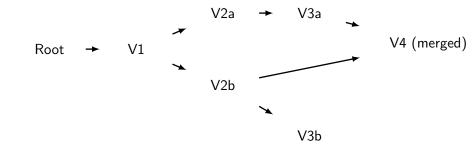
Introduction	Merge model	Merge without IDs	Merge with move	Conclusion
00000	000	0000	000	00

Complexity of Merging Ordered Documents

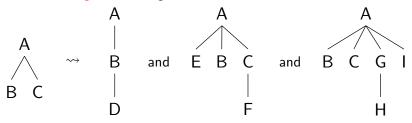
¹Télécom ParisTech, Paris, France

²Tel Aviv University, Tel Aviv, Israel

November 20, 2013



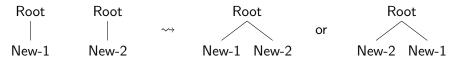
Introduction •0000	Merge model	Merge without IDs 0000	Merge with move	Conclusion 00
Version cor	ntrol			


- Version control software (VCS) for line-based textual data.
- Also, tree-shaped documents:
 - \Rightarrow Texts (sections, paragraphs)
 - ⇒ XML
 - \Rightarrow Code
 - \Rightarrow ...
- Main problem: solving conflicts.

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
DAG of v	ersions			

Introduction	Merge model	Merge without IDs	Merge with move	Conclusion
Conflict res	solution			

We must merge conflicting versions:

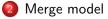

 \Rightarrow How can such conflicts be resolved?

Introduction 00000	Merge model	Merge without IDs 0000	Merge with move	Conclusion
Importance	e of order			

- Use of probabilistic XML for versioning already investigated:
 - ⇒ M. Lamine Ba, T. Abdessalem, P. Senellart. Uncertain Version Control in Open Collaborative Editing of Tree-Structured Documents. DocEng'13 Eleconce Italy.

DocEng'13, Florence, Italy.

- ⇒ M. Lamine Ba, T. Abdessalem, P. Senellart. Merging Uncertain Multi-Version XML Documents. DChanges'13, Florence, Italy.
- Does not take order into account on child nodes.
- Important source of uncertainty!



Introduction	Merge model	Merge without IDs	Merge with move	Conclusion
Representir	ng the merge	9		

- The actual merge is chosen by the user.
- Computing all possible merges is unreasonable.
- Ideally, derive a strong representation system to represent the possible merges, merges of merges, etc.
- Here: study the complexity of a decision problem:
 - **Input.** Set of documents *D* to merge.
 - Possible world *W* of the merge.
 - Output. Is *W* really a possible merge of *D*?
- We restrict the study to an ordered list for now. (List of children for a tree of height 1.)

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Table of co	ontents			

- 3 Merge without IDs
- 4 Merge with move

5 Conclusion

Introduction 00000	Merge model ●○○	Merge without IDs	Merge with move	Conclusion
Edition				

- Base version *B* with items and unique IDs.
- Insert operation to insert a new node with a fresh ID.

Introduction 00000	Merge model ●○○	Merge without IDs	Merge with move	Conclusion 00
Edition				

- Base version *B* with items and unique IDs.
- Insert operation to insert a new node with a fresh ID.

- 1 Introduction
- 2 Problem
- 3 Conclusion

Introduction 00000	Merge model ●00	Merge without IDs 0000	Merge with move	Conclusion
Edition				

- Base version *B* with items and unique IDs.
- Insert operation to insert a new node with a fresh ID.

#	Section	#	Section
1	Introduction	1	Introduction
2	Problem	2	Problem
3	Conclusion	4	Extension
		5	Related work
		3	Conclusion

Introduction 00000	Merge model ●○○	Merge without IDs	Merge with move	Conclusion
Edition				

- Base version *B* with items and unique IDs.
- Insert operation to insert a new node with a fresh ID.

