
Skyline Operators for Document Spanners

Antoine Amarilli1, Sébastien Labbé2, Benny Kimelfeld3, Stefan Mengel4

March 27th, 2024
1Télécom Paris

2Technion

3École normale supérieure

4CNRS CRIL 1/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner

“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner

“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner

“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation

Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner

“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner

“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation Results

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms

2/24

Document spanners

We use document spanners, a declarative formalism for information extraction tasks

Text document

Document spanner“Extract all email addresses in the document”
Document spanner

[a-z]+ @ [a-z]+ . [a-z]+

“Extract all email addresses in the document”
Document spanner

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email
“Extract all email addresses in the document”

Document spanner

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

“Extract all email addresses in the document”
Document spanner

“Extract all last names with possibly a phone number”
Document spanner

⊢name [A-Z][a-z]+ ⊣name
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone)
“Extract all last names with possibly a phone number”

Document spanner

Σ∗ ⊢name [A-Z][a-z]+ ⊣name (ϵ | ␣ ⊢phone [0-9]+ ⊣phone) ␣ Σ∗

“Extract all last names with possibly a phone number”
Document spanner

Evaluation

email

[42,51⟩
[1337,1351⟩

Results

name phone

[145,152⟩ –
[2034,2048⟩ [2049,2059⟩

Results

• Several formalisms to express document spanners
→ Focus: regular spanners expressed as Variable-Set Automata (VAs) or regex-formulas

• Well-studied task: efficient evaluation, including enumeration algorithms 2/24

Maximal matches

Standard semantics: extract all mappings of the spanner variables. But...

Specifically, we may want:

• “Extract all

maximal

email addresses”

, without worrying about delimiters

Σ∗

␣

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email

␣

Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Maximal matches

Standard semantics: extract all mappings of the spanner variables. But...

Specifically, we may want:

• “Extract all

maximal

email addresses”

, without worrying about delimiters

Σ∗

␣

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email

␣

Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Maximal matches

Standard semantics: extract all mappings of the spanner variables. But...

Specifically, we may want:

• “Extract all

maximal

email addresses”

, without worrying about delimiters

Σ∗

␣

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email

␣

Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Maximal matches

Specifically, we may want:

• “Extract all

maximal

email addresses”

, without worrying about delimiters

Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Maximal matches

Specifically, we may want:

• “Extract all

maximal

email addresses”, without worrying about delimiters
Σ∗ ␣ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email ␣ Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Maximal matches

Specifically, we may want:

• “Extract all

maximal

email addresses”, without worrying about delimiters
Σ∗

␣

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email

␣

Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Maximal matches

Specifically, we may want:

• “Extract all maximal email addresses”, without worrying about delimiters
Σ∗

␣

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email

␣

Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Maximal matches

Specifically, we may want:

• “Extract all maximal email addresses”, without worrying about delimiters
Σ∗

␣

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email

␣

Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Maximal matches

Specifically, we may want:

• “Extract all maximal email addresses”, without worrying about delimiters
Σ∗

␣

⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email

␣

Σ∗

• “Extract all maximal matches of last names with possibly a phone number”
→ If the number is given, do not extract a match without it

Skyline under a domination relation: the results which are maximal, i.e., not dominated

3/24

Naive skyline computation

Text document

Σ∗⊢email [a-z]+@[a-z]+.[a-z]+⊣emailΣ∗

Document spanner

email
[42, 47⟩
[41, 47⟩
[40, 47⟩
[42, 48⟩
[41, 48⟩
[40, 48⟩

Raw result

Evaluation

“Maximal substrings”
Domination relation

Filtering

email
[40, 48⟩

Skyline
(maximal results)

• Can we be more efficient, i.e., avoiding materializing the raw result?

• Can we merge both steps, i.e., compile the domination relation in the spanner?

4/24

Naive skyline computation

Text document

Σ∗⊢email [a-z]+@[a-z]+.[a-z]+⊣emailΣ∗

Document spanner

email
[42, 47⟩
[41, 47⟩
[40, 47⟩
[42, 48⟩
[41, 48⟩
[40, 48⟩

Raw result

Evaluation

“Maximal substrings”
Domination relation

Filtering

email
[40, 48⟩

Skyline
(maximal results)

• Can we be more efficient, i.e., avoiding materializing the raw result?

• Can we merge both steps, i.e., compile the domination relation in the spanner?

4/24

Naive skyline computation

Text document

Σ∗⊢email [a-z]+@[a-z]+.[a-z]+⊣emailΣ∗

Document spanner

email
[42, 47⟩
[41, 47⟩
[40, 47⟩
[42, 48⟩
[41, 48⟩
[40, 48⟩

Raw result

Evaluation

“Maximal substrings”
Domination relation

Filtering

email
[40, 48⟩

Skyline
(maximal results)

• Can we be more efficient, i.e., avoiding materializing the raw result?

• Can we merge both steps, i.e., compile the domination relation in the spanner?

4/24

Naive skyline computation

Text document

Σ∗⊢email [a-z]+@[a-z]+.[a-z]+⊣emailΣ∗

Document spanner

email
[42, 47⟩
[41, 47⟩
[40, 47⟩
[42, 48⟩
[41, 48⟩
[40, 48⟩

Raw result

Evaluation

“Maximal substrings”
Domination relation

Filtering

email
[40, 48⟩

Skyline
(maximal results)

• Can we be more efficient, i.e., avoiding materializing the raw result?

• Can we merge both steps, i.e., compile the domination relation in the spanner?

4/24

Paper contributions and talk outline

• Introduce and formalize the skyline problem for regular spanners
→ Propose a general framework to express domination relations

• Study if we can compile the skyline operator into the spanner
→ Expressiveness: is it possible?
→ State complexity: does it blow up the spanner representation?

• Study the problem of efficiently evaluating the skyline operator
→ In data complexity and combined complexity

5/24

Paper contributions and talk outline

• Introduce and formalize the skyline problem for regular spanners
→ Propose a general framework to express domination relations

• Study if we can compile the skyline operator into the spanner
→ Expressiveness: is it possible?
→ State complexity: does it blow up the spanner representation?

• Study the problem of efficiently evaluating the skyline operator
→ In data complexity and combined complexity

5/24

Paper contributions and talk outline

• Introduce and formalize the skyline problem for regular spanners
→ Propose a general framework to express domination relations

• Study if we can compile the skyline operator into the spanner
→ Expressiveness: is it possible?
→ State complexity: does it blow up the spanner representation?

