
Enumeration on Trees under Relabelings

Antoine Amarilli1, Pierre Bourhis2, Stefan Mengel3

March 27th, 2018
1Télécom ParisTech

2CNRS CRIStAL

3CNRS CRIL

1/19

Problem statement

Problem: Query evaluation on trees

• Tree on a �xed alphabet
• Boolean query to test a property of the tree

Example tree
<body>

<section>

<p>

<h2>

<div>

Example query

Is there an h2 header and an image
that are in the same section?

Example answer

→YES

→ Theorem: For monadic second-order (MSO) queries, we can
check if the query is true or not in linear time in the input tree

2/19

Problem: Query evaluation on trees

• Tree on a �xed alphabet
• Boolean query to test a property of the tree

Example tree
<body>

<section>

<p>

<h2>

<div>

Example query

Is there an h2 header and an image
that are in the same section?

Example answer

→YES

→ Theorem: For monadic second-order (MSO) queries, we can
check if the query is true or not in linear time in the input tree

2/19

Problem: Query evaluation on trees

• Tree on a �xed alphabet
• Boolean query to test a property of the tree

Example tree
<body>

<section>

<p>

<h2>

<div>

Example query

Is there an h2 header and an image
that are in the same section?

Example answer

→YES

→ Theorem: For monadic second-order (MSO) queries, we can
check if the query is true or not in linear time in the input tree

2/19

Problem: Query evaluation on trees

• Tree on a �xed alphabet
• Boolean query to test a property of the tree

Example tree
<body>

<section>

<p>

<h2>

<div>

Example query

Is there an h2 header and an image
that are in the same section?

Example answer

→YES

→ Theorem: For monadic second-order (MSO) queries, we can
check if the query is true or not in linear time in the input tree

2/19

Problem: Query evaluation on trees

• Tree on a �xed alphabet
• Boolean query to test a property of the tree

Example tree
<body>

<section>

<p>

<h2>

<div>

Example query

Is there an h2 header and an image
that are in the same section?

Example answer

→YES

→ Theorem: For monadic second-order (MSO) queries, we can
check if the query is true or not in linear time in the input tree 2/19

Problem: Non-Boolean query evaluation on trees

• Tree on a �xed alphabet
• Non-Boolean query to �nd tuples of nodes satisfying a property

Example tree
<body>1

<section>3

<p>5

76

<h2>4

<div>2

Example query

Find all pairs of an h2 header and
an image in the same section

Example answer

→
{
〈4, 6〉, 〈4, 7〉

}

→ Corollary: For each possible tuple, we can check in linear time
if it is an answer to the query

2/19

Problem: Non-Boolean query evaluation on trees

• Tree on a �xed alphabet
• Non-Boolean query to �nd tuples of nodes satisfying a property

Example tree
<body>1

<section>3

<p>5

76

<h2>4

<div>2

Example query

Find all pairs of an h2 header and
an image in the same section

Example answer

→
{
〈4, 6〉, 〈4, 7〉

}

→ Corollary: For each possible tuple, we can check in linear time
if it is an answer to the query

2/19

Problem: Non-Boolean query evaluation on trees

• Tree on a �xed alphabet
• Non-Boolean query to �nd tuples of nodes satisfying a property

Example tree
<body>1

<section>3

<p>5

76

<h2>4

<div>2

Example query

Find all pairs of an h2 header and
an image in the same section

Example answer

→
{
〈4, 6〉, 〈4, 7〉

}

→ Corollary: For each possible tuple, we can check in linear time
if it is an answer to the query

2/19

Problem: Non-Boolean query evaluation on trees

• Tree on a �xed alphabet
• Non-Boolean query to �nd tuples of nodes satisfying a property

Example tree
<body>1

<section>3

<p>5

76

<h2>4

<div>2

Example query

Find all pairs of an h2 header and
an image in the same section

Example answer

→
{
〈4, 6〉, 〈4, 7〉

}

→ Corollary: For each possible tuple, we can check in linear time
if it is an answer to the query

2/19

Problem: Non-Boolean query evaluation on trees

• Tree on a �xed alphabet
• Non-Boolean query to �nd tuples of nodes satisfying a property