#	Section	#	Section	#	Section
1	Introduction	1	Introduction	1	Introduction
2	Problem	2	Problem	6	Preliminaries
3	Conclusion	4	Extension	2	Problem
		5	Related work	7	Extension
		3	Conclusion	3	Conclusion

Introduction 00000	Merge model ⊙●○	Merge without IDs	Merge with move	Conclusion 00
Merge				

- Union of the nodes: $D_1 \cup D_2$.
- Consistent order with the individual documents.

Introduction 00000	Merge model ⊙●⊙	Merge without IDs	Merge with move	Conclusion 00
Merge				

- Union of the nodes: $D_1 \cup D_2$.
- Consistent order with the individual documents.

Section

- 1 Introduction
- 2 Problem
- 4 Extension
- 5 Related work
- 3 Conclusion

Introduction 00000	Merge model ⊙●⊙	Merge without IDs 0000	Merge with move	Conclusion
Merge				

- Union of the nodes: $D_1 \cup D_2$.
- Consistent order with the individual documents.

#	Section	#	Section
1	Introduction	1	Introduction
2	Problem	6	Preliminaries
4	Extension	2	Problem
5	Related work	7	Extension
3	Conclusion	3	Conclusion

Introduction 00000	Merge model ⊙●⊙	Merge without IDs	Merge with move	Conclusion 00
Merge				

- Union of the nodes: $D_1 \cup D_2$.
- Consistent order with the individual documents.

#	Section	#	Section	#	Section
1	Introduction	1	Introduction	1	Introduction
2	Problem	6	Preliminaries	6	Preliminaries
4	Extension	2	Problem	2	Problem
5	Related work	7	Extension	4	Extension
3	Conclusion	3	Conclusion	7	Extension
				5	Related work

3 Conclusion

Introduction 00000	Merge model ○○●	Merge without IDs 0000	Merge with move	Conclusion
Descipte	l. l			

Possible worlds

- Exponentially many merges $\binom{|D_1|+|D_2|}{|D_1|}$
- PTIME algorithm to check if a world is a possible merge.
- Given possible world W with IDs, do the following:
 - Verify the domain.
 - For every pair x < y,
 For every document D containing both x and y,
 Check if x < y in D.

Introduction 00000	Merge model ○○●	Merge without IDs 0000	Merge with move	Conclusion
Dessible	waylala			

Possible worlds

- Exponentially many merges $\binom{|D_1|+|D_2|}{|D_1|}$
- PTIME algorithm to check if a world is a possible merge.
- Given possible world W with IDs, do the following:
 - Verify the domain.
 - For every pair x < y,
 For every document D containing both x and y,
 Check if x < y in D.

Section

- 1 Introduction
- 2 Problem
- 4 Extension
- 5 Related work
- 3 Conclusion

Introduction 00000	Merge model ○○●	Merge without IDs 0000	Merge with move	Conclusion
Dessible				

Possible worlds

- Exponentially many merges $\binom{|D_1|+|D_2|}{|D_1|}$
- PTIME algorithm to check if a world is a possible merge.
- Given possible world W with IDs, do the following:
 - Verify the domain.
 - For every pair x < y,
 For every document D containing both x and y,
 Check if x < y in D.

#	Section	#	Section
1	Introduction	1	Introduction
2	Problem	6	Preliminaries
4	Extension	2	Problem
5	Related work	7	Extension
3	Conclusion	3	Conclusion

Introduction 00000	Merge model ○○●	Merge without IDs	Merge with move	Conclusion
Possible	worlds			

- Exponentially many merges $\binom{|D_1|+|D_2|}{|D_1|}$
- PTIME algorithm to check if a world is a possible merge.
- Given possible world W with IDs, do the following:
 - Verify the domain.
 - For every pair x < y,
 For every document D containing both x and y,
 Check if x < y in D.

