
.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

.

...... Complexity of Merging Ordered Documents

Antoine Amarilli1 M. Lamine Ba1
Daniel Deutch2 Pierre Senellart1

1Télécom ParisTech, Paris, France
2Tel Aviv University, Tel Aviv, Israel

November 20, 2013

1/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Version control

Version control software (VCS) for line-based textual data.
Also, tree-shaped documents:
⇒ Texts (sections, paragraphs)
⇒ XML
⇒ Code
⇒ ...

Main problem: solving conflicts.

2/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

DAG of versions

..

V3a

.

V2b

.
V3b

.

V1

.

V2a

.

V4 (merged)

.

Root

3/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Conflict resolution

We must merge conflicting versions:

....A.....

..C.

..

..B

⇝

....A...

..B...

..D

and

....A.....

..C...

..F

.

....

..B.

..

..E and

....A.....

..I

.

....

..G...

..H

.

....

..C.

..

..B

⇒ How can such conflicts be resolved?

4/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Importance of order

Use of probabilistic XML for versioning already investigated:
⇒ M. Lamine Ba, T. Abdessalem, P. Senellart.

Uncertain Version Control in Open Collaborative Editing of
Tree-Structured Documents.
DocEng’13, Florence, Italy.

⇒ M. Lamine Ba, T. Abdessalem, P. Senellart.
Merging Uncertain Multi-Version XML Documents.
DChanges’13, Florence, Italy.

Does not take order into account on child nodes.
Important source of uncertainty!

....Root...

..New-1

....Root...

..New-2
⇝

....Root.....

..New-2.

..

..New-1
or

....Root.....

..New-1.

..

..New-2

5/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Representing the merge

The actual merge is chosen by the user.
Computing all possible merges is unreasonable.
Ideally, derive a strong representation system to represent the
possible merges, merges of merges, etc.
Here: study the complexity of a decision problem:

Input. Set of documents D to merge.
Possible world W of the merge.

Output. Is W really a possible merge of D?
We restrict the study to an ordered list for now.
(List of children for a tree of height 1.)

6/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Table of contents

...1 Introduction

...2 Merge model

...3 Merge without IDs

...4 Merge with move

...5 Conclusion

7/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Edition

Base version B with items and unique IDs.
Insert operation to insert a new node with a fresh ID.

Section
1 Introduction
2 Problem
3 Conclusion

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

8/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Edition

Base version B with items and unique IDs.
Insert operation to insert a new node with a fresh ID.

Section
1 Introduction
2 Problem
3 Conclusion

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

8/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Edition

Base version B with items and unique IDs.
Insert operation to insert a new node with a fresh ID.

Section
1 Introduction
2 Problem
3 Conclusion

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

8/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Edition

Base version B with items and unique IDs.
Insert operation to insert a new node with a fresh ID.

Section
1 Introduction
2 Problem
3 Conclusion

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

8/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Union of the nodes: D1 ∪ D2.
Consistent order with the individual documents.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
4 Extension
7 Extension
5 Related work
3 Conclusion

9/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Union of the nodes: D1 ∪ D2.
Consistent order with the individual documents.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
4 Extension
7 Extension
5 Related work
3 Conclusion

9/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Union of the nodes: D1 ∪ D2.
Consistent order with the individual documents.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
4 Extension
7 Extension
5 Related work
3 Conclusion

9/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Union of the nodes: D1 ∪ D2.
Consistent order with the individual documents.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
4 Extension
7 Extension
5 Related work
3 Conclusion

9/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds

Exponentially many merges
(|D1|+|D2|

|D1|
)

PTIME algorithm to check if a world is a possible merge.
Given possible world W with IDs, do the following:

Verify the domain.
For every pair x < y,

For every document D containing both x and y,
Check if x < y in D.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
5 Related work
4 Extension
3 Conclusion

10/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds

Exponentially many merges
(|D1|+|D2|

|D1|
)

PTIME algorithm to check if a world is a possible merge.
Given possible world W with IDs, do the following:

Verify the domain.
For every pair x < y,

For every document D containing both x and y,
Check if x < y in D.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
5 Related work
4 Extension
3 Conclusion