Example tree
<body>1

<section>3

<p>5

76

<h2>4

<div>2

Example query

Find all pairs of an h2 header and
an image in the same section

Example answer

→
{
〈4, 6〉, 〈4, 7〉

}

→ Corollary: For each possible tuple, we can check in linear time
if it is an answer to the query

2/19

Enumerating all answers

→ There can be lots of answers!
• “Find all pairs of ...”: output size can be O(|T|2)

→ Solution: Enumerate answers one after the other

3/19

Enumerating all answers

→ There can be lots of answers!
• “Find all pairs of ...”: output size can be O(|T|2)

→ Solution: Enumerate answers one after the other

3/19

Enumerating all answers

→ There can be lots of answers!
• “Find all pairs of ...”: output size can be O(|T|2)

→ Solution: Enumerate answers one after the other

3/19

Enumerating all answers

→ There can be lots of answers!
• “Find all pairs of ...”: output size can be O(|T|2)

→ Solution: Enumerate answers one after the other

3/19

Enumerating all answers

→ There can be lots of answers!
• “Find all pairs of ...”: output size can be O(|T|2)

→ Solution: Enumerate answers one after the other

3/19

Enumerating all answers

→ There can be lots of answers!
• “Find all pairs of ...”: output size can be O(|T|2)

→ Solution: Enumerate answers one after the other
3/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉, 〈4, 7〉

}

Results

State

4/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉, 〈4, 7〉

}

Results

State

4/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉, 〈4, 7〉

}

Results

State

4/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉, 〈4, 7〉

}

Results

State

4/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉,

〈4, 7〉
}

Results

State

4/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉,

〈4, 7〉
}

Results

State

0011

4/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉,

〈4, 7〉
}

Results

State

0011

4/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉, 〈4, 7〉

}
Results

State

⊥

4/19

Enumeration

Tree

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Phase 1:
Preprocessing

Indexed
tree

Phase 2:
Enumeration

{
〈4, 6〉, 〈4, 7〉

}
Results

State

⊥

Theorem (Bagan’06; Kazana & Segou�n’13)
We can enumerate the answers of any MSO query
with preprocessing linear in the input tree
and constant delay between each answer

4/19

Handling updates

Tree T

Phase 1:
Preprocessing

Indexed
tree

• Trees are often updated, even after we have preprocessed them

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) O(T) (from scratch)

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)

5/19

Handling updates

Tree T

Phase 1:
Preprocessing

Indexed
tree

• Trees are often updated, even after we have preprocessed them

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) O(T) (from scratch)

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)

5/19

Handling updates

Tree T

Phase 1:
Preprocessing

Indexed
tree

• Trees are often updated, even after we have preprocessed them

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) O(T) (from scratch)

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)

5/19

Handling updates

Tree T

Phase 1:
Preprocessing

Indexed
tree

• Trees are often updated, even after we have preprocessed them
Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) O(T) (from scratch)

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)

5/19

Handling updates

Tree T

Phase 1:
Preprocessing

Indexed
tree

• Trees are often updated, even after we have preprocessed them
Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) O(T) (from scratch)

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)

[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)

5/19

Handling updates

Tree T

Phase 1:
Preprocessing

Indexed
tree

• Trees are often updated, even after we have preprocessed them
Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) O(T) (from scratch)

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)

[Niewerth and Segou�n, 2018] words O(1) O(log T)

5/19

Handling updates

Tree T

Phase 1:
Preprocessing

Indexed
tree

• Trees are often updated, even after we have preprocessed them
Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) O(T) (from scratch)

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)

5/19

Relabelings

• We focus on relabeling updates:
change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

6/19

Relabelings

• We focus on relabeling updates:
change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

6/19

Relabelings

• We focus on relabeling updates:
change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

6/19

Relabelings

• We focus on relabeling updates:
change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

6/19

What are relabelings good for?

• Parameterized queries:
• Example: “Find all images in a
user-selected section”

→ Write down the user parameters
as labels on the tree

→ Relabel when they change

• Group-by with aggregation:
• Example: “For each section,
what is the total size of images”

→ Enumerate the groups and
write down each group

→ Relabel when switching groups

<body>1

<section>3

<p>5

76

<h2>4

<div>2

7/19

What are relabelings good for?