#	Section	#	-	Section	#	Section
1	Introduction	1		Introduction	1	Introduction
2	Problem	6		Preliminaries	6	Preliminaries
4	Extension	2		Problem	2	Problem
5	Related work	7		Extension	7	Extension
3	Conclusion	3		Conclusion	5	Related work
					4	Extension
					-	- · ·

Conclusion 10/27

Introduction 00000	Merge model ○○●	Merge without IDs	Merge with move	Conclusion
Possible	worlds			

- Exponentially many merges $\binom{|D_1|+|D_2|}{|D_1|}$
- PTIME algorithm to check if a world is a possible merge.
- Given possible world *W* with IDs, do the following:
 - Verify the domain.
 - For every pair x < y,
 For every document D containing both x and y,
 Check if x < y in D.

#	Section	:	#	Section	#	Section
1	Introduction		1	Introduction	1	Introduction
2	Problem	(6	Preliminaries	6	Preliminaries
4	Extension		2	Problem	2	Problem
5	Related work	-	7	Extension	7	Extension
3	Conclusion		3	Conclusion	5	Related work
		_			4	Extension
					-	

Conclusion 10/27

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion
Table of o	contents			

Introduction

2 Merge model

O Merge without IDs

4 Merge with move

5 Conclusion

Introduction 00000	Merge model	Merge without IDs •000	Merge with move	Conclusion 00
Possible w	orlds, witho	ut IDs		

- - We may not have the IDs in W (e.g., user input).
 - Ambiguity about how to match elements!

Introduction 00000	Merge model	Merge without IDs •000	Merge with move	Conclusion 00
Possible w	orlds, witho	ut IDs		

- - We may not have the IDs in W (e.g., user input).
 - Ambiguity about how to match elements!

Section

- 1 Introduction
- 2 Problem
- 4 Extension
- 5 Related work
- 3 Conclusion

Introduct	Merge mode	I	U	Merge with move	Conclusion
-	 				

Possible worlds, without IDs

- We may not have the IDs in W (e.g., user input).
- Ambiguity about how to match elements!

#	Section	#	Section
1	Introduction	1	Introduction
2	Problem	6	Preliminaries
4	Extension	2	Problem
5	Related work	7	Extension
3	Conclusion	3	Conclusion

Introduction 00000	Merge model	Merge without IDs ●000	Merge with move	Conclusion 00
Possible wo	orlds, without	: IDs		

- We may not have the IDs in W (e.g., user input).
- Ambiguity about how to match elements!

#	Section	#	Section	Section
1	Introduction	1	Introduction	Introduction
2	Problem	6	Preliminaries	Preliminaries
4	Extension	2	Problem	Problem
5	Related work	7	Extension	Extension
3	Conclusion	3	Conclusion	Related work
				Extension

Conclusion

Introduction 00000	Merge model	Merge without IDs 0●00	Merge with move	Conclusion 00
Dynamic	algorithm			

- Ambiguity makes it look like the problem is hard
- In fact a dynamic algorithm solves it in $O(n^2)$.
- Show it on an example.

Introduction 00000	Merge model	Merge without IDs 0000	Merge with move	Conclusion
Dynamic	algorithm			

- Ambiguity makes it look like the problem is hard
- In fact a dynamic algorithm solves it in $O(n^2)$.
- Show it on an example.

#	Label
1	А
3	А
4	В
2	В

Introduction 00000	Merge model	Merge without IDs 0●00	Merge with move	Conclusion 00
Dynamic	algorithm			

- Ambiguity makes it look like the problem is hard
- In fact a dynamic algorithm solves it in $O(n^2)$.
- Show it on an example.

#	Label	#	Label
1	А	1	А
3	А	5	А
4	В	2	В
2	В	6	А

Introduction 00000	Merge model	Merge without IDs 0●00	Merge with move	Conclusion 00
Dynamic	algorithm			

- Ambiguity makes it look like the problem is hard
- In fact a dynamic algorithm solves it in $O(n^2)$.
- Show it on an example.