• Study the problem of efficiently evaluating the skyline operator
→ In data complexity and combined complexity

5/24

Table of contents

Defining skylines via domination rules

Compilation: Building a VA for the skyline

Evaluation: Computing the skyline

Conclusion and further work

6/24

Basics of spanners

• Document: string over an alphabet

d = J o h n ␣ 4 5 6 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11

• Span: interval of positions
→ ex: [0, 4⟩, [5, 11⟩

• Mapping over a set of variables X: partial function from X to spans
→ ex: for X = {x, y, z}, map x to [0, 4⟩ and leave y and z unassigned

• Spanner: function that maps each document to a set of mappings

7/24

Basics of spanners

• Document: string over an alphabet

d = J o h n ␣ 4 5 6 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11

• Span: interval of positions
→ ex: [0, 4⟩, [5, 11⟩

• Mapping over a set of variables X: partial function from X to spans
→ ex: for X = {x, y, z}, map x to [0, 4⟩ and leave y and z unassigned

• Spanner: function that maps each document to a set of mappings

7/24

Basics of spanners

• Document: string over an alphabet

d = J o h n ␣ 4 5 6 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11

• Span: interval of positions
→ ex: [0, 4⟩, [5, 11⟩

• Mapping over a set of variables X: partial function from X to spans
→ ex: for X = {x, y, z}, map x to [0, 4⟩ and leave y and z unassigned

• Spanner: function that maps each document to a set of mappings

7/24

Basics of spanners

• Document: string over an alphabet

d = J o h n ␣ 4 5 6 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11

• Span: interval of positions
→ ex: [0, 4⟩, [5, 11⟩

• Mapping over a set of variables X: partial function from X to spans
→ ex: for X = {x, y, z}, map x to [0, 4⟩ and leave y and z unassigned

• Spanner: function that maps each document to a set of mappings

7/24

Basics of spanners

• Document: string over an alphabet

d = J o h n ␣ 4 5 6 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11

• Span: interval of positions
→ ex: [0, 4⟩, [5, 11⟩

• Mapping over a set of variables X: partial function from X to spans
→ ex: for X = {x, y, z}, map x to [0, 4⟩ and leave y and z unassigned

• Spanner: function that maps each document to a set of mappings

7/24

Defining spanners

Regular spanners: those that can be expressed as variable-set automata (VAs; always
assumed to be sequential)

0 1 2 3 4 5 6 7 8 9␣ ⊢email
Σ [a-z]

[a-z] @

[a-z]

[a-z] .

[a-z]

[a-z] ⊣email ␣

Σ

In practice, often more convenient to write in the subclass of regex-formulas:

Σ∗ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email Σ∗

Other more general classes:

• Core spanners: featuring string equality selection
• Generalized core spanners: featuring difference

8/24

Defining spanners

Regular spanners: those that can be expressed as variable-set automata (VAs; always
assumed to be sequential)

0 1 2 3 4 5 6 7 8 9␣ ⊢email
Σ [a-z]

[a-z] @

[a-z]

[a-z] .

[a-z]

[a-z] ⊣email ␣

Σ

In practice, often more convenient to write in the subclass of regex-formulas:

Σ∗ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email Σ∗

Other more general classes:

• Core spanners: featuring string equality selection
• Generalized core spanners: featuring difference

8/24

Defining spanners

Regular spanners: those that can be expressed as variable-set automata (VAs; always
assumed to be sequential)

0 1 2 3 4 5 6 7 8 9␣ ⊢email
Σ [a-z]

[a-z] @

[a-z]

[a-z] .

[a-z]

[a-z] ⊣email ␣

Σ

In practice, often more convenient to write in the subclass of regex-formulas:

Σ∗ ⊢email [a-z]+ @ [a-z]+ . [a-z]+ ⊣email Σ∗

Other more general classes:

• Core spanners: featuring string equality selection
• Generalized core spanners: featuring difference

8/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?

9/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?

9/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?

9/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?

9/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?

9/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?

9/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?

9/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?

9/24

Defining the skyline operator

• A spanner A applied to a document d returns a set of mappings

• Domination relation: a partial order ≤ on the mappings

• Skyline η≤(A) of A under ≤: mappings not strictly dominated by another mapping

But which domination relations make sense on mappings m and m′?

• Trivial domination relation: no mapping dominates another

• Span inclusion relation: “larger spans are better”
→ If m and m′assign the same variables and m(x) is subspan of m′(x) for all x, then m≤m′

• Variable inclusion relation: “assigning more variables is better”
→ If m and m′ agree on common variables and m′ assigns more variables, then m ≤ m′

• Span length relation: “longer spans are better”

Can we have a unified framework covering those?
9/24

Examples of domination relations

Extracted
mappings:

x y
[1, 2⟩ [2, 3⟩
− [2, 3⟩

[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under
variable inclusion:

x y
[1, 2⟩ [2, 3⟩
[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under span
inclusion:

x y
− [2, 3⟩

[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under span
length:

x y
− [2, 3⟩

[4, 6⟩ [4, 10⟩

10/24

Examples of domination relations

Extracted
mappings:

x y
[1, 2⟩ [2, 3⟩
− [2, 3⟩

[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under
variable inclusion:

x y
[1, 2⟩ [2, 3⟩
[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under span
inclusion:

x y
− [2, 3⟩

[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under span
length:

x y
− [2, 3⟩

[4, 6⟩ [4, 10⟩

10/24

Examples of domination relations

Extracted
mappings:

x y
[1, 2⟩ [2, 3⟩
− [2, 3⟩

[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under
variable inclusion:

x y
[1, 2⟩ [2, 3⟩
[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under span
inclusion:

x y
− [2, 3⟩

[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under span
length:

x y
− [2, 3⟩

[4, 6⟩ [4, 10⟩

10/24

Examples of domination relations

Extracted
mappings:

x y
[1, 2⟩ [2, 3⟩
− [2, 3⟩

[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under
variable inclusion:

x y
[1, 2⟩ [2, 3⟩
[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under span
inclusion:

x y
− [2, 3⟩

[0, 2⟩ [2, 3⟩
[4, 6⟩ [4, 10⟩

Skyline under span
length:

x y
− [2, 3⟩

[4, 6⟩ [4, 10⟩

10/24

Formalizing domination relations

• We want to express a domination relation: a partial order on mappings
→ Say the domain is X = {x, y}