• Parameterized queries:
• Example: “Find all images in a
user-selected section”

→ Write down the user parameters
as labels on the tree

→ Relabel when they change

• Group-by with aggregation:
• Example: “For each section,
what is the total size of images”

→ Enumerate the groups and
write down each group

→ Relabel when switching groups

<body>1

<section>3

<p>5

76

<h2>4

<div>2

7/19

What are relabelings good for?

• Parameterized queries:
• Example: “Find all images in a
user-selected section”

→ Write down the user parameters
as labels on the tree

→ Relabel when they change

• Group-by with aggregation:
• Example: “For each section,
what is the total size of images”

→ Enumerate the groups and
write down each group

→ Relabel when switching groups

<body>1

<section>3

<p>5

76

<h2>4

<div>2

7/19

What are relabelings good for?

• Parameterized queries:
• Example: “Find all images in a
user-selected section”

→ Write down the user parameters
as labels on the tree

→ Relabel when they change

• Group-by with aggregation:
• Example: “For each section,
what is the total size of images”

→ Enumerate the groups and
write down each group

→ Relabel when switching groups

<body>1

<section>3

<p>5

76

<h2>4

<div>2

7/19

What are relabelings good for?

• Parameterized queries:
• Example: “Find all images in a
user-selected section”

→ Write down the user parameters
as labels on the tree

→ Relabel when they change

• Group-by with aggregation:
• Example: “For each section,
what is the total size of images”

→ Enumerate the groups and
write down each group

→ Relabel when switching groups

<body>1

<section>3

<p>5

76

<h2>4

<div>2

7/19

What are relabelings good for?

• Parameterized queries:
• Example: “Find all images in a
user-selected section”

→ Write down the user parameters
as labels on the tree

→ Relabel when they change

• Group-by with aggregation:
• Example: “For each section,
what is the total size of images”

→ Enumerate the groups and
write down each group

→ Relabel when switching groups

<body>1

<section>3

<p>5

76

<h2>4

<div>2

7/19

Main result

Theorem (Main result)
We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)
[This work] trees O(1) O(log T) (relabelings)

→ Consequences for group-by, aggregation, parameterized queries

8/19

Main result

Theorem (Main result)
We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)

[This work] trees O(1) O(log T) (relabelings)

→ Consequences for group-by, aggregation, parameterized queries

8/19

Main result

Theorem (Main result)
We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)
[This work] trees O(1) O(log T) (relabelings)

→ Consequences for group-by, aggregation, parameterized queries

8/19

Main result

Theorem (Main result)
We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

Work Data Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(1) N/A

[Losemann and Martens, 2014] trees O(log2 T) O(log2 T)
[Losemann and Martens, 2014] words O(log T) O(log T)
[Niewerth and Segou�n, 2018] words O(1) O(log T)
[This work] trees O(1) O(log T) (relabelings)

→ Consequences for group-by, aggregation, parameterized queries
8/19

Proof techniques

Knowledge compilation

To make the proof modular, we follow knowledge compilation:

• Preprocessing: Compute a circuit representation of the answers
• Enumeration: Apply a generic algorithm on the circuit

Tree

Phase 1:
Preprocessing Indexed

tree

Phase 2:
Enumeration

{
〈x : 4, y : 6〉,
〈x : 4, y : 7〉

}
Results

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

First present approach without relabelings (as in our ICALP’17 paper)
then extend the approach to support relabelings

9/19

Knowledge compilation

To make the proof modular, we follow knowledge compilation:

• Preprocessing: Compute a circuit representation of the answers
• Enumeration: Apply a generic algorithm on the circuit

Tree

Phase 1:
Preprocessing

×

x :4

y :6

∪

y :7

Circuit

Phase 2:
Enumeration

{
〈x : 4, y : 6〉,
〈x : 4, y : 7〉

}
Results

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

First present approach without relabelings (as in our ICALP’17 paper)
then extend the approach to support relabelings

9/19

Knowledge compilation

To make the proof modular, we follow knowledge compilation:

• Preprocessing: Compute a circuit representation of the answers
• Enumeration: Apply a generic algorithm on the circuit

