Background Preliminaries Crowd complexity Output crowd complexit 0000000 000 00 00 00 Computational complexity

Conclusion

On the Complexity of Mining Itemsets from the Crowd Using Taxonomies

Antoine Amarilli^{1,2,3} Yael Amsterdamer¹ Tova Milo¹

 $^1 {\rm Tel}$ Aviv University, Tel Aviv, Israel

²École normale supérieure, Paris, France

³Télécom ParisTech, Paris, France

Background ●000000		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Freque	nt items	et mining			

A simple kind of pattern to identify are frequent itemsets

```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

• Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions


```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

- Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions
- {salad} not frequent


```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

- Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions
- {salad} not frequent


```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

- Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions
- {salad} not frequent


```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

- Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions
- {salad} not frequent
- {beer, diapers} frequent


```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

- Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions
- {salad} not frequent
- {beer, diapers} frequent

 Background
 Preliminaries
 Crowd complexity
 Output crowd complexity
 Computational complexity
 Conclusion

 •000000
 •00
 •00
 •00
 •00
 •00
 •00
 •00

 Frequent itemset mining
 •00
 •00
 •00
 •00
 •00
 •00
 •00

Data mining – discovering interesting patterns in large databases
 Database – a (multi)set of transactions
 Transaction – a set of items (aka. an itemset)

```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

- Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions
- {salad} not frequent
- {beer, diapers} frequent
 ⇒ {beer} is also frequent

 Background
 Preliminaries
 Crowd complexity
 Output crowd complexity
 Computational complexity
 Conclusion

 •000000
 •00
 •00
 •00
 •00
 •00
 •00
 •00

 Frequent itemset mining
 •00
 •00
 •00
 •00
 •00
 •00
 •00

Data mining – discovering interesting patterns in large databases
 Database – a (multi)set of transactions
 Transaction – a set of items (aka. an itemset)

```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
```

- Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions
- {salad} not frequent
- {beer, diapers} frequent
 ⇒ {beer} is also frequent

 Background
 Preliminaries
 Crowd complexity
 Output crowd complexity
 Computational complexity
 Conclusion

 •000000
 •00
 •00
 •00
 •00
 •00
 •00
 •00

 Frequent itemset mining
 •00
 •00
 •00
 •00
 •00
 •00
 •00

Data mining – discovering interesting patterns in large databases
 Database – a (multi)set of transactions
 Transaction – a set of items (aka. an itemset)