10/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds

Exponentially many merges
(|D1|+|D2|

|D1|
)

PTIME algorithm to check if a world is a possible merge.
Given possible world W with IDs, do the following:

Verify the domain.
For every pair x < y,

For every document D containing both x and y,
Check if x < y in D.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
5 Related work
4 Extension
3 Conclusion

10/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds

Exponentially many merges
(|D1|+|D2|

|D1|
)

PTIME algorithm to check if a world is a possible merge.
Given possible world W with IDs, do the following:

Verify the domain.
For every pair x < y,

For every document D containing both x and y,
Check if x < y in D.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
5 Related work
4 Extension
3 Conclusion 10/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds

Exponentially many merges
(|D1|+|D2|

|D1|
)

PTIME algorithm to check if a world is a possible merge.
Given possible world W with IDs, do the following:

Verify the domain.
For every pair x < y,

For every document D containing both x and y,
Check if x < y in D.

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
5 Related work
4 Extension
3 Conclusion 10/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Table of contents

...1 Introduction

...2 Merge model

...3 Merge without IDs

...4 Merge with move

...5 Conclusion

11/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds, without IDs

We may not have the IDs in W (e.g., user input).
Ambiguity about how to match elements!

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
Introduction
Preliminaries
Problem
Extension
Related work
Extension
Conclusion

12/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds, without IDs

We may not have the IDs in W (e.g., user input).
Ambiguity about how to match elements!

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
Introduction
Preliminaries
Problem
Extension
Related work
Extension
Conclusion

12/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds, without IDs

We may not have the IDs in W (e.g., user input).
Ambiguity about how to match elements!

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
Introduction
Preliminaries
Problem
Extension
Related work
Extension
Conclusion

12/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Possible worlds, without IDs

We may not have the IDs in W (e.g., user input).
Ambiguity about how to match elements!

Section
1 Introduction
2 Problem
4 Extension
5 Related work
3 Conclusion

Section
1 Introduction
6 Preliminaries
2 Problem
7 Extension
3 Conclusion

Section
Introduction
Preliminaries
Problem
Extension
Related work
Extension
Conclusion

12/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm

Ambiguity makes it look like the problem is hard
In fact a dynamic algorithm solves it in O(n2).
Show it on an example.

Label
1 A
3 A
4 B
2 B

Label
1 A
5 A
2 B
6 A

Label
A
A
A
B
B
A

13/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm

Ambiguity makes it look like the problem is hard
In fact a dynamic algorithm solves it in O(n2).
Show it on an example.

Label
1 A
3 A
4 B
2 B

Label
1 A
5 A
2 B
6 A

Label
A
A
A
B
B
A

13/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm

Ambiguity makes it look like the problem is hard
In fact a dynamic algorithm solves it in O(n2).
Show it on an example.

Label
1 A
3 A
4 B
2 B

Label
1 A
5 A
2 B
6 A

Label
A
A
A
B
B
A

13/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm

Ambiguity makes it look like the problem is hard
In fact a dynamic algorithm solves it in O(n2).
Show it on an example.

Label
1 A
3 A
4 B
2 B

Label
1 A
5 A
2 B
6 A

Label
A
A
A
B
B
A

13/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1

A5

B2

A6

·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1

A5

B2

A6

·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A A B
B2 A B B
A6 A
· ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A A B
B2 A B B
A6 A
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A A B
B2 A B B
A6 A – ↓
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A A B
B2 A B B – ↘
A6 A – ↓
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A A B
B2 A B – → B – ↘
A6 A – ↓
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A A B
B2 A – → B – → B – ↘
A6 A – ↓
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A A B – •
B2 A – → B – → B – ↘
A6 A – ↓
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A A – ↓ B – •
B2 A – → B – → B – ↘
A6 A – ↓
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A
A5 A – ↓→ A – ↓ B – •
B2 A – → B – → B – ↘
A6 A – ↓
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Dynamic algorithm (example)

Set of documents D:
A1 A3 B4 B2.
A1 A5 B2 A6.

