)$ is... conflicting (variable reuse)
- $T(y) \Rightarrow R(x, y, z) U(z)$ is... not allowed (not single-head)

Problem statement Undecidability Occord Decidability Occord Occor

Decidability for non-conflicting FDs

We know from [Calì et al., 2012]:

Theorem

QA decidable for single-head frontier-guarded + non-conflicting FDs

 Problem statement
 Undecidability
 Decidability
 Adding FDs
 Conclusion

 Ooco
 Ooco
 Ooco
 Ooco
 Ooco
 Ooco

We know from [Calì et al., 2012]:

Theorem

 $QA \ decidable$ for single-head frontier-guarded + non-conflicting FDs

We have shown:

Theorem

QA is decidable for head-non-looping frontier-one rules + rich DLs

 Problem statement
 Undecidability
 Decidability
 Adding FDs
 Conclusion

 Ooc
 Ooc
 Ooc
 Ooc
 Ooc
 Ooc

We know from [Calì et al., 2012]:

Theorem

 $QA \ decidable$ for single-head frontier-guarded + non-conflicting FDs

We have shown:

Theorem

QA is decidable for head-non-looping frontier-one rules + rich DLs

We show:

Theorem

QA is decidable for:

- Rich DL constraints (with Funct)
- Single-head (hence, head-non-looping) frontier-one rules
- Non-conflicting FDs (on higher-arity predicates)

- Non-conflicting: the FDs are not violated in the chase
- Unraveling is a bit like chasing

- Non-conflicting: the FDs are not violated in the chase
- Unraveling is a bit like chasing
- \rightarrow Tweak the unraveling to also respect FDs

- Non-conflicting: the FDs are not violated in the chase
- Unraveling is a bit like chasing
- \rightarrow Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact, consider the positions S where the previous element occurs:

- Non-conflicting: the FDs are not violated in the chase
- Unraveling is a bit like chasing
- \rightarrow Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact, consider the positions S where the previous element occurs:

- if $S' \subsetneq S$, for S' an FD determiner
 - \rightarrow ignore this fact (it's not required by the constraints)

Decidability for non-conflicting FDs: proof ideas

- Non-conflicting: the FDs are not violated in the chase
- Unraveling is a bit like chasing
- \rightarrow Tweak the unraveling to also respect FDs

Intuition: When unraveling (the shredding of) a higher-arity fact, consider the positions S where the previous element occurs:

- if $S' \subsetneq S$, for S' an FD determiner
 - \rightarrow ignore this fact (it's not required by the constraints)
- if S' = S for S' an FD determiner
 - → copy only one such fact, distinguish its other elements (no equality between them is required by the constraints)

Problem statement	Undecidability 0000	Decidability 00000	Adding FDs 00000	Conclusion
Table of cor	itents			

- Ondecidability
- 3 Decidability

Undecidability

Decidability

Adding FDs

Conclusion • 0

Summary of results

- Open-world query answering (QA) under:
 - Rich DL constraints
 - Existential rules
- For which rule classes is QA decidable with rich DLs?

Undecidability

Decidability 00000 Adding FDs

Conclusion • O

Summary of results

- Open-world query answering (QA) under:
 - Rich DL constraints
 - Existential rules
- For which rule classes is QA decidable with rich DLs?
- \rightarrow Must restrict to frontier-one rules
- \rightarrow Must prohibit cycles in rule heads

Undecidability

Decidability 00000 Adding FDs

Conclusion • O

Summary of results

- Open-world query answering (QA) under:
 - Rich DL constraints
 - Existential rules
- For which rule classes is QA decidable with rich DLs?
- \rightarrow Must restrict to frontier-one rules
- \rightarrow Must prohibit cycles in rule heads
- $\rightarrow\,$ QA is decidable for head-non-looping frontier-one + rich DLs
- \rightarrow Can add non-conflicting FDs

Undecidability

Decidability

Adding FDs

Conclusion • O

Summary of results

- Open-world query answering (QA) under:
 - Rich DL constraints
 - Existential rules
- For which rule classes is QA decidable with rich DLs?
- \rightarrow Must restrict to frontier-one rules
- \rightarrow Must prohibit cycles in rule heads
- $\rightarrow\,$ QA is decidable for head-non-looping frontier-one + rich DLs
- \rightarrow Can add non-conflicting FDs
 - What about QA on finite models?
 - Could we have an expressive frontier-one language? (FDs, disjunctions... like DLs but higher-arity)

 Problem statement
 Undecidability
 Decidability
 Adding FDs
 Conclusion

 Oooo
 Ooooo
 Ooooo
 Ooooo
 Ooooo

- Adding transitive and order relations to existential rules¹
 - $\rightarrow\,$ QA for frontier-guarded is decidable with transitive relations
 - \rightarrow Also for order relations (with atom-covered requirement)

¹With Michael Benedikt, ongoing work ²With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15

Related things I work on

- Adding transitive and order relations to existential rules¹
 - $\rightarrow\,$ QA for frontier-guarded is decidable with transitive relations
 - \rightarrow Also for order relations (with atom-covered requirement)
- QA on finite models²

 \rightarrow Frontier-one IDs and FDs are finitely controllable up to closure

¹With Michael Benedikt, ongoing work ²With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15

Related things I work on

- Adding transitive and order relations to existential rules¹
 - $\rightarrow\,$ QA for frontier-guarded is decidable with transitive relations
 - \rightarrow Also for order relations (with atom-covered requirement)
- QA on finite models²

 $\rightarrow\,$ Frontier-one IDs and FDs are finitely controllable up to closure

• Also: probabilistic databases, partial orders, crowdsourcing...

¹With Michael Benedikt, ongoing work ²With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15

Related things I work on

- Adding transitive and order relations to existential rules¹
 - $\rightarrow\,$ QA for frontier-guarded is decidable with transitive relations
 - \rightarrow Also for order relations (with atom-covered requirement)
- QA on finite models²

 $\rightarrow\,$ Frontier-one IDs and FDs are finitely controllable up to closure

• Also: probabilistic databases, partial orders, crowdsourcing...

Thanks for your attention!

¹With Michael Benedikt, ongoing work ²With Michael Benedikt, [Amarilli and Benedikt, 2015], LICS'15

References I

Amarilli, A. and Benedikt, M. (2015). Finite open-world query answering with number restrictions. In *Proc. LICS*.

Calì, A., Gottlob, G., and Pieris, A. (2012).
 Towards more expressive ontology languages: The query answering problem.
 Artif. Intel., 193.

Calì, A., Lembo, D., and Rosati, R. (2003).
 Query rewriting and answering under constraints in data integration systems.
 In *IJCAI*.

References II

Mitchell, J. C. (1983).

The implication problem for functional and inclusion dependencies.

Information and Control, 56(3).

Pratt-Hartmann, I. (2009).

Data-complexity of the two-variable fragment with counting quantifiers.

Inf. Comput., 207(8).