Tree

Phase 1:
Preprocessing

×

x :4

y :6

∪

y :7

Circuit

Phase 2:
Enumeration

{
〈x : 4, y : 6〉,
〈x : 4, y : 7〉

}
Results

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

First present approach without relabelings (as in our ICALP’17 paper)
then extend the approach to support relabelings 9/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”

• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons

• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}

• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}

{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

}

{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉
〈x :4, y :7〉

}

Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Set circuits

A set circuit represents a set of answers to a query Q(x, y)

• Singleton x :6→ “the free variable x is mapped to node 6”
• Tuple 〈x :4, y :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈x :4, y :6〉, 〈x :4, y :7〉}

×

x :4

y :6

∪

y :7

{
〈y :7〉

}{
〈y :6〉

}

{
〈x :4〉

} {
〈y :6〉, 〈y :7〉

}
{
〈x :4, y :6〉
〈x :4, y :7〉

} Three kinds of set-valued gates:

• Variable gate x :4 :

→ captures
{
〈x :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

10/19

Preprocessing: Set circuit construction

Tree

Phase 1:
Preprocessing

×

x :4

y :6

∪

y :7

Circuit

Phase 2:
Enumeration

{
〈x : 4, y : 6〉,
〈x : 4, y : 7〉

}
Results

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Theorem
For any MSO query Q(x1, . . . , xk), given a tree T, we can build in O(T)
a set circuit capturing exactly the set of answers of Q on T:
{〈x1 : n1, . . . , xk : nk〉 | (n1, . . . ,nk) ∈ Tk}

• Proof idea: Translate query to bottom-up tree automaton
and build a provenance circuit following the structure of the tree

11/19

Preprocessing: Set circuit construction

Tree

Phase 1:
Preprocessing

×

x :4

y :6

∪

y :7

Circuit

Phase 2:
Enumeration

{
〈x : 4, y : 6〉,
〈x : 4, y : 7〉

}
Results

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Theorem
For any MSO query Q(x1, . . . , xk), given a tree T, we can build in O(T)
a set circuit capturing exactly the set of answers of Q on T:
{〈x1 : n1, . . . , xk : nk〉 | (n1, . . . ,nk) ∈ Tk}

• Proof idea: Translate query to bottom-up tree automaton
and build a provenance circuit following the structure of the tree

11/19

Enumeration on set circuits

Tree

Phase 1:
Preprocessing

×

x :4

y :6

∪

y :7

Circuit

Phase 2:
Enumeration

{
〈x : 4, y : 6〉,
〈x : 4, y : 7〉

}
Results

∃s section(s)∧
s x ∧ s y∧
h2(x) ∧ img(y)

Query

Theorem
Given a set circuit satisfying some conditions, we can enumerate all
tuples that it captures with linear preprocessing and constant delay

E.g., for
{
〈x :4, y :6〉, 〈x :4, y :7〉

}
: enumerate 〈x :4, y :6〉, then 〈x :4, y :7〉

12/19

General enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable x :n : enumerate 〈x : n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

13/19

General enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable x :n :

enumerate 〈x : n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

13/19

General enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable x :n : enumerate 〈x : n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

13/19

General enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable x :n : enumerate 〈x : n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

13/19

General enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable x :n : enumerate 〈x : n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

13/19

Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

x :4

y :6

∪

y :7

• Also an additional upwards-determinism condition

14/19

Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

x :4

y :6

∪

y :7

• Also an additional upwards-determinism condition

14/19

Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

x :4

y :6

∪

y :7

• Also an additional upwards-determinism condition

14/19

Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

x :4

y :6

∪

y :7

• Also an additional upwards-determinism condition
14/19

Enumeration subtleties

∪

× y :6

x :4 ∪

×

× ×

× ×

× x :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅

→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

15/19

Enumeration subtleties

∪

× y :6

x :4 ∪

×

× ×

× ×

× x :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

15/19

Enumeration subtleties

∪

× y :6

x :4 ∪

×

× ×

× ×

× x :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}

→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

15/19

Enumeration subtleties

∪

× y :6

x :4 ∪

×

× ×

× ×

× x :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

15/19

Enumeration subtleties

∪

× y :6

x :4 ∪

×

× ×

× ×

× x :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates

→ Precompute a reachability index (uses upwards-determinism)