#	Label	#	Label	Label
1	А	1	А	A
3	А	5	А	А
4	В	2	В	А
2	В	6	А	В
				В

A

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion
Dynamic	algorithm (e	example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1					
A_5					
B_2					
A_6					
•					

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion
Dynamic	algorithm (e	example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1					
A_5					
B_2					
A_6					
•					

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		A	Α	В	
B_2		A	В	В	
A_6					Α
•					•

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		A	Α	В	
B_2		Α	В	В	
A_6					A
•					· – ·

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		A	A	В	
B_2		A	В	В	
A_6					$A - \downarrow$
•					· – ·

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		A	A	В	
B_2		A	В	B – 📐	
A_6					$A - \downarrow$
•					· – ·

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		A	A	В	
B_2		A	B- ightarrow	B – 📐	
A_6					$A - \downarrow$
•					· – ·

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		A	Α	В	
B_2		$A - \rightarrow$	B- ightarrow	В – 📐	
A_6					$A - \downarrow$
•					· – ·

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		A		B – •	
B_2		$A - \rightarrow$	B- ightarrow	B – 📐	
A_6					$A - \downarrow$
•					· – ·

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		A	$A - \downarrow$	B – •	
B_2		$A - \rightarrow$	B- ightarrow	В – 📐	
A_6					$A - \downarrow$
•					· – ·

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A				
A_5		$A - \Rightarrow$	$A - \downarrow$	B – •	
B_2		$A - \rightarrow$	B- ightarrow	В – 📐	
A_6					$A - \downarrow$
•					· – ·

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion 00
Dynami	c algorithm ((example)		

- $A_1 A_3 B_4 B_2$.
- $A_1 A_5 B_2 A_6$.

	A_1	A_3	B_4	B_2	•
A_1	A - 📐				
A_5		$A - \Rightarrow$	$A - \downarrow$	B – ●	
B_2		$A - \rightarrow$	B- ightarrow	B – 📐	
A_6					$A - \downarrow$
•					· – ·

Introduction 00000	Merge model	Merge without IDs 000●	Merge with move	Conclusion
More doo	uments			

- If we have multiple documents to merge (say k).
- Generalized dynamic algorithm is in $O(n^k)$.
- Hence, **PTIME** for fixed *k*.
- What if k is not fixed?
- Certainly it is still in NP.
- In fact, it is NP-hard (reduction from MinSAT).
- Thanks: http://cstheory.stackexchange.com/a/19081/

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion
Table of o	contents			

Introduction

2 Merge model

3 Merge without IDs

4 Merge with move

5 Conclusion

Introduction	Merge model	Merge without IDs	Merge with move	Conclusion
00000		0000	●○○	00
Conflicts				

- Move operation to move arbitrary nodes.
- Documents can disagree.

Introduction 00000	Merge model	Merge without IDs	Merge with move ●00	Conclusion
Conflicts				

- Move operation to move arbitrary nodes.
- Documents can disagree.

#	Section
#	Section

- 1 Problem A
- 2 Problem B

Introduction 00000	Merge model 000	Merge without IDs 0000	Merge with move	Conclusion
Conflicts				

- Move operation to move arbitrary nodes.
- Documents can disagree.

#	Section	#	Section
1	Problem A	1	Problem A
2	Problem B	2	Problem B
		3	Conclusion

Introduction 00000	Merge model	Merge without IDs 0000	Merge with move ●00	Conclusion
Conflicts				

- Move operation to move arbitrary nodes.
- Documents can disagree.

#	Section	7	#	Section	#	Section
1	Problem A	1	1	Problem A	4	Intro
2	Problem B	2	2	Problem B	2	Problem B
		3	3	Conclusion	1	Problem A

Introduction 00000	Merge model	Merge without IDs 0000	Merge with move ○●○	Conclusion
Merge				

- Order is arbitrary if documents disagree.
- However, try to maintain order within documents.

Introduction	Merge model	Merge without IDs	Merge with move	Conclusion
00000		0000	○●○	00
Merge				

- Order is arbitrary if documents disagree.
- However, try to maintain order within documents.

Section

- 1 Problem A
- 2 Problem B
- 3 Conclusion

Introduction	Merge model	Merge without IDs	Merge with move	Conclusion
00000		0000	○●○	00
Merge				

- Order is arbitrary if documents disagree.
- However, try to maintain order within documents.