• A domination pair (m,m′) is a pair of mappings m and m′ such that m ≤ m′

• Idea: domination pair (m,m′) can be seen as a mapping µ, if we rename variables!
• Variables are X ∪ X†, i.e., {x, y, x†, y†}
• Variables of X are mapped by µ like in m
• For each variable z ∈ X, variable z† is mapped by µ like m′(z)

• Example:
• Mapping m maps x to [42,51⟩ and does not map y
• Mapping m′ maps x to [42,51⟩ and maps y to [52,58⟩
• Then µ maps x and x† to [42,51⟩, does not map y, and maps y† to [52,58⟩

→ We can define the domination relation as a spanner D, called a domination rule:
→ Definition of spanner D: given d, extract all mappings µ that code a domination pair

11/24

Formalizing domination relations

• We want to express a domination relation: a partial order on mappings
→ Say the domain is X = {x, y}

• A domination pair (m,m′) is a pair of mappings m and m′ such that m ≤ m′

• Idea: domination pair (m,m′) can be seen as a mapping µ, if we rename variables!
• Variables are X ∪ X†, i.e., {x, y, x†, y†}
• Variables of X are mapped by µ like in m
• For each variable z ∈ X, variable z† is mapped by µ like m′(z)

• Example:
• Mapping m maps x to [42,51⟩ and does not map y
• Mapping m′ maps x to [42,51⟩ and maps y to [52,58⟩
• Then µ maps x and x† to [42,51⟩, does not map y, and maps y† to [52,58⟩

→ We can define the domination relation as a spanner D, called a domination rule:
→ Definition of spanner D: given d, extract all mappings µ that code a domination pair

11/24

Formalizing domination relations

• We want to express a domination relation: a partial order on mappings
→ Say the domain is X = {x, y}

• A domination pair (m,m′) is a pair of mappings m and m′ such that m ≤ m′

• Idea: domination pair (m,m′) can be seen as a mapping µ, if we rename variables!
• Variables are X ∪ X†, i.e., {x, y, x†, y†}
• Variables of X are mapped by µ like in m
• For each variable z ∈ X, variable z† is mapped by µ like m′(z)

• Example:
• Mapping m maps x to [42,51⟩ and does not map y
• Mapping m′ maps x to [42,51⟩ and maps y to [52,58⟩
• Then µ maps x and x† to [42,51⟩, does not map y, and maps y† to [52,58⟩

→ We can define the domination relation as a spanner D, called a domination rule:
→ Definition of spanner D: given d, extract all mappings µ that code a domination pair

11/24

Formalizing domination relations

• We want to express a domination relation: a partial order on mappings
→ Say the domain is X = {x, y}

• A domination pair (m,m′) is a pair of mappings m and m′ such that m ≤ m′

• Idea: domination pair (m,m′) can be seen as a mapping µ, if we rename variables!
• Variables are X ∪ X†, i.e., {x, y, x†, y†}
• Variables of X are mapped by µ like in m
• For each variable z ∈ X, variable z† is mapped by µ like m′(z)

• Example:
• Mapping m maps x to [42,51⟩ and does not map y
• Mapping m′ maps x to [42,51⟩ and maps y to [52,58⟩
• Then µ maps x and x† to [42,51⟩, does not map y, and maps y† to [52,58⟩

→ We can define the domination relation as a spanner D, called a domination rule:
→ Definition of spanner D: given d, extract all mappings µ that code a domination pair

11/24

Formalizing domination relations

• We want to express a domination relation: a partial order on mappings
→ Say the domain is X = {x, y}

• A domination pair (m,m′) is a pair of mappings m and m′ such that m ≤ m′

• Idea: domination pair (m,m′) can be seen as a mapping µ, if we rename variables!
• Variables are X ∪ X†, i.e., {x, y, x†, y†}
• Variables of X are mapped by µ like in m
• For each variable z ∈ X, variable z† is mapped by µ like m′(z)

• Example:
• Mapping m maps x to [42,51⟩ and does not map y
• Mapping m′ maps x to [42,51⟩ and maps y to [52,58⟩
• Then µ maps x and x† to [42,51⟩, does not map y, and maps y† to [52,58⟩

→ We can define the domination relation as a spanner D, called a domination rule:
→ Definition of spanner D: given d, extract all mappings µ that code a domination pair 11/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗

∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗

∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗

∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”

→ Not expressible as a regular spanner

12/24

Expressing domination relations via domination rules

Consider the example domination relations on a single variable x

• Trivial domination relation: no mapping dominates another

Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span inclusion relation: “larger spans are better”

Σ∗ ⊢x† Σ∗ ⊢x Σ∗ ⊣x Σ∗ ⊣x† Σ∗ ∨ Σ∗

• Variable inclusion relation: “assigning more variables is better”

Σ∗ ⊢x† Σ∗ ⊣x† Σ∗ ∨ Σ∗ ⊢x† ⊢x Σ∗ ⊣x ⊣x† Σ∗ ∨ Σ∗

• Span length relation: “longer spans are better”
→ Not expressible as a regular spanner

12/24

Variable-wise rules

What about spanners extracting more than one variable?

• Spanner description generally exponential in the number of variables...

Σ∗ ⊢y†⊢y⊢x†⊢x Σ∗ ⊣x⊣x†⊣y⊣y† Σ∗ ∨ Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

• Better idea: product of copies of the same single-variable rule(
Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗

)
×

(
Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

)

→ A rule is variable-wise if it is a product of copies of one single-variable rule
→ Covers all examples so far

13/24

Variable-wise rules

What about spanners extracting more than one variable?

• Spanner description generally exponential in the number of variables...

Σ∗ ⊢y†⊢y⊢x†⊢x Σ∗ ⊣x⊣x†⊣y⊣y† Σ∗

∨ Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

• Better idea: product of copies of the same single-variable rule(
Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗

)
×

(
Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

)

→ A rule is variable-wise if it is a product of copies of one single-variable rule
→ Covers all examples so far

13/24

Variable-wise rules

What about spanners extracting more than one variable?

• Spanner description generally exponential in the number of variables...

Σ∗ ⊢y†⊢y⊢x†⊢x Σ∗ ⊣x⊣x†⊣y⊣y† Σ∗ ∨ Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗

∨ Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

• Better idea: product of copies of the same single-variable rule(
Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗

)
×

(
Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

)

→ A rule is variable-wise if it is a product of copies of one single-variable rule
→ Covers all examples so far

13/24

Variable-wise rules

What about spanners extracting more than one variable?

• Spanner description generally exponential in the number of variables...