15/19

Enumeration subtleties

∪

× y :6

x :4 ∪

×

× ×

× ×

× x :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

15/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

• Boolean gates that depend only on the labeling

• Set gates that capture a set of tuples for each labeling

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

Four kinds of Boolean gates:

• Variable gate h2 :4 :
→ true i� node 4 is labeled h2

• AND, OR, NOT ∧ ∨ ¬ :
→ usual semantics

One new set-valued gate:

• � : Test gate
→ ∅ if Boolean input is false
→ like the set input otherwise

16/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

• Boolean gates that depend only on the labeling

• Set gates that capture a set of tuples for each labeling

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

Four kinds of Boolean gates:

• Variable gate h2 :4 :
→ true i� node 4 is labeled h2

• AND, OR, NOT ∧ ∨ ¬ :
→ usual semantics

One new set-valued gate:

• � : Test gate
→ ∅ if Boolean input is false
→ like the set input otherwise

16/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

• Boolean gates that depend only on the labeling

• Set gates that capture a set of tuples for each labeling

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

Four kinds of Boolean gates:

• Variable gate h2 :4 :
→ true i� node 4 is labeled h2

• AND, OR, NOT ∧ ∨ ¬ :
→ usual semantics

One new set-valued gate:

• � : Test gate
→ ∅ if Boolean input is false
→ like the set input otherwise

16/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

• Boolean gates that depend only on the labeling

• Set gates that capture a set of tuples for each labeling

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

Four kinds of Boolean gates:

• Variable gate h2 :4 :
→ true i� node 4 is labeled h2

• AND, OR, NOT ∧ ∨ ¬ :
→ usual semantics

One new set-valued gate:

• � : Test gate
→ ∅ if Boolean input is false
→ like the set input otherwise

16/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

• Boolean gates that depend only on the labeling

• Set gates that capture a set of tuples for each labeling

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

Four kinds of Boolean gates:

• Variable gate h2 :4 :
→ true i� node 4 is labeled h2

• AND, OR, NOT ∧ ∨ ¬ :
→ usual semantics

One new set-valued gate:

• � : Test gate
→ ∅ if Boolean input is false
→ like the set input otherwise

16/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples

→ Here, the captured set is
{
〈x :4, y :6〉, 〈x :4, y :7〉

}
• When the tree is relabeled, change the Boolean variables
→ New captured set:

{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}

• When the tree is relabeled, change the Boolean variables
→ New captured set:

{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}

• When the tree is relabeled, change the Boolean variables
→ New captured set:

{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

}

{
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}

• When the tree is relabeled, change the Boolean variables
→ New captured set:

{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}

{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}

• When the tree is relabeled, change the Boolean variables
→ New captured set:

{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}

• When the tree is relabeled, change the Boolean variables
→ New captured set:

{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}
• When the tree is relabeled, change the Boolean variables

→ New captured set:
{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}
• When the tree is relabeled, change the Boolean variables

→ New captured set:
{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}
• When the tree is relabeled, change the Boolean variables

→ New captured set:
{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}

∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}
• When the tree is relabeled, change the Boolean variables

→ New captured set:
{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}
• When the tree is relabeled, change the Boolean variables

→ New captured set:
{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Hybrid circuit semantics

• For every labeling, the hybrid circuit captures a set of tuples
→ Here, the captured set is

{
〈x :4, y :6〉, 〈x :4, y :7〉

}
• When the tree is relabeled, change the Boolean variables
→ New captured set:

{
〈x :4, y :6〉

}

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉

{
〈y :6〉

} {
〈y :7〉

}
{
〈y :6〉, 〈y :7〉

}

{
〈x :4, y :6〉,
〈x :4, y :7〉

}

{
〈y :6〉

}
∅

{
〈y :6〉

}

{
〈x :4, y :6〉

}

17/19

Complexity of relabelings

• When a label changes, update the circuit bottom-up

• The circuit follows the structure of the input tree T
so updates are in O(height(T))

→ Balancing lemma: Rewrite the input tree to make it balanced

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉
18/19

Complexity of relabelings

• When a label changes, update the circuit bottom-up

• The circuit follows the structure of the input tree T
so updates are in O(height(T))