#	Section	#	Section
1	Problem A	4	Intro
2	Problem B	2	Problem B
3	Conclusion	1	Problem A

Introduction	Merge model	Merge without IDs	Merge with move	Conclusion
00000		0000	○●○	00
Merge				

- Order is arbitrary if documents disagree.
- However, try to maintain order within documents.

#	Section	#	Section	#	Section
1	Problem A	4	Intro	4	Intro
2	Problem B	2	Problem B	1	Problem A
3	Conclusion	1	Problem A	2	Problem B
				3	Conclusion

Introduction	Merge model	Merge without IDs	Merge with move	Conclusion
00000		0000	○●○	00
Merge				

- Order is arbitrary if documents disagree.
- However, try to maintain order within documents.

#	Section	#	Section	-	#	Section
1	Problem A	4	Intro	2	4	Intro
2	Problem B	2	Problem B	1	1	Problem A
3	Conclusion	1	Problem A	2	2	Problem B
				3	3	Conclusion

 \Rightarrow Only one thing to decide here.

Introduction 00000	Merge model	Merge without IDs	Merge with move ○○●	Conclusion
Weird case	S			

Introduction 00000	Merge model	Merge without IDs	Merge with move ○○●	Conclusion
Weird case	S			

Section

- 1 Problem A
- 3 Transition A-B
- 2 Problem B

Introduction 00000	Merge model	Merge without IDs	Merge with move ○○●	Conclusion
Weird case	S			

#	Section	#	Section
1	Problem A	2	Problem B
3	Transition A-B	4	Transition B-A
2	Problem B	1	Problem A

Introduction 00000	Merge model	Merge without IDs	Merge with move ○○●	Conclusion
Weird cases	5			

#	Section	#	Section	#	Section
1	Problem A	2	Problem B	2	Problem B
3	Transition A-B	4	Transition B-A	4	Transition B-A
2	Problem B	1	Problem A	1	Problem A
				3	Transition A-B

Introduction 00000	Merge model	Merge without IDs	Merge with move ○○●	Conclusion
Weird case	S			

#	Section	#	Section	#	Section
1	Problem A	2	Problem B	2	Problem B
3	Transition A-B	4	Transition B-A	4	Transition B-A
2	Problem B	1	Problem A	1	Problem A
				3	Transition A-B

 \Rightarrow Satisfy a maximal subset of the original constraints.

Introduction 00000	Merge model	Merge without IDs	Merge with move ○○●	Conclusion
Weird case	es			

#	Section	#	Section	#	Section
1	Problem A	2	Problem B	2	Problem B
3	Transition A-B	4	Transition B-A	4	Transition B-A
2	Problem B	1	Problem A	1	Problem A
				3	Transition A-B

 \Rightarrow Satisfy a maximal subset of the original constraints.

- \Rightarrow It is still in NP to decide if something is a possible world.
- \Rightarrow It is NP-hard even for 2 documents (from Unary 3-partition).
- ⇒ Thanks: http://cstheory.stackexchange.com/a/19415/

Introduction 00000	Merge model	Merge without IDs	Merge with move	Conclusion
Table of co	ontents			

Introduction

2 Merge model

3 Merge without IDs

4 Merge with move

Introduction 00000	Merge model	Merge without IDs 0000	Merge with move	Conclusion • O
Nested hie	erarchies			

- Necessary for XML.
- Hardness results still holds.
- Dynamic algorithm can be extended:
 - When solving the problem for two forests:
 - Solve for each pair of children.
 - Use the dynamic algorithm to solve the child sequence.
 - When solving the problem for two trees:
 - Check equality of the root labels.
 - Solve the forests of children.

Introduction 00000	Merge model	Merge without IDs 0000	Merge with move	Conclusion ○●
Relational a	algebra			

- - Add order to relational databases.
 - Allow arbitrary relational operations.
 - Track provenance of the data.
 - Use provenance for order uncertainty.
 - Connected with provenance for aggregates.