```
D = {
    {
        {beer, diapers},
        {beer, bread, butter},
        {beer, bread, diapers},
        {salad, tomato}
    }
}
```

- Itemset is frequent if it occurs in $\geq \Theta = 50\%$ of transactions
- {salad} not frequent
- {beer, diapers} frequent
 ⇒ {beer} is also frequent

 Background
 Preliminaries
 Crowd complexity
 Output crowd complexity
 Computational complexity
 Conclusion

 •••••••••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••
 •••

- Some databases only exist in the minds of people
- Example: popular activities in Athens:
 - t_1 : I went to the acropolis and to the museum.
 - \Rightarrow {acropolis,museum}
 - t₂: I visited Piraeus and had some ice cream.
 - \Rightarrow {piraeus, icecream}
 - t_3 : On Monday I attended the keynote and had coffee.
 - \Rightarrow {keynote, coffee}

 Background
 Preliminaries
 Crowd complexity
 Output crowd complexity
 Computational complexity
 Conclusion

 000000
 00
 00
 00
 00
 00
 00
 00

 Human knowledge mining

- Some databases only exist in the minds of people
- Example: popular activities in Athens:
 - *t*₁: I went to the acropolis and to the museum.
 - \Rightarrow {acropolis,museum}
 - t₂: I visited Piraeus and had some ice cream.
 - \Rightarrow {piraeus, icecream}
 - t₃: On Monday I attended the keynote and had coffee.
 - \Rightarrow {keynote, coffee}
- We want frequent itemsets: frequent activity combinations
- \Rightarrow How to retrieve this data from people?

Background 00●0000	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Harves	ting the	data			

- We cannot collect such data in a centralized database:
 - **(**It's impractical to ask all users to surrender their data

"Everyone please tell us all you did the last three months."

2 People do not remember the information

"What were you doing on August 23th, 2013?"

Background 00●0000	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Harves	ting the	data			

- We cannot collect such data in a centralized database:
 - **(**It's impractical to ask all users to surrender their data

"Everyone please tell us all you did the last three months."

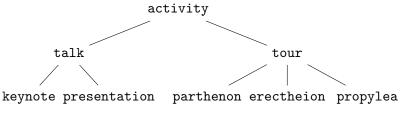
2 People do not remember the information

"What were you doing on August 23th, 2013?"

• People remember summaries that we could access

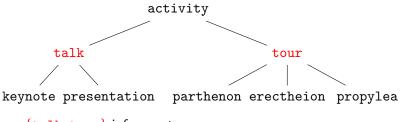
"Do you often eat ice cream when attending a keynote?"

 \Rightarrow We can just ask people if an itemset is frequent

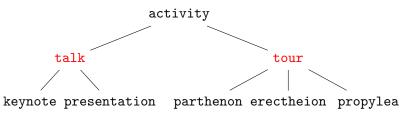

Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Crowds	sourcing				

- Crowdsourcing solving hard problems through elementary queries to a crowd of users
- Find out if an itemset is frequent with the crowd:
 - Draw a sample of users from the crowd. (black box)
 Ask: is this itemset frequent? ("Do you often have coffee?")
 - Sourcoborate the answers to eliminate bad answers. (black box)
 - 8 Reward the users. (e.g., monetary incentive)

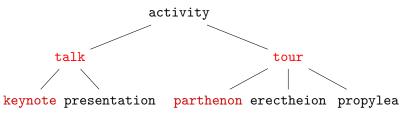
Background	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Crowds	sourcing				


- Crowdsourcing solving hard problems through elementary queries to a crowd of users
- Find out if an itemset is **frequent** with the crowd:
 - Draw a sample of users from the crowd.
 (black box)
 - Ask: is this itemset frequent? ("Do you often have coffee?")
 - Sorroborate the answers to eliminate bad answers. (black box)
 - Reward the users.
 (e.g., monetary incentive)
- \Rightarrow The crowd is an oracle: given an itemset, say if it is frequent

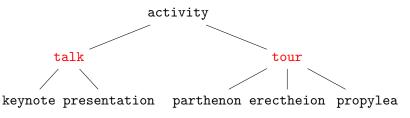
Background 0000€00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				


• {talk,tour} infrequent

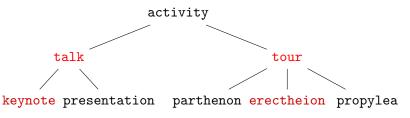
Background 0000€00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				


• {talk, tour} infrequent

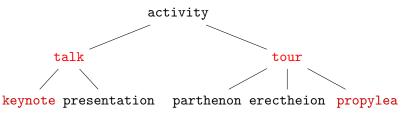
Background 0000€00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk, tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent

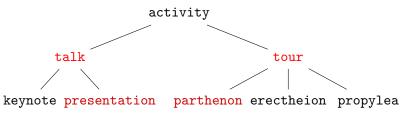
Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk, tour} infrequent
 - ⇒ Itemsets such as {keynote, parthenon} also infrequent

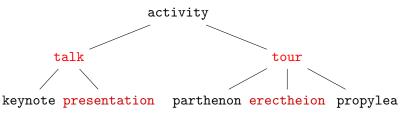
Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk, tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!

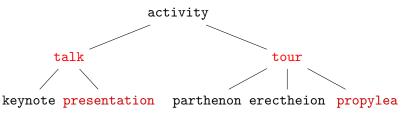
Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk, tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!

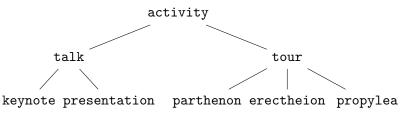
Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk, tour} infrequent
 - \Rightarrow ltemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!

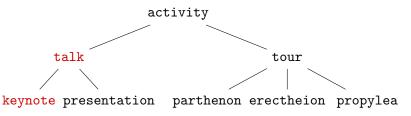
Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk, tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!

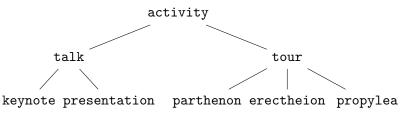
Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk, tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!

Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk, tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!

Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				


- {talk,tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!
- Also avoids redundant itemsets like {talk, keynote}

Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Taxono	omies				

- {talk,tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!
- Also avoids redundant itemsets like {talk, keynote}

Background 0000●00	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Taxono	omies				

- {talk,tour} infrequent
 - \Rightarrow Itemsets such as {keynote, parthenon} also infrequent
- Without the taxonomy, we need to test all combinations!
- Also avoids redundant itemsets like {talk, keynote}

Background 00000●0	Preliminaries	Crowd complexity	Output crowd complexity 00	Computational complexity	Conclusion O
The pr	oblem				

We can now describe the problem:

- We have:
 - A known item domain \mathcal{I} (set of items)
 - A known taxonomy Ψ on \mathcal{I} (is-a relation, partial order)
 - A crowd oracle to decide if an itemset is frequent or not
- Choose questions interactively based on past answers
- ⇒ Find out the status of all itemsets

Background 00000●0	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity	Conclusion O
The pr	oblem				

We can now describe the problem:

- We have:
 - A known item domain \mathcal{I} (set of items)
 - A known taxonomy Ψ on \mathcal{I} (is-a relation, partial order)
 - A crowd oracle to decide if an itemset is frequent or not
- Choose questions interactively based on past answers
- \Rightarrow Find out the status of all itemsets

What is a good algorithm to solve this problem?

Background 000000●	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Cost					

• How to evaluate the performance of a strategy to identify the frequent itemsets?

Crowd complexity: The number of itemsets we ask about (monetary cost, latency...)

Computational complexity: The complexity of computing the next question to ask

Background 000000●	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Cost					

• How to evaluate the performance of a strategy to identify the frequent itemsets?

Crowd complexity: The number of itemsets we ask about (monetary cost, latency...)

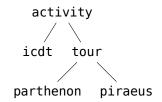
Computational complexity: The complexity of computing the next question to ask

- Tradeoff between the two:
 - ⇒ Asking random questions: computationally inexpensive but bad crowd complexity
 - ⇒ Asking clever questions: optimal crowd complexity but computationally expensive

Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Table of	of conte	nts			

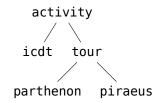
Background

2 Preliminaries

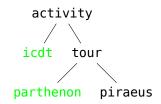

3 Crowd complexity

④ Output crowd complexity

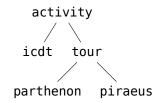
5 Computational complexity


6 Conclusion

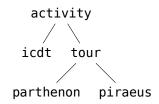