Σ∗ ⊢y†⊢y⊢x†⊢x Σ∗ ⊣x⊣x†⊣y⊣y† Σ∗ ∨ Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗

∨ Σ∗

• Better idea: product of copies of the same single-variable rule(
Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗

)
×

(
Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

)

→ A rule is variable-wise if it is a product of copies of one single-variable rule
→ Covers all examples so far

13/24

Variable-wise rules

What about spanners extracting more than one variable?

• Spanner description generally exponential in the number of variables...

Σ∗ ⊢y†⊢y⊢x†⊢x Σ∗ ⊣x⊣x†⊣y⊣y† Σ∗ ∨ Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

• Better idea: product of copies of the same single-variable rule(
Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗

)
×

(
Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

)

→ A rule is variable-wise if it is a product of copies of one single-variable rule
→ Covers all examples so far

13/24

Variable-wise rules

What about spanners extracting more than one variable?

• Spanner description generally exponential in the number of variables...

Σ∗ ⊢y†⊢y⊢x†⊢x Σ∗ ⊣x⊣x†⊣y⊣y† Σ∗ ∨ Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

• Better idea: product of copies of the same single-variable rule(
Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗

)
×

(
Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

)

→ A rule is variable-wise if it is a product of copies of one single-variable rule
→ Covers all examples so far

13/24

Variable-wise rules

What about spanners extracting more than one variable?

• Spanner description generally exponential in the number of variables...

Σ∗ ⊢y†⊢y⊢x†⊢x Σ∗ ⊣x⊣x†⊣y⊣y† Σ∗ ∨ Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

• Better idea: product of copies of the same single-variable rule(
Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗

)
×

(
Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

)

→ A rule is variable-wise if it is a product of copies of one single-variable rule

→ Covers all examples so far

13/24

Variable-wise rules

What about spanners extracting more than one variable?

• Spanner description generally exponential in the number of variables...

Σ∗ ⊢y†⊢y⊢x†⊢x Σ∗ ⊣x⊣x†⊣y⊣y† Σ∗ ∨ Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

• Better idea: product of copies of the same single-variable rule(
Σ∗ ⊢x†⊢x Σ∗ ⊣x⊣x† Σ∗ ∨ Σ∗

)
×

(
Σ∗ ⊢y†⊢y Σ∗ ⊣y⊣y† Σ∗ ∨ Σ∗

)

→ A rule is variable-wise if it is a product of copies of one single-variable rule
→ Covers all examples so far

13/24

Summary of problems

We have:

• Spanner A on variables X describing which mappings to extract
→ e.g., expressed as a variable-set automaton (VA)

• Variable-wise domination rule D to say which mappings dominate which mappings
→ e.g., expressed as a VA on variables x and x†
→ Implicitly extended to X and X† by taking the product

• Document d
We want to evaluate the skyline ηD(A) on d:

→ Compute the mappings extracted by A on d which are maximal according to D
We can compute the skyline in two ways:

• Compilation: from A and D, compute a VA A′ extracting ηD(A).
→ This is independent from the document d!

• Evaluation: from A and D and d, compute the skyline directly

14/24

Summary of problems

We have:

• Spanner A on variables X describing which mappings to extract
→ e.g., expressed as a variable-set automaton (VA)

• Variable-wise domination rule D to say which mappings dominate which mappings
→ e.g., expressed as a VA on variables x and x†
→ Implicitly extended to X and X† by taking the product

• Document d
We want to evaluate the skyline ηD(A) on d:

→ Compute the mappings extracted by A on d which are maximal according to D
We can compute the skyline in two ways:

• Compilation: from A and D, compute a VA A′ extracting ηD(A).
→ This is independent from the document d!

• Evaluation: from A and D and d, compute the skyline directly

14/24

Summary of problems

We have:

• Spanner A on variables X describing which mappings to extract
→ e.g., expressed as a variable-set automaton (VA)

• Variable-wise domination rule D to say which mappings dominate which mappings
→ e.g., expressed as a VA on variables x and x†
→ Implicitly extended to X and X† by taking the product

• Document d

We want to evaluate the skyline ηD(A) on d:

→ Compute the mappings extracted by A on d which are maximal according to D
We can compute the skyline in two ways:

• Compilation: from A and D, compute a VA A′ extracting ηD(A).
→ This is independent from the document d!

• Evaluation: from A and D and d, compute the skyline directly

14/24

Summary of problems

We have:

• Spanner A on variables X describing which mappings to extract
→ e.g., expressed as a variable-set automaton (VA)

• Variable-wise domination rule D to say which mappings dominate which mappings
→ e.g., expressed as a VA on variables x and x†
→ Implicitly extended to X and X† by taking the product

• Document d
We want to evaluate the skyline ηD(A) on d:

→ Compute the mappings extracted by A on d which are maximal according to D

We can compute the skyline in two ways:

• Compilation: from A and D, compute a VA A′ extracting ηD(A).
→ This is independent from the document d!

• Evaluation: from A and D and d, compute the skyline directly

14/24

Summary of problems

We have:

• Spanner A on variables X describing which mappings to extract
→ e.g., expressed as a variable-set automaton (VA)

• Variable-wise domination rule D to say which mappings dominate which mappings
→ e.g., expressed as a VA on variables x and x†
→ Implicitly extended to X and X† by taking the product

• Document d
We want to evaluate the skyline ηD(A) on d:

→ Compute the mappings extracted by A on d which are maximal according to D
We can compute the skyline in two ways:

• Compilation: from A and D, compute a VA A′ extracting ηD(A).
→ This is independent from the document d!

• Evaluation: from A and D and d, compute the skyline directly

14/24

Summary of problems

We have:

• Spanner A on variables X describing which mappings to extract
→ e.g., expressed as a variable-set automaton (VA)

• Variable-wise domination rule D to say which mappings dominate which mappings
→ e.g., expressed as a VA on variables x and x†
→ Implicitly extended to X and X† by taking the product

• Document d
We want to evaluate the skyline ηD(A) on d:

→ Compute the mappings extracted by A on d which are maximal according to D
We can compute the skyline in two ways:

• Compilation: from A and D, compute a VA A′ extracting ηD(A).
→ This is independent from the document d!

• Evaluation: from A and D and d, compute the skyline directly 14/24

Table of contents

Defining skylines via domination rules

Compilation: Building a VA for the skyline

Evaluation: Computing the skyline

Conclusion and further work

15/24

Compilation: Expressiveness results

Remember the task:

• Spanner A describing which mappings to extract
• Domination rule D expressed as a VA
→ Can we compute a spanner A′ that extracts precisely the skyline ηD(A) of A under D?