Thanks!

Thanks for your attention!

(Work in progress, questions and feedback welcome.)

Hardness of multiple documents

• Reduction from MinSAT:

Input. *n* clauses $\pm x_i \lor \pm x_j$, *k* variables, integer *d* Output. can we avoid satisfying > *d* clauses?

- IDs:
 - e_i^+ for $+x_i$, e_i^- for $-x_i$
 - c_i for clause i
- Labels:
 - Clause, for clauses,
 - Var_i for variable i
- Document set D:
 - $e_i^{\pm}c_j$ if $\pm x_i$ occurs in c_j
- Possible world W:
 - Var_i from 1 to k
 - Clause n d times
 - Var_i from 1 to k
 - Clause *d* times

- MinSAT instance:
 - $C_1: x \lor y$
 - $C_2: \neg x \vee \neg y$
 - d = 0
- Encoding (*D*, and *W*):

#	Label	#	Label	#	Label	#	Label	Label
e_x^+ c_1	Var _x Clause	,	Var _y Clause		Var _x Clause	,	Var _y Clause	$\begin{tabular}{c} Var_x \\ Var_y \\ Clause \\ Clause \\ Var_x \\ Var_y \end{tabular}$

- MinSAT instance:
 - $C_1: x \lor y$
 - $C_2: \neg x \lor \neg y$
 - d = 0
- Encoding (*D*, and *W*):

# Lab	el #	Label	#	Label	#	Label	Label
e_x^+ Van c_1 Cla	<i></i>	Var _y Clause		Var _x Clause	,	Var _y Clause	Var_{x} Var_{y} $Clause$ $Clause$ Var_{x} Var_{y}

- MinSAT instance:
 - $C_1: x \lor y$
 - $C_2: \neg x \lor \neg y$
 - d = 0
- Encoding (*D*, and *W*):

#	Label	#	Label	#	Label	#	Label	Label
	$\operatorname{Var}_{\times}$ Clause	J	$\begin{array}{l} \operatorname{Var}_y \\ \operatorname{Clause} \end{array}$		$\begin{array}{c} \operatorname{Var}_{x} \\ \operatorname{Clause} \end{array}$,	Var _y Clause	Var_{x} Var_{y}
								Clause Clause Var _x Var _y

- MinSAT instance:
 - $C_1: x \lor y$
 - $C_2: \neg x \vee \neg y$
 - d = 0
- Encoding (*D*, and *W*):

#	Label	#	Label	#	Label	#	Label	Label
	Var_{x} Clause	5	Var _y Clause		$\operatorname{Var}_{\times}$ Clause	,	Var _y Clause	Var_{x} Var_{y}
								Clause Clause Var _x Var _y

- MinSAT instance:
 - $C_1: x \lor y$
 - $C_2: \neg x \lor \neg y$
 - d = 0
- Encoding (*D*, and *W*):

#	Label	#	Label	#	Label	#	Label	Label
~	Var_{x} Clause	J	Var _y Clause		$\frac{\mathrm{Var}_{\varkappa}}{\mathrm{Clause}}$,	Var _y Clause	Var_{x} Var_{y}
								Clause Clause Var _x Var _y

Hardness of multiple documents (example)

- MinSAT instance:
 - $C_1: x \lor y$
 - $C_2: \neg x \lor \neg y$
 - d = 0
- Encoding (*D*, and *W*):

#	Label	#	Label	#	Label	#	Label	Label
	Var _x Clause	2	Var _y Clause		Var _× Clause		Var _y Clause	Var _x Var _y Clause Clause Var _x Var _y

• Thanks: http://cstheory.stackexchange.com/a/19081/

Hardness

- Merging two versions is already NP-complete.
- Reduction from Unary 3-partition:
 - Input. 3m integers n_i in unary, and integer B.
 - Output. can we partition in triples with sum always B?
- Create two blocks per integer *n_i*:
 - Both start with an element labeled Open.
 - Both contain *n_i* elements labeled Item:
 - \Rightarrow First block in one order.
 - \Rightarrow Second block in reverse order.
 - Both end with an element labeled Close.
- Document set *D*:
 - D_1 : concatenate all blocks in one order.
 - D_2 : concatenate all blocks in the reverse order.
- Possible world *W*:
 - $\bullet~{\rm Open}^3,~{\rm Item}^B,~{\rm Close}^3.$
 - Repeat *m* times.