Background	Preliminaries ●00	Crowd complexity	Output crowd complexity 00	Computational complexity 00	Conclusion O
Itemse	ts				


• Itemsets $I(\Psi)$ – the sets of pairwise incomparable items

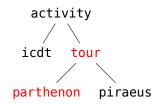
Background	Preliminaries ●○○	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


• Itemsets $I(\Psi)$ - the sets of pairwise incomparable items \Rightarrow {icdt, parthenon} is an itemset

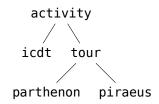
Background	Preliminaries ●○○	Crowd complexity	Output crowd complexity	Computational complexity	Conclusion O
Itemse	ts				


• Itemsets $I(\Psi)$ - the sets of pairwise incomparable items $\Rightarrow \{icdt, parthenon\}$ is an itemset

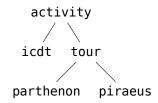
Background	Preliminaries ●○○	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


• Itemsets $I(\Psi)$ - the sets of pairwise incomparable items \Rightarrow {icdt, parthenon} is an itemset

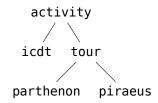
Background	Preliminaries ●○○	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- $\Rightarrow {\tt icdt, parthenon} {\tt is an itemset}$
- \Rightarrow {tour, parthenon} is not

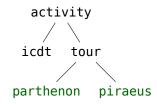
Background	Preliminaries ●○○	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- $\Rightarrow {\tt icdt, parthenon} {\tt is an itemset}$
- \Rightarrow {tour, parthenon} is not

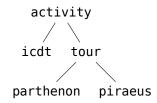
Background	Preliminaries ●○○	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- $\Rightarrow {\tt icdt, parthenon} {\tt is an itemset}$
- \Rightarrow {tour, parthenon} is not

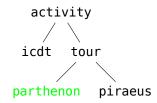
Background	Preliminaries ●○○	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- $\Rightarrow {\tt icdt, parthenon} {\tt is an itemset}$
- \Rightarrow {tour, parthenon} is not
- Order over itemsets:

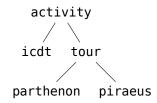
Background	Preliminaries ●○○	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - $\{parthenon, piraeus\}$ frequent

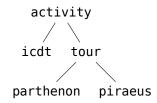
Background	Preliminaries ●00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - $\{parthenon, piraeus\}$ frequent

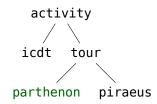
Background	Preliminaries ●00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - {parthenon, piraeus} frequent
 - \Rightarrow {parthenon} also frequent

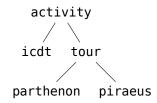
Background	Preliminaries ●00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - {parthenon, piraeus} frequent
 - \Rightarrow {parthenon} also frequent

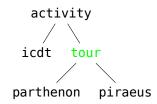
Background	Preliminaries ●00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - {parthenon, piraeus} frequent
 - \Rightarrow {parthenon} also frequent

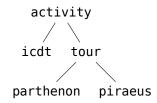
Background	Preliminaries ●00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				


- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - {parthenon, piraeus} frequent
 - \Rightarrow {parthenon} also frequent
 - {parthenon} frequent

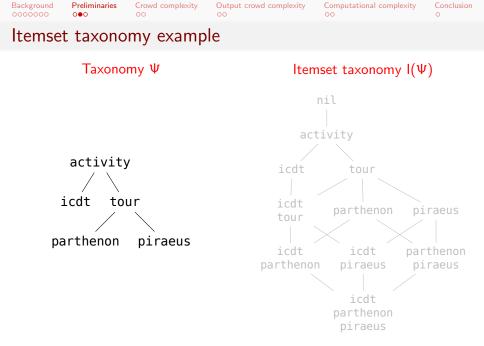
Background	Preliminaries •00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				

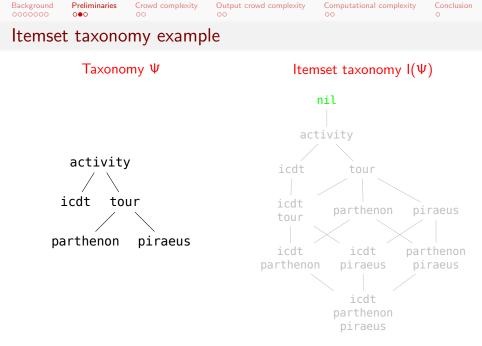

- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - {parthenon, piraeus} frequent
 - \Rightarrow {parthenon} also frequent
 - {parthenon} frequent

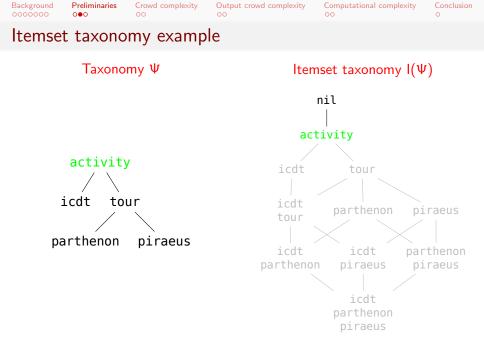
Background	Preliminaries •00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				

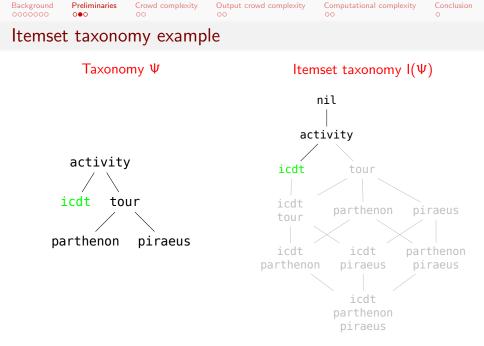

- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - {parthenon, piraeus} frequent
 - \Rightarrow {parthenon} also frequent
 - {parthenon} frequent
 - \Rightarrow {tour} also frequent

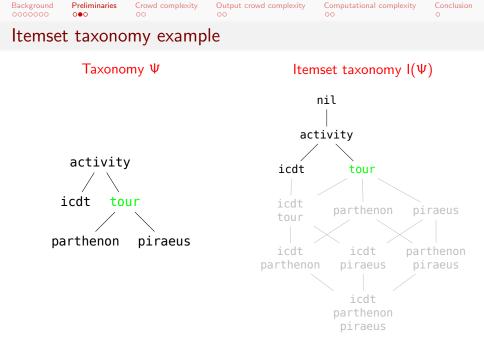
Background	Preliminaries ●00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				

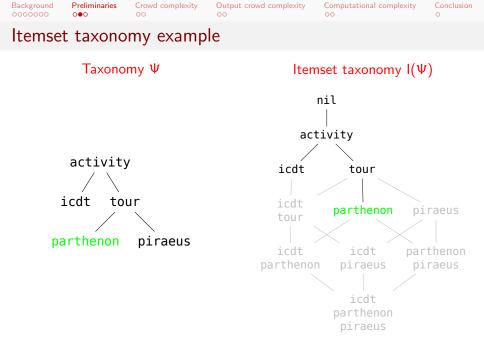


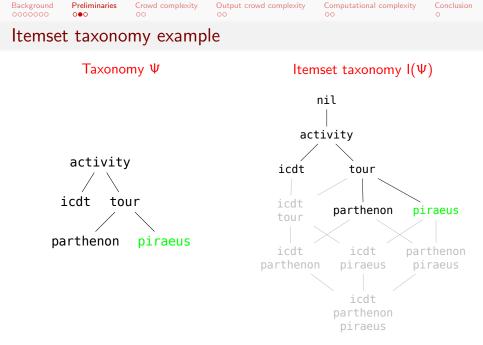

- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - {parthenon, piraeus} frequent
 - \Rightarrow {parthenon} also frequent