For regular spanners, this is possible:
Theorem
Given a VA A and a domination rule expressed as a VA D, we can compute a VA A′

extracting the skyline ηD(A)

Proof idea: the skyline operator can be defined via regular operations

For core spanners: not possible!

→ Already in the case where D is the span inclusion or variable inclusion rule

16/24

Compilation: Expressiveness results

Remember the task:

• Spanner A describing which mappings to extract
• Domination rule D expressed as a VA
→ Can we compute a spanner A′ that extracts precisely the skyline ηD(A) of A under D?

For regular spanners, this is possible:
Theorem
Given a VA A and a domination rule expressed as a VA D, we can compute a VA A′

extracting the skyline ηD(A)

Proof idea: the skyline operator can be defined via regular operations

For core spanners: not possible!

→ Already in the case where D is the span inclusion or variable inclusion rule

16/24

Compilation: Expressiveness results

Remember the task:

• Spanner A describing which mappings to extract
• Domination rule D expressed as a VA
→ Can we compute a spanner A′ that extracts precisely the skyline ηD(A) of A under D?

For regular spanners, this is possible:
Theorem
Given a VA A and a domination rule expressed as a VA D, we can compute a VA A′

extracting the skyline ηD(A)

Proof idea: the skyline operator can be defined via regular operations

For core spanners: not possible!

→ Already in the case where D is the span inclusion or variable inclusion rule
16/24

Compilation: State complexity results

Remember the task:

• Spanner A describing which mappings to extract
• Domination rule D expressed as a VA
→ We can compute a spanner A′ that extracts precisely the skyline ηD(A) of A under D?

What is the complexity?

• Construction from the previous slide is exponential
• This blowup is unavoidable, at least in the case of variable inclusion!

Theorem
Given a VA A with n states, a VA A′ computing the skyline η(A) under variable inclusion
needs 2Ω(n) states in general

Proof technique via nFBDDs

17/24

Compilation: State complexity results

Remember the task:

• Spanner A describing which mappings to extract
• Domination rule D expressed as a VA
→ We can compute a spanner A′ that extracts precisely the skyline ηD(A) of A under D?

What is the complexity?

• Construction from the previous slide is exponential

• This blowup is unavoidable, at least in the case of variable inclusion!

Theorem
Given a VA A with n states, a VA A′ computing the skyline η(A) under variable inclusion
needs 2Ω(n) states in general

Proof technique via nFBDDs

17/24

Compilation: State complexity results

Remember the task:

• Spanner A describing which mappings to extract
• Domination rule D expressed as a VA
→ We can compute a spanner A′ that extracts precisely the skyline ηD(A) of A under D?

What is the complexity?

• Construction from the previous slide is exponential
• This blowup is unavoidable, at least in the case of variable inclusion!

Theorem
Given a VA A with n states, a VA A′ computing the skyline η(A) under variable inclusion
needs 2Ω(n) states in general

Proof technique via nFBDDs

17/24

Compilation: State complexity results

Remember the task:

• Spanner A describing which mappings to extract
• Domination rule D expressed as a VA
→ We can compute a spanner A′ that extracts precisely the skyline ηD(A) of A under D?

What is the complexity?

• Construction from the previous slide is exponential
• This blowup is unavoidable, at least in the case of variable inclusion!

Theorem
Given a VA A with n states, a VA A′ computing the skyline η(A) under variable inclusion
needs 2Ω(n) states in general

Proof technique via nFBDDs
17/24

Table of contents

Defining skylines via domination rules

Compilation: Building a VA for the skyline

Evaluation: Computing the skyline

Conclusion and further work

18/24

Computation: Getting the results of the skyline

• Input:
• Regular spanner A describing which mappings to extract
• Domination rule D expressed as a VA
• Document d

• Output: the skyline of A on d under D, i.e., the mappings extracted by A on d which
are maximal according to the order on mappings described by D

Two different perspectives:

• Data complexity: VAs A and D fixed, the input is the document d

• Combined complexity for fixed rule: fix D, the input is the VA A and the document d

19/24

Computation: Getting the results of the skyline

• Input:
• Regular spanner A describing which mappings to extract
• Domination rule D expressed as a VA
• Document d

• Output: the skyline of A on d under D, i.e., the mappings extracted by A on d which
are maximal according to the order on mappings described by D

Two different perspectives:

• Data complexity: VAs A and D fixed, the input is the document d

• Combined complexity for fixed rule: fix D, the input is the VA A and the document d

19/24

Computation: Getting the results of the skyline

• Input:
• Regular spanner A describing which mappings to extract
• Domination rule D expressed as a VA
• Document d

• Output: the skyline of A on d under D, i.e., the mappings extracted by A on d which
are maximal according to the order on mappings described by D

Two different perspectives:

• Data complexity: VAs A and D fixed, the input is the document d

• Combined complexity for fixed rule: fix D, the input is the VA A and the document d

19/24

Computation: Getting the results of the skyline

• Input:
• Regular spanner A describing which mappings to extract
• Domination rule D expressed as a VA
• Document d

• Output: the skyline of A on d under D, i.e., the mappings extracted by A on d which
are maximal according to the order on mappings described by D

Two different perspectives:

• Data complexity: VAs A and D fixed, the input is the document d

• Combined complexity for fixed rule: fix D, the input is the VA A and the document d

19/24

Computation: Getting the results of the skyline

• Input:
• Regular spanner A describing which mappings to extract
• Domination rule D expressed as a VA
• Document d

• Output: the skyline of A on d under D, i.e., the mappings extracted by A on d which
are maximal according to the order on mappings described by D

Two different perspectives:

• Data complexity: VAs A and D fixed, the input is the document d

• Combined complexity for fixed rule: fix D, the input is the VA A and the document d

19/24

Evaluation in data complexity

The skyline is always tractable to compute in data complexity:

Theorem
For any fixed VA A and domination rule D, given a document d, we can compute the
skyline of A on d under D in PTIME in d

Two ways to see it:

• Naive materialization:
• Compute the set S of mappings of A on d
• Materialize the domination relation ≤ (pairs of mappings) by running D on d
• Filter the mappings of S to keep only the maximal ones under ≤

• Compilation using previous results:
• Rewrite the VA A and domination rule D to a VA A′ computing the skyline of A under D
• Then, simply run A′ on d to compute the maximal mappings