→ Balancing lemma: Rewrite the input tree to make it balanced

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉
18/19

Complexity of relabelings

• When a label changes, update the circuit bottom-up

• The circuit follows the structure of the input tree T
so updates are in O(height(T))

→ Balancing lemma: Rewrite the input tree to make it balanced

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉
18/19

Complexity of relabelings

• When a label changes, update the circuit bottom-up
• The circuit follows the structure of the input tree T
so updates are in O(height(T))

→ Balancing lemma: Rewrite the input tree to make it balanced

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉
18/19

Complexity of relabelings

• When a label changes, update the circuit bottom-up
• The circuit follows the structure of the input tree T
so updates are in O(height(T))

→ Balancing lemma: Rewrite the input tree to make it balanced

�

h2 :4 ×

〈x :4〉∪

� �

img :6 〈y :6〉 img :7 〈y :7〉
18/19

Conclusion

Summary and future work

Summary:

• Problem: enumerate the answers of an MSO query on a tree
with e�cient support for relabeling updates on the tree

• Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

• Consequences: group-by, parameterized queries, aggregation
Future work:

• Practice: implement the technique with automata
• Applications: text extraction? e.g., document spanners (ongoing)
• Updates: support insertions/deletions? (ongoing)

Thanks for your attention!

19/19

Summary and future work

Summary:

• Problem: enumerate the answers of an MSO query on a tree
with e�cient support for relabeling updates on the tree

• Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

• Consequences: group-by, parameterized queries, aggregation
Future work:

• Practice: implement the technique with automata
• Applications: text extraction? e.g., document spanners (ongoing)
• Updates: support insertions/deletions? (ongoing)

Thanks for your attention!

19/19

Summary and future work

Summary:

• Problem: enumerate the answers of an MSO query on a tree
with e�cient support for relabeling updates on the tree

• Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

• Consequences: group-by, parameterized queries, aggregation

Future work:

• Practice: implement the technique with automata
• Applications: text extraction? e.g., document spanners (ongoing)
• Updates: support insertions/deletions? (ongoing)

Thanks for your attention!

19/19

Summary and future work

Summary:

• Problem: enumerate the answers of an MSO query on a tree
with e�cient support for relabeling updates on the tree

• Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

• Consequences: group-by, parameterized queries, aggregation
Future work:

• Practice: implement the technique with automata
• Applications: text extraction? e.g., document spanners (ongoing)
• Updates: support insertions/deletions? (ongoing)

Thanks for your attention!

19/19

Summary and future work

Summary:

• Problem: enumerate the answers of an MSO query on a tree
with e�cient support for relabeling updates on the tree

• Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

• Consequences: group-by, parameterized queries, aggregation
Future work:

• Practice: implement the technique with automata
• Applications: text extraction? e.g., document spanners (ongoing)
• Updates: support insertions/deletions? (ongoing)

Thanks for your attention!

19/19

References i

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Kazana, W. and Segou�n, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Losemann, K. and Martens, W. (2014).
MSO queries on trees: enumerating answers under updates.
In CSL-LICS.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf

References ii

Niewerth, M. and Segou�n, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
To appear.

Set circuit construction

• Automaton: “Select all node pairs (x, y)” • States: {∅, x, y, xy}

n

x :n

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

×
×

Set circuit construction

• Automaton: “Select all node pairs (x, y)” • States: {∅, x, y, xy}

n

x :n

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

×
×

Set circuit construction

• Automaton: “Select all node pairs (x, y)” • States: {∅, x, y, xy}

n

x :n

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

×
×

Set circuit construction

• Automaton: “Select all node pairs (x, y)” • States: {∅, x, y, xy}

n

x :n

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

×
×

Set circuit construction

• Automaton: “Select all node pairs (x, y)” • States: {∅, x, y, xy}

n

x :n

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

×

×

Set circuit construction

• Automaton: “Select all node pairs (x, y)” • States: {∅, x, y, xy}

n

x :n

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

×

×

Set circuit construction

• Automaton: “Select all node pairs (x, y)” • States: {∅, x, y, xy}

n

x :n

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

∪ ∪ ∪ ∪
∅ x y xy

×
×

	Problem statement
	Proof techniques
	Conclusion
	Appendix