 - {parthenon} frequent
 - \Rightarrow {tour} also frequent

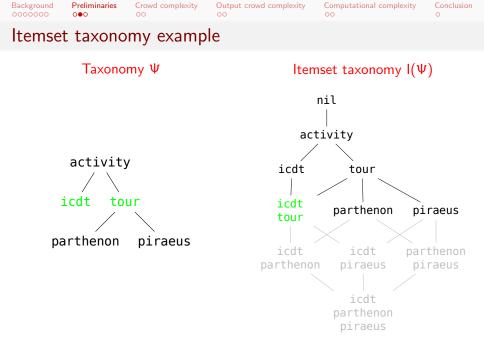

Background	Preliminaries •00	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Itemse	ts				

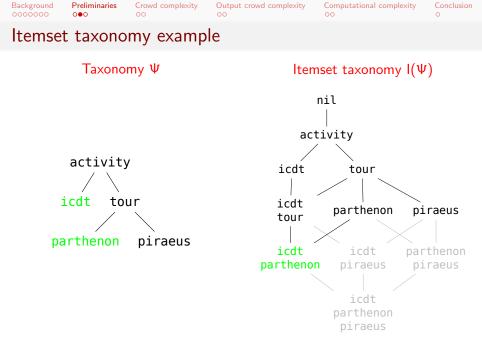


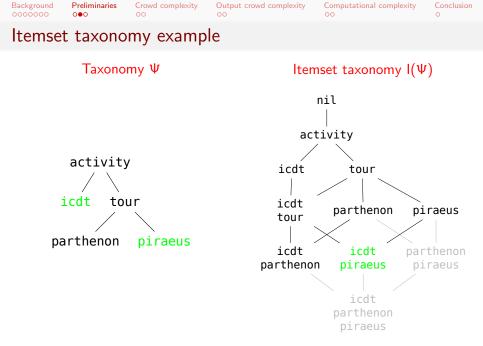

- Itemsets $I(\Psi)$ the sets of pairwise incomparable items
 - \Rightarrow {icdt, parthenon} is an itemset
 - \Rightarrow {tour, parthenon} is not
- Order over itemsets:
 - {parthenon, piraeus} frequent
 - \Rightarrow {parthenon} also frequent
 - {parthenon} frequent
 - \Rightarrow {tour} also frequent

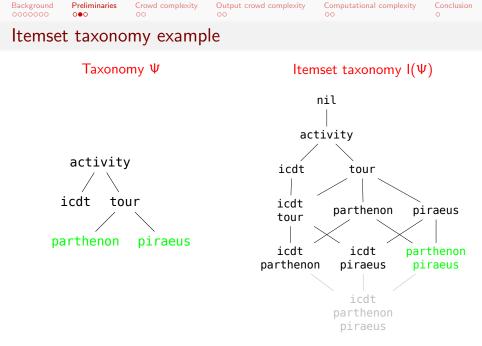


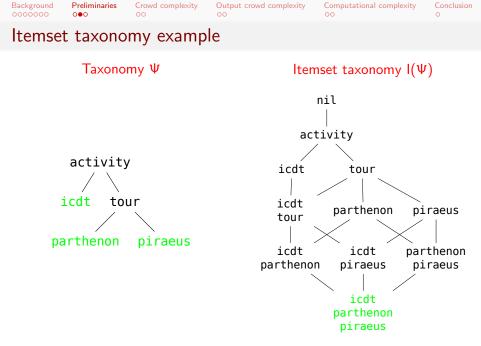


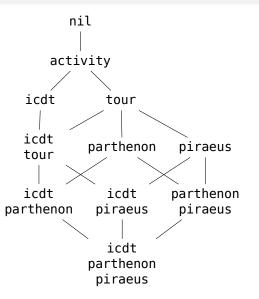


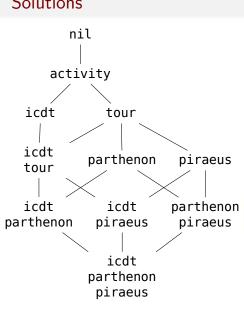






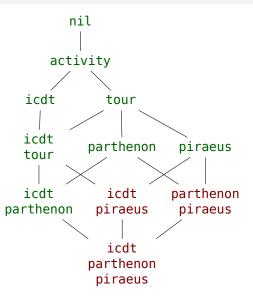






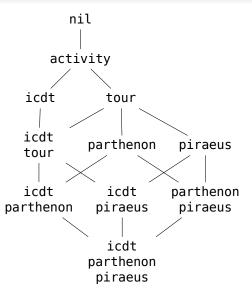
Background	Crowd complexity	Output crowd complexity	Computational complexity	Conclusion O
<u> </u>				

Solutions


1			Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
	Colutio	22				

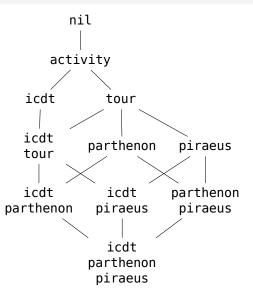
 "Being frequent" is a monotone predicate over I(Ψ)

Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	NDC NO				

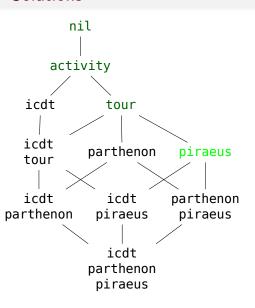


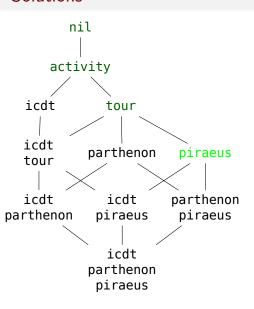
 "Being frequent" is a monotone predicate over I(Ψ)

Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	nc				



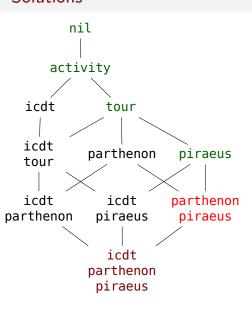
- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:


Background		Crowd complexity	Output crowd complexity	Computational complexity	Conclusion O
Soluti	onc				

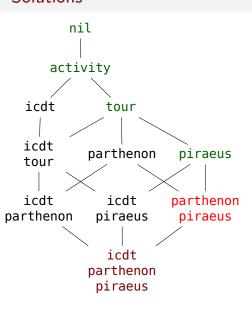

- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent?

Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity	Conclusion O
Solutio	ns				

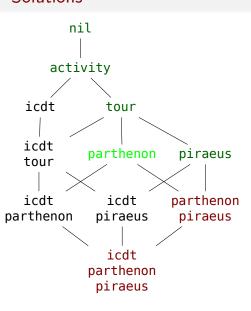
- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent?
 - \Rightarrow Yes!


Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				

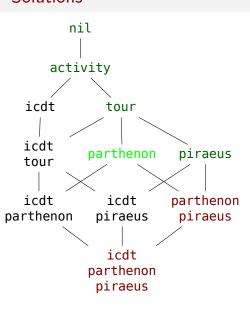
- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!


• {parthenon, piraeus}?

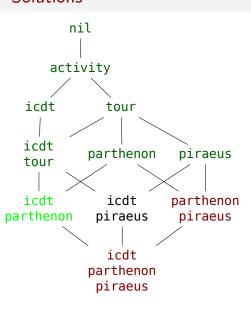
Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				


- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!
- {parthenon, piraeus}? $\Rightarrow No!$

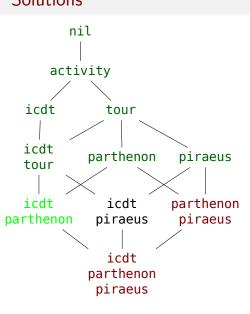
Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				


- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!
- {parthenon, piraeus}? \Rightarrow No!
- $\{parthenon\}?$

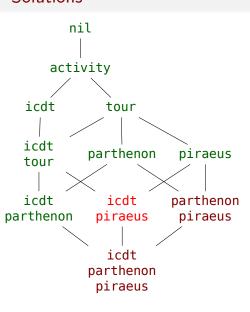
Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				


- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!
- {parthenon, piraeus}? \Rightarrow No!
- $\{parthenon\}$?
 - \Rightarrow Yes!

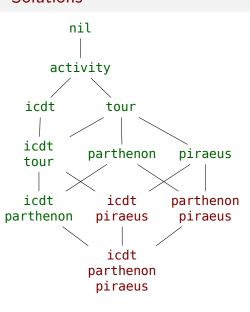
Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				


- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!
- {parthenon, piraeus}? \Rightarrow No!
- {parthenon}? \Rightarrow Yes!
- {icdt, parthenon}?

Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				


- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!
- {parthenon, piraeus}? \Rightarrow No!
- {parthenon}? \Rightarrow Yes!
- {icdt, parthenon}? \Rightarrow Yes!

Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				


- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!
- {parthenon, piraeus}? \Rightarrow No!
- {parthenon}? \Rightarrow Yes!
- {icdt, parthenon}? \Rightarrow Yes!
- {icdt, piraeus}?

Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				

- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!
- {parthenon, piraeus}? \Rightarrow No!
- {parthenon}? \Rightarrow Yes!
- {icdt, parthenon}? \Rightarrow Yes!
- {icdt, piraeus}? \Rightarrow No!

Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Solutio	ns				

- "Being frequent" is a monotone predicate over I(Ψ)
- Ask questions:
- Is {piraeus} frequent? ⇒ Yes!
- {parthenon, piraeus}? \Rightarrow No!
- {parthenon}? \Rightarrow Yes!