20/24

Evaluation in data complexity

The skyline is always tractable to compute in data complexity:

Theorem
For any fixed VA A and domination rule D, given a document d, we can compute the
skyline of A on d under D in PTIME in d

Two ways to see it:

• Naive materialization:
• Compute the set S of mappings of A on d

• Materialize the domination relation ≤ (pairs of mappings) by running D on d
• Filter the mappings of S to keep only the maximal ones under ≤

• Compilation using previous results:
• Rewrite the VA A and domination rule D to a VA A′ computing the skyline of A under D
• Then, simply run A′ on d to compute the maximal mappings

20/24

Evaluation in data complexity

The skyline is always tractable to compute in data complexity:

Theorem
For any fixed VA A and domination rule D, given a document d, we can compute the
skyline of A on d under D in PTIME in d

Two ways to see it:

• Naive materialization:
• Compute the set S of mappings of A on d
• Materialize the domination relation ≤ (pairs of mappings) by running D on d

• Filter the mappings of S to keep only the maximal ones under ≤

• Compilation using previous results:
• Rewrite the VA A and domination rule D to a VA A′ computing the skyline of A under D
• Then, simply run A′ on d to compute the maximal mappings

20/24

Evaluation in data complexity

The skyline is always tractable to compute in data complexity:

Theorem
For any fixed VA A and domination rule D, given a document d, we can compute the
skyline of A on d under D in PTIME in d

Two ways to see it:

• Naive materialization:
• Compute the set S of mappings of A on d
• Materialize the domination relation ≤ (pairs of mappings) by running D on d
• Filter the mappings of S to keep only the maximal ones under ≤

• Compilation using previous results:
• Rewrite the VA A and domination rule D to a VA A′ computing the skyline of A under D
• Then, simply run A′ on d to compute the maximal mappings

20/24

Evaluation in data complexity

The skyline is always tractable to compute in data complexity:

Theorem
For any fixed VA A and domination rule D, given a document d, we can compute the
skyline of A on d under D in PTIME in d

Two ways to see it:

• Naive materialization:
• Compute the set S of mappings of A on d
• Materialize the domination relation ≤ (pairs of mappings) by running D on d
• Filter the mappings of S to keep only the maximal ones under ≤

• Compilation using previous results:
• Rewrite the VA A and domination rule D to a VA A′ computing the skyline of A under D

• Then, simply run A′ on d to compute the maximal mappings

20/24

Evaluation in data complexity

The skyline is always tractable to compute in data complexity:

Theorem
For any fixed VA A and domination rule D, given a document d, we can compute the
skyline of A on d under D in PTIME in d

Two ways to see it:

• Naive materialization:
• Compute the set S of mappings of A on d
• Materialize the domination relation ≤ (pairs of mappings) by running D on d
• Filter the mappings of S to keep only the maximal ones under ≤

• Compilation using previous results:
• Rewrite the VA A and domination rule D to a VA A′ computing the skyline of A under D
• Then, simply run A′ on d to compute the maximal mappings

20/24

Evaluation in combined complexity

Computing the skyline is intractable even under the variable inclusion rule

Theorem
The following problem is NP-hard: given n ∈ N, a VA A, and document d, decide if A has
more than n mappings on d that are maximal for variable inclusion

• As a consequence: unless P = NP, no output-polynomial algorithm

• Hardness also holds for the span inclusion rule

• Hardness also holds if the input document is fixed

21/24

Evaluation in combined complexity

Computing the skyline is intractable even under the variable inclusion rule

Theorem
The following problem is NP-hard: given n ∈ N, a VA A, and document d, decide if A has
more than n mappings on d that are maximal for variable inclusion

• As a consequence: unless P = NP, no output-polynomial algorithm

• Hardness also holds for the span inclusion rule

• Hardness also holds if the input document is fixed

21/24

Evaluation in combined complexity

Computing the skyline is intractable even under the variable inclusion rule

Theorem
The following problem is NP-hard: given n ∈ N, a VA A, and document d, decide if A has
more than n mappings on d that are maximal for variable inclusion

• As a consequence: unless P = NP, no output-polynomial algorithm

• Hardness also holds for the span inclusion rule

• Hardness also holds if the input document is fixed

21/24

Evaluation in combined complexity

Computing the skyline is intractable even under the variable inclusion rule

Theorem
The following problem is NP-hard: given n ∈ N, a VA A, and document d, decide if A has
more than n mappings on d that are maximal for variable inclusion

• As a consequence: unless P = NP, no output-polynomial algorithm

• Hardness also holds for the span inclusion rule

• Hardness also holds if the input document is fixed

21/24

Which domination rules are hard?

• Skyline computation is intractable in combined complexity for the variable
inclusion and span inclusion rules

• Of course it is tractable for the trivial domination rule (= no skyline)
→ Can we get a dichotomy?

In the paper:

• Sufficient condition for hardness: whenever a rule captures unboundedly many
comparable pairs that are “disjoint”, then skyline computation is hard

• Dichotomy on a subset of domination rules based on a variant of this condition

• Troubling asymmetry: there is a domination rule ≤ such that:
• Computing the skyline under ≤ is easy
• Computing the skyline under ≥ is hard!

22/24

Which domination rules are hard?

• Skyline computation is intractable in combined complexity for the variable
inclusion and span inclusion rules

• Of course it is tractable for the trivial domination rule (= no skyline)
→ Can we get a dichotomy?

In the paper:

• Sufficient condition for hardness: whenever a rule captures unboundedly many
comparable pairs that are “disjoint”, then skyline computation is hard

• Dichotomy on a subset of domination rules based on a variant of this condition

• Troubling asymmetry: there is a domination rule ≤ such that:
• Computing the skyline under ≤ is easy
• Computing the skyline under ≥ is hard!

22/24

Table of contents

Defining skylines via domination rules

Compilation: Building a VA for the skyline

Evaluation: Computing the skyline

Conclusion and further work

23/24

Summary and further work

• We have studied skyline computation for document spanners, with a
spanner-based framework to express domination rules

• Regular spanners are closed under skyline, but unavoidable exponential blowup

• Evaluation tractable in data complexity but hard in combined complexity

Main open questions:

• Are there other applications of the nFBDD correspondence?
→ In the paper: exponential blowup for the join of schemaless regex formulas

• Can we get a dichotomy on all single-variable variable-wise rules?

• Same question for the state complexity blowup?

• Is it the same criterion for state complexity and computational complexity?