- Induced order constraints:
 - All Item elements are incomparable.
 - Open and Close precede and follow all of their Item's.
 - Open, Item, Close blocks are incomparable among them.
- 3-partition instance: $\{1, 1, 1, 2, 3, 4\}$, B = 6.
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item², Close
 - Open, Item³, Close
 - Open, Item⁴, Close
 - \Rightarrow Open³, Item⁶, Close³, Open³, Item⁶, Close³.

- Induced order constraints:
 - All Item elements are incomparable.
 - Open and Close precede and follow all of their Item's.
 - Open, Item, Close blocks are incomparable among them.
- 3-partition instance: $\{1, 1, 1, 2, 3, 4\}$, B = 6.
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item², Close
 - Open, Item³, Close
 - Open, Item⁴, Close
 - \Rightarrow Open³, Item⁶, Close³, Open³, Item⁶, Close³.

- Induced order constraints:
 - All Item elements are incomparable.
 - Open and Close precede and follow all of their Item's.
 - Open, Item, Close blocks are incomparable among them.
- 3-partition instance: $\{1, 1, 1, 2, 3, 4\}$, B = 6.
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item², Close
 - Open, Item³, Close
 - Open, Item⁴, Close
 - \Rightarrow Open³, Item⁶, Close³, Open³, Item⁶, Close³.

- Induced order constraints:
 - All Item elements are incomparable.
 - Open and Close precede and follow all of their Item's.
 - Open, Item, Close blocks are incomparable among them.
- 3-partition instance: $\{1, 1, 1, 2, 3, 4\}$, B = 6.
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item², Close
 - Open, Item³, Close
 - Open, Item⁴, Close
 - \Rightarrow Open³, Item⁶, Close³, Open³, Item⁶, Close³.

• Induced order constraints:

- All Item elements are incomparable.
- Open and Close precede and follow all of their Item's.
- Open, Item, Close blocks are incomparable among them.
- 3-partition instance: $\{1, 1, 1, 2, 3, 4\}$, B = 6.
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item², Close
 - Open, Item³, Close
 - Open, Item⁴, Close
 - \Rightarrow Open³, Item⁶, Close³, Open³, Item⁶, Close³.

• Induced order constraints:

- All Item elements are incomparable.
- Open and Close precede and follow all of their Item's.
- Open, Item, Close blocks are incomparable among them.
- 3-partition instance: $\{1, 1, 1, 2, 3, 4\}$, B = 6.
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item², Close
 - Open, Item³, Close
 - Open, Item⁴, Close
 - \Rightarrow Open³, Item⁶, Close³, Open³, Item⁶, Close³.

• Induced order constraints:

- All Item elements are incomparable.
- Open and Close precede and follow all of their Item's.
- Open, Item, Close blocks are incomparable among them.
- 3-partition instance: $\{1, 1, 1, 2, 3, 4\}$, B = 6.
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item², Close
 - Open, Item³, Close
 - Open, Item⁴, Close
 - \Rightarrow Open³, Item⁶, Close³, Open³, Item⁶, Close³.

• Induced order constraints:

- All Item elements are incomparable.
- Open and Close precede and follow all of their Item's.
- Open, Item, Close blocks are incomparable among them.
- 3-partition instance: $\{1, 1, 1, 2, 3, 4\}$, B = 6.
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item, Close
 - Open, Item², Close
 - Open, Item³, Close
 - Open, Item⁴, Close
 - \Rightarrow Open³, Item⁶, Close³, Open³, Item⁶, Close³.

• Thanks: http://cstheory.stackexchange.com/a/19415/