- {icdt, parthenon}? \Rightarrow Yes!
- {icdt, piraeus}? \Rightarrow No!

0		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Table	of conte	nts			

Background

2 Preliminaries

Orowd complexity

4 Output crowd complexity

5 Computational complexity

6 Conclusion

Crowd complexity lower bound

- How many questions do we need to ask?
- Each query yields one bit of information


Crowd complexity lower bound

- How many questions do we need to ask?
- Each query yields one bit of information
- Information-theoretic lower bound: at least Ω(log N) queries, with N the number of solutions

•
$$N = \Omega\left(2^{|I(\Psi)|}
ight)$$
 and $|I(\Psi)| = \Omega\left(2^{|\Psi|}
ight)$

• W.r.t. the original taxonomy $\Psi, \ \Omega \Big(2^{\mathsf{width}(\Psi)} / \sqrt{\mathsf{width}[\Psi]} \Big)$

• Query itemsets that are frequent in about half of the solutions

• Query itemsets that are frequent in about half of the solutions

Background over the second complexity of the s

- Query itemsets that are frequent in about half of the solutions
- Itemset split: min of proportion where frequent and proportion where infrequent

nil 6/7 1/7

- Query itemsets that are frequent in about half of the solutions
- Itemset split: min of proportion where frequent and proportion where infrequent

a5 1/7 1/7

Background Preliminaries Crowd complexity Output crowd complexity Computational complexity Conclusion o

Crowd complexity upper bound

nil	6/7	1/7	
a1	5/7	2/7	• (h
a2	4/7	3/7	● It fı
a3	3/7	3/7	● E [δ
a4	2/7	2/7	o s∣ ⇒ T
a5	1/7	1/7	e

•	Query itemsets that are frequent in about
	half of the solutions

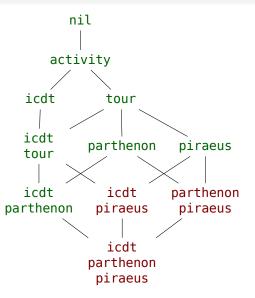
- Itemset split: min of proportion where frequent and proportion where infrequent
- Existing result from order theory [Linial and Saks, 1985]: there is a constant $\delta_0 \approx 1/5$ such that some itemset achieves a split $\geq \delta_0$
- ⇒ The previous bound is tight: we need $\Theta(\log N)$ queries

Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O		
Table of contents							

1 Background

2 Preliminaries

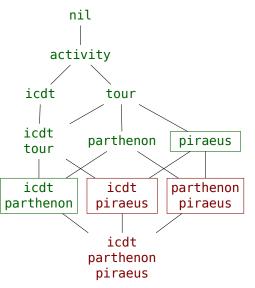
3 Crowd complexity


Output crowd complexity

5 Computational complexity

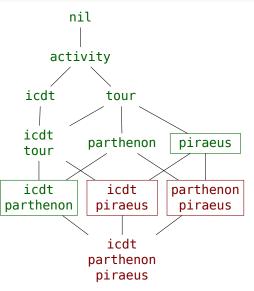
Conclusion

Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity	Conclusion
0000000	000	00	•0	00	0


Maximal frequent itemsets

- Complexity with respect to the output size
- Output representation: Maximal frequent itemsets (MFI)
- Minimal infrequent itemset (MII)

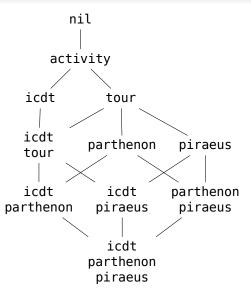
Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity	Conclusion
0000000	000	00	•0	00	0


Maximal frequent itemsets

- Complexity with respect to the output size
- Output representation: Maximal frequent itemsets (MFI)
- Minimal infrequent itemset (MII)

Background	Preliminaries	Crowd complexity	Output crowd complexity	Computational complexity	Conclusion
000000	000	00	•0	00	0

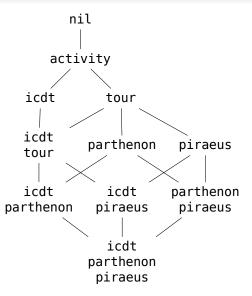
Maximal frequent itemsets


- Complexity with respect to the output size
- Output representation: Maximal frequent itemsets (MFI)
- Minimal infrequent itemset (MII)
- Must query all MFIs and MIIs
- Solutions with few MFIs/MIIs should be easier to find

Output crowd complexity

Computational complexity

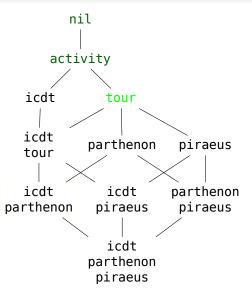
Conclusion 0


- Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries
- Example:

xity Output crowd complexity

Computational complexity

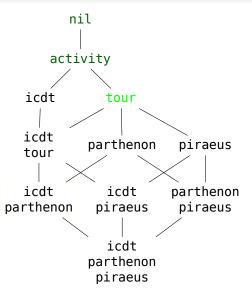
Conclusion


- Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries
- Example:
 - Pick an itemset:

Output crowd complexity

Computational complexity 00

Conclusion O

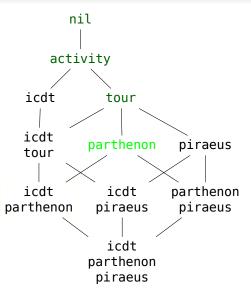


- Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries
- Example:
 - Pick an itemset: {tour}

Output crowd complexity

Computational complexity

Conclusion O

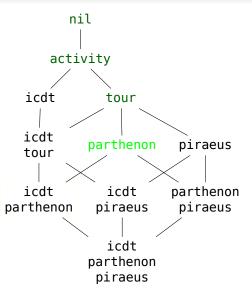


- Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries
- Example:
 - Pick an itemset: {tour}