Thanks for your attention!

24/24

Summary and further work

• We have studied skyline computation for document spanners, with a
spanner-based framework to express domination rules

• Regular spanners are closed under skyline, but unavoidable exponential blowup

• Evaluation tractable in data complexity but hard in combined complexity

Main open questions:

• Are there other applications of the nFBDD correspondence?
→ In the paper: exponential blowup for the join of schemaless regex formulas

• Can we get a dichotomy on all single-variable variable-wise rules?

• Same question for the state complexity blowup?

• Is it the same criterion for state complexity and computational complexity?

Thanks for your attention!

24/24

Summary and further work

• We have studied skyline computation for document spanners, with a
spanner-based framework to express domination rules

• Regular spanners are closed under skyline, but unavoidable exponential blowup

• Evaluation tractable in data complexity but hard in combined complexity

Main open questions:

• Are there other applications of the nFBDD correspondence?
→ In the paper: exponential blowup for the join of schemaless regex formulas

• Can we get a dichotomy on all single-variable variable-wise rules?

• Same question for the state complexity blowup?

• Is it the same criterion for state complexity and computational complexity?

Thanks for your attention!
24/24

Proof technique: nFBDDs (aka NROBPs)

∨

x

y

0 1

z

w

(Courtesy of
Tim Van
Bremen)

• nFBDDs are a formalism to represent Boolean functions
• Intuitively, OBDDs with nondeterminism and without variable order

• Given an nFBDD representing a Boolean function ϕ on variables X, we
can easily compute a VA Aϕ and document d such that the mappings
extracted by Aϕ correspond to the satisfying assignments of ϕ
→ For any Boolean valuation ν : X → {0, 1}, then ν satisfies ϕ if and only if

Aϕ extracts a mapping on d that assigns {x ∈ X | ν(x) = 1}

• But nFBDDs are exponentially less concise than other representations
(read-3 monotone 2-CNF formulas)

• For such a formula ψ, we can build a VA Aψ whose skyline under
variable inclusion corresponds to the satisfying assignments of ψ
→ not expressible as a small nFBDD, hence not expressible by a small VA

Proof technique: nFBDDs (aka NROBPs)

∨

x

y

0 1

z

w

(Courtesy of
Tim Van
Bremen)

• nFBDDs are a formalism to represent Boolean functions
• Intuitively, OBDDs with nondeterminism and without variable order

• Given an nFBDD representing a Boolean function ϕ on variables X, we
can easily compute a VA Aϕ and document d such that the mappings
extracted by Aϕ correspond to the satisfying assignments of ϕ
→ For any Boolean valuation ν : X → {0, 1}, then ν satisfies ϕ if and only if

Aϕ extracts a mapping on d that assigns {x ∈ X | ν(x) = 1}

• But nFBDDs are exponentially less concise than other representations
(read-3 monotone 2-CNF formulas)

• For such a formula ψ, we can build a VA Aψ whose skyline under
variable inclusion corresponds to the satisfying assignments of ψ
→ not expressible as a small nFBDD, hence not expressible by a small VA

Proof technique: nFBDDs (aka NROBPs)

∨

x

y

0 1

z

w

(Courtesy of
Tim Van
Bremen)

• nFBDDs are a formalism to represent Boolean functions
• Intuitively, OBDDs with nondeterminism and without variable order

• Given an nFBDD representing a Boolean function ϕ on variables X, we
can easily compute a VA Aϕ and document d such that the mappings
extracted by Aϕ correspond to the satisfying assignments of ϕ
→ For any Boolean valuation ν : X → {0, 1}, then ν satisfies ϕ if and only if

Aϕ extracts a mapping on d that assigns {x ∈ X | ν(x) = 1}

• But nFBDDs are exponentially less concise than other representations
(read-3 monotone 2-CNF formulas)

• For such a formula ψ, we can build a VA Aψ whose skyline under
variable inclusion corresponds to the satisfying assignments of ψ
→ not expressible as a small nFBDD, hence not expressible by a small VA

Proof technique: nFBDDs (aka NROBPs)

∨

x

y

0 1

z

w

(Courtesy of
Tim Van
Bremen)

• nFBDDs are a formalism to represent Boolean functions
• Intuitively, OBDDs with nondeterminism and without variable order

• Given an nFBDD representing a Boolean function ϕ on variables X, we
can easily compute a VA Aϕ and document d such that the mappings
extracted by Aϕ correspond to the satisfying assignments of ϕ
→ For any Boolean valuation ν : X → {0, 1}, then ν satisfies ϕ if and only if

Aϕ extracts a mapping on d that assigns {x ∈ X | ν(x) = 1}

• But nFBDDs are exponentially less concise than other representations
(read-3 monotone 2-CNF formulas)

• For such a formula ψ, we can build a VA Aψ whose skyline under
variable inclusion corresponds to the satisfying assignments of ψ
→ not expressible as a small nFBDD, hence not expressible by a small VA

Hardness sketch

• Reduction from SAT of a CNF Φ with variables X = {x1, . . . , xn} and m clauses
→ W.l.o.g., each variable occurs positively and negatively

• The variables of the spanner A correspond to literals:
• Variable pi,j whenever variable xi ∈ X occurs positively in clause j
• Variable ni,j whenever variable xi ∈ X occurs negatively in clause j

• Define the spanner A as a union r ∪ r′, where:
• r captures one mapping per valuation of X, i.e., for each variable xi ∈ X:

• either assign all the variables pi,j corresponding to positive literals of xi
• or assign all the variables ni,j corresponding to negative literals yi,j of xi

• r′ captures one mapping per clause j: all literals pi,j′ and ni,j′ with j′ ̸= j

Example: for Φ = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∧ x3):

• r assigns: p1,1 or n1,3; and p2,1 or n2,2; and p3,3 or n3,2

• r′ assigns: all but p1,1 and p2,1; or all but n2,2 and n3,2; or all but n1,3 and p3,3

Hardness sketch

• Reduction from SAT of a CNF Φ with variables X = {x1, . . . , xn} and m clauses
→ W.l.o.g., each variable occurs positively and negatively

• The variables of the spanner A correspond to literals:
• Variable pi,j whenever variable xi ∈ X occurs positively in clause j
• Variable ni,j whenever variable xi ∈ X occurs negatively in clause j

• Define the spanner A as a union r ∪ r′, where:
• r captures one mapping per valuation of X, i.e., for each variable xi ∈ X:

• either assign all the variables pi,j corresponding to positive literals of xi
• or assign all the variables ni,j corresponding to negative literals yi,j of xi

• r′ captures one mapping per clause j: all literals pi,j′ and ni,j′ with j′ ̸= j

Example: for Φ = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∧ x3):

• r assigns: p1,1 or n1,3; and p2,1 or n2,2; and p3,3 or n3,2

• r′ assigns: all but p1,1 and p2,1; or all but n2,2 and n3,2; or all but n1,3 and p3,3

Hardness sketch

• Reduction from SAT of a CNF Φ with variables X = {x1, . . . , xn} and m clauses
→ W.l.o.g., each variable occurs positively and negatively

• The variables of the spanner A correspond to literals:
• Variable pi,j whenever variable xi ∈ X occurs positively in clause j
• Variable ni,j whenever variable xi ∈ X occurs negatively in clause j

• Define the spanner A as a union r ∪ r′, where:
• r captures one mapping per valuation of X, i.e., for each variable xi ∈ X:

• either assign all the variables pi,j corresponding to positive literals of xi
• or assign all the variables ni,j corresponding to negative literals yi,j of xi

• r′ captures one mapping per clause j: all literals pi,j′ and ni,j′ with j′ ̸= j

Example: for Φ = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∧ x3):

• r assigns: p1,1 or n1,3; and p2,1 or n2,2; and p3,3 or n3,2

• r′ assigns: all but p1,1 and p2,1; or all but n2,2 and n3,2; or all but n1,3 and p3,3

Hardness sketch

• Reduction from SAT of a CNF Φ with variables X = {x1, . . . , xn} and m clauses
→ W.l.o.g., each variable occurs positively and negatively

• The variables of the spanner A correspond to literals:
• Variable pi,j whenever variable xi ∈ X occurs positively in clause j
• Variable ni,j whenever variable xi ∈ X occurs negatively in clause j

• Define the spanner A as a union r ∪ r′, where:
• r captures one mapping per valuation of X, i.e., for each variable xi ∈ X:

• either assign all the variables pi,j corresponding to positive literals of xi
• or assign all the variables ni,j corresponding to negative literals yi,j of xi

• r′ captures one mapping per clause j: all literals pi,j′ and ni,j′ with j′ ̸= j

Example: for Φ = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∧ x3):

• r assigns: p1,1 or n1,3; and p2,1 or n2,2; and p3,3 or n3,2

• r′ assigns: all but p1,1 and p2,1; or all but n2,2 and n3,2; or all but n1,3 and p3,3

Hardness sketch

• Reduction from SAT of a CNF Φ with variables X = {x1, . . . , xn} and m clauses
→ W.l.o.g., each variable occurs positively and negatively

• The variables of the spanner A correspond to literals:
• Variable pi,j whenever variable xi ∈ X occurs positively in clause j
• Variable ni,j whenever variable xi ∈ X occurs negatively in clause j

• Define the spanner A as a union r ∪ r′, where:
• r captures one mapping per valuation of X, i.e., for each variable xi ∈ X:

• either assign all the variables pi,j corresponding to positive literals of xi
• or assign all the variables ni,j corresponding to negative literals yi,j of xi

• r′ captures one mapping per clause j: all literals pi,j′ and ni,j′ with j′ ̸= j

Example: for Φ = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∧ x3):

• r assigns: p1,1 or n1,3; and p2,1 or n2,2; and p3,3 or n3,2

• r′ assigns: all but p1,1 and p2,1; or all but n2,2 and n3,2; or all but n1,3 and p3,3

Hardness sketch (cont’d)

• r captures one mapping per valuation of X, i.e., for each variable xi ∈ X:
• either assign all the variables pi,j corresponding to positive literals of xi
• or assign all the variables ni,j corresponding to negative literals yi,j of xi

• r′ captures one mapping per clause j: all literals pi,j′ and ni,j′ with j′ ̸= j

Example: for Φ = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∧ x3):

• r assigns: p1,1 or n1,3; and p2,1 or n2,2; and p3,3 or n3,2

• r′ assigns: all but p1,1 and p2,1; or all but n2,2 and n3,2; or all but n1,3 and p3,3

What is the skyline of r ∪ r′?

• The m mappings of m′ are maximal (incomparable and not covered by m)
• Other than that:

• If there is a maximal mapping from m, then it is not covered by r′ so contains one
literal per clause: Φ is satisfiable

• Otherwise, all assignments violate some clause: Φ is unsatisfiable

Hardness sketch (cont’d)

• r captures one mapping per valuation of X, i.e., for each variable xi ∈ X:
• either assign all the variables pi,j corresponding to positive literals of xi
• or assign all the variables ni,j corresponding to negative literals yi,j of xi

• r′ captures one mapping per clause j: all literals pi,j′ and ni,j′ with j′ ̸= j

Example: for Φ = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∧ x3):

• r assigns: p1,1 or n1,3; and p2,1 or n2,2; and p3,3 or n3,2

• r′ assigns: all but p1,1 and p2,1; or all but n2,2 and n3,2; or all but n1,3 and p3,3

What is the skyline of r ∪ r′?

• The m mappings of m′ are maximal (incomparable and not covered by m)

• Other than that:
• If there is a maximal mapping from m, then it is not covered by r′ so contains one

literal per clause: Φ is satisfiable
• Otherwise, all assignments violate some clause: Φ is unsatisfiable

Hardness sketch (cont’d)

• r captures one mapping per valuation of X, i.e., for each variable xi ∈ X:
• either assign all the variables pi,j corresponding to positive literals of xi
• or assign all the variables ni,j corresponding to negative literals yi,j of xi

• r′ captures one mapping per clause j: all literals pi,j′ and ni,j′ with j′ ̸= j

Example: for Φ = (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∧ x3):

• r assigns: p1,1 or n1,3; and p2,1 or n2,2; and p3,3 or n3,2

• r′ assigns: all but p1,1 and p2,1; or all but n2,2 and n3,2; or all but n1,3 and p3,3

What is the skyline of r ∪ r′?

• The m mappings of m′ are maximal (incomparable and not covered by m)
• Other than that:

• If there is a maximal mapping from m, then it is not covered by r′ so contains one
literal per clause: Φ is satisfiable

• Otherwise, all assignments violate some clause: Φ is unsatisfiable

	Defining skylines via domination rules
	Compilation: Building a VA for the skyline
	Evaluation: Computing the skyline
	Conclusion and further work
	Appendix