 - Specialize it...

Output crowd complexity

Computational complexity 00

Conclusion 0

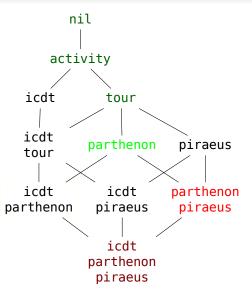


- Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries
- Example:
 - Pick an itemset: {tour}
 - Specialize it...

Output crowd complexity

Computational complexity 00

Conclusion O

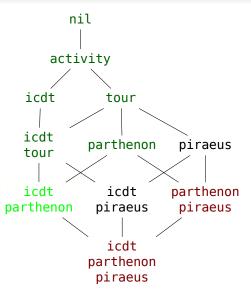


- Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries
- Example:
 - Pick an itemset: {tour}
 - Specialize it...
 - ... while you can

Output crowd complexity

Computational complexity

Conclusion O

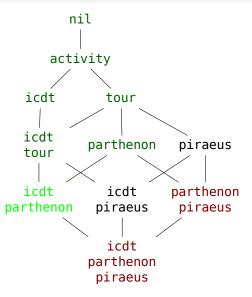


- Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries
- Example:
 - Pick an itemset: {tour}
 - Specialize it...
 - ... while you can

Output crowd complexity

Computational complexity

Conclusion O

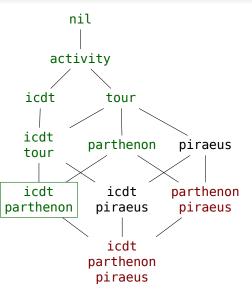


- Explicit algorithm to find each MFI/MII in ≤ |*I*| queries
- Example:
 - Pick an itemset: {tour}
 - Specialize it...
 - ... while you can

exity Output crowd complexity

Computational complexity

Conclusion O

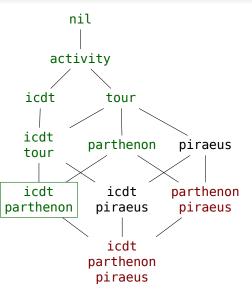


- Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries
- Example:
 - Pick an itemset: {tour}
 - Specialize it...
 - ... while you can
 - Reach an MFI/MII

Output crowd complexity

Computational complexity

Conclusion 0


- Explicit algorithm to find each MFI/MII in ≤ |*I*| queries
- Example:
 - Pick an itemset: {tour}
 - Specialize it...
 - ... while you can
 - Reach an MFI/MII

Output crowd complexity

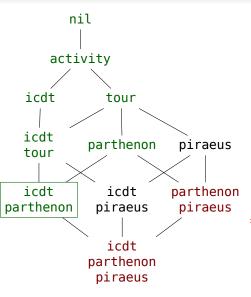
Computational complexity

Conclusion 0

MFI/MII upper bound

 Explicit algorithm to find each MFI/MII in ≤ |*I*| queries

• Example:


- Pick an itemset: {tour}
- Specialize it...
- ... while you can
- Reach an MFI/MII
- At most $|\mathcal{I}|$ specializations

ity Output crowd complexity

Computational complexity 00

Conclusion 0

MFI/MII upper bound

• Explicit algorithm to find each MFI/MII in $\leq |\mathcal{I}|$ queries

• Example:

- Pick an itemset: {tour}
- Specialize it...
- ... while you can
- Reach an MFI/MII
- At most $|\mathcal{I}|$ specializations

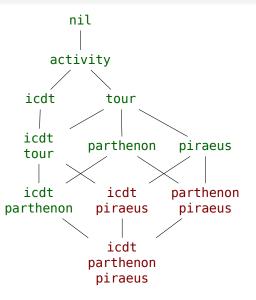
 $\Rightarrow \frac{\mathsf{Complexity:}}{\mathsf{O}(|\mathcal{I}| \cdot (|\mathsf{MFI}| + |\mathsf{MII}|))}$

Background		Crowd complexity	Output crowd complexity	Computational complexity	Conclusion O	
Table of contents						

Background

2 Preliminaries

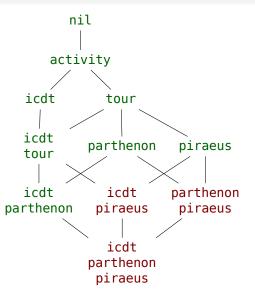
3 Crowd complexity


Output crowd complexity

6 Computational complexity

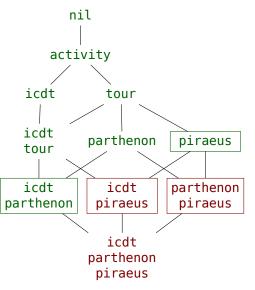
6 Conclusion

Background October Crowd complexity Output crowd complexity October Computational complexity Conclusion o


Output computational complexity lower bound

- Previous algorithm assumes $|I(\Psi)|$ is materialized
- Do we need to?

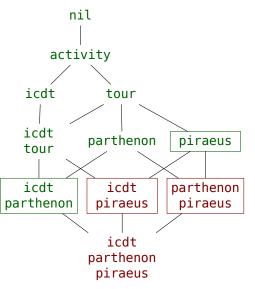
Background October 2000 October


Output computational complexity lower bound

- Previous algorithm assumes $|I(\Psi)|$ is materialized
- Do we need to?
- Decide if finished: do the MFIs/MIIs cover all itemsets?

Background October Crowd complexity Output crowd complexity Output crowd complexity October Computational complexity Conclusion o

Output computational complexity lower bound



- Previous algorithm assumes $|I(\Psi)|$ is materialized
- Do we need to?
- Decide if finished: do the MFIs/MIIs cover all itemsets?

 Background
 Preliminaries
 Crowd complexity
 Output crowd complexity
 Computational complexity
 Conclusion

 0000000
 000
 000
 000
 000
 000
 000
 000

Output computational complexity lower bound

- Previous algorithm assumes $|I(\Psi)|$ is materialized
- Do we need to?
- Decide if finished: do the MFIs/MIIs cover all itemsets?
- This is EQ-hard, for problem EQ [Bioch and Ibaraki, 1995] (exact complexity open)

Computational complexity lower bound

- Find an unclassified itemset of $I(\Psi)$ frequent for about half of the possible solutions
- We can count the possible solutions (exponential in $|I(\Psi)|)$
- A solution is an "itemset" of I(Ψ), an antichain, and counting the antichains of I(Ψ) is #P-hard.
- ⇒ Finding the best-split element in $I(\Psi)$ is #P-hard in $|I(\Psi)|$?

Computational complexity lower bound

- Find an unclassified itemset of $I(\Psi)$ frequent for about half of the possible solutions
- We can count the possible solutions (exponential in $|I(\Psi)|)$
- A solution is an "itemset" of $I(\Psi)$, an antichain, and counting the antichains of $I(\Psi)$ is #P-hard.
- ⇒ Finding the best-split element in $I(\Psi)$ is #P-hard in $|I(\Psi)|$?
 - Problem: $I(\Psi)$ is not a general DAG, so we only show hardness in $|\Psi|$ for restricted (fixed-size) itemsets
 - Intuition: count antichains by comparing to a known poset; use a best-split oracle to compare; perform a binary search

Background		Crowd complexity	Output crowd complexity	Computational complexity 00	Conclusion O
Table	of conte	nts			

Background

2 Preliminaries

3 Crowd complexity

④ Output crowd complexity

5 Computational complexity

- Problem: mine frequent itemsets with the crowd
- Balance crowd complexity and computational complexity
- Function of the input taxonomy size or the output size

Background Preliminaries Crowd complexity Output crowd complexity Computational complexity Conclusion

Summary and further work

- Problem: mine frequent itemsets with the crowd
- Balance crowd complexity and computational complexity
- Function of the input taxonomy size or the output size
- Future work:
 - Improve the bounds and close gaps
 - Benchmark heuristics (chain partitioning, random, etc.)
 - Manage uncertainty (black box for now)
 - Focus on top-k itemsets (work in progress)
 - Use interpolated numerical values (work in progress)

Background Preliminaries Crowd complexity Output crowd complexity Computational complexity Conclusion

- - Problem: mine frequent itemsets with the crowd
 - Balance crowd complexity and computational complexity
 - Function of the input taxonomy size or the output size
 - Future work:
 - Improve the bounds and close gaps
 - Benchmark heuristics (chain partitioning, random, etc.)
 - Manage uncertainty (black box for now)
 - Focus on top-k itemsets (work in progress)
 - Use interpolated numerical values (work in progress)

Thanks for your attention!

Additional material •0000

References

Bioch, J. and Ibaraki, T. (1995).

Complexity of identification and dualization of positive Boolean functions.

Inf. Comput., 123(1).

Linial, N. and Saks, M. (1985).
 Every poset has a central element.
 J. Combinatorial Theory, 40(2).

Additional material

Greedy algorithms

	nil
• Querying an element of the chain may remove $< 1/2$ possible solutions	a1
 Querying the isolated element b will remove exactly 1/2 solution 	a2
 However, querying b classifies far less itemsets 	 a3
\Rightarrow Classifying many itemsets isn't the same as	
eliminating many solutions	a4
Finding the greedy-best-split item is #P-hard	

b

a5

Restricted itemsets

• Asking about large itemsets is irrelevant.

"Do you often go cycling and running while drinking coffee and having lunch with orange juice on alternate Wednesdays?"

- \bullet If the itemset size is bounded by a constant, $I(\Psi)$ is tractable
- \Rightarrow The crowd complexity $\Theta(\log |S(\Psi)|)$ is tractable too

Chain partitioning

- Optimal strategy for chain taxonomies: binary search
- We can determine a chain decomposition of the itemset taxonomy and perform binary searches on the chains
- Optimal crowd complexity for a chain, performance in general is unclear
- Computational complexity is polynomial in the size of I(Ψ) (which is still exponential in Ψ)

Additional material

Lower bound, MFI/MII

- To describe the solution, we need the MFIs or the MIIs.
- However, we need to query both the MFIs and the MIIs to identify the result uniquely: $\Omega(|MFI| + |MII|)$ queries.
- We can have $|\mathsf{MFI}| = \Omega(2^{|\mathsf{MII}|})$ and vice-versa.
- This bound is not tight (e.g., chain).