Possible world W: A A A B B A.
A1 A3 B4 B2 ·

A1 A – ↘
A5 A – ↓→ A – ↓ B – •
B2 A – → B – → B – ↘
A6 A – ↓
· · – ·

14/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

More documents

If we have multiple documents to merge (say k).
Generalized dynamic algorithm is in O(nk).
Hence, PTIME for fixed k.
What if k is not fixed?
Certainly it is still in NP.
In fact, it is NP-hard (reduction from MinSAT).
Thanks: http://cstheory.stackexchange.com/a/19081/

15/27

http://cstheory.stackexchange.com/a/19081/

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Table of contents

...1 Introduction

...2 Merge model

...3 Merge without IDs

...4 Merge with move

...5 Conclusion

16/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Conflicts

Move operation to move arbitrary nodes.
Documents can disagree.

Section
1 Problem A
2 Problem B

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

17/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Conflicts

Move operation to move arbitrary nodes.
Documents can disagree.

Section
1 Problem A
2 Problem B

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

17/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Conflicts

Move operation to move arbitrary nodes.
Documents can disagree.

Section
1 Problem A
2 Problem B

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

17/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Conflicts

Move operation to move arbitrary nodes.
Documents can disagree.

Section
1 Problem A
2 Problem B

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

17/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Order is arbitrary if documents disagree.
However, try to maintain order within documents.

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

Section
4 Intro
1 Problem A
2 Problem B
3 Conclusion

⇒ Only one thing to decide here.

18/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Order is arbitrary if documents disagree.
However, try to maintain order within documents.

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

Section
4 Intro
1 Problem A
2 Problem B
3 Conclusion

⇒ Only one thing to decide here.

18/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Order is arbitrary if documents disagree.
However, try to maintain order within documents.

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

Section
4 Intro
1 Problem A
2 Problem B
3 Conclusion

⇒ Only one thing to decide here.

18/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Order is arbitrary if documents disagree.
However, try to maintain order within documents.

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

Section
4 Intro
1 Problem A
2 Problem B
3 Conclusion

⇒ Only one thing to decide here.

18/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Merge

Order is arbitrary if documents disagree.
However, try to maintain order within documents.

Section
1 Problem A
2 Problem B
3 Conclusion

Section
4 Intro
2 Problem B
1 Problem A

Section
4 Intro
1 Problem A
2 Problem B
3 Conclusion

⇒ Only one thing to decide here.

18/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Weird cases

Sometimes weird!

Section
1 Problem A
3 Transition A-B
2 Problem B

Section
2 Problem B
4 Transition B-A
1 Problem A

Section
2 Problem B
4 Transition B-A
1 Problem A
3 Transition A-B

⇒ Satisfy a maximal subset of the original constraints.
⇒ It is still in NP to decide if something is a possible world.
⇒ It is NP-hard even for 2 documents (from Unary 3-partition).
⇒ Thanks: http://cstheory.stackexchange.com/a/19415/

19/27

http://cstheory.stackexchange.com/a/19415/

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Weird cases

Sometimes weird!

Section
1 Problem A
3 Transition A-B
2 Problem B

Section
2 Problem B
4 Transition B-A
1 Problem A

Section
2 Problem B
4 Transition B-A
1 Problem A
3 Transition A-B

⇒ Satisfy a maximal subset of the original constraints.
⇒ It is still in NP to decide if something is a possible world.
⇒ It is NP-hard even for 2 documents (from Unary 3-partition).
⇒ Thanks: http://cstheory.stackexchange.com/a/19415/

19/27

http://cstheory.stackexchange.com/a/19415/

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Weird cases

Sometimes weird!

Section
1 Problem A
3 Transition A-B
2 Problem B

Section
2 Problem B
4 Transition B-A
1 Problem A

Section
2 Problem B
4 Transition B-A
1 Problem A
3 Transition A-B

⇒ Satisfy a maximal subset of the original constraints.
⇒ It is still in NP to decide if something is a possible world.
⇒ It is NP-hard even for 2 documents (from Unary 3-partition).
⇒ Thanks: http://cstheory.stackexchange.com/a/19415/

19/27

http://cstheory.stackexchange.com/a/19415/

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Weird cases

Sometimes weird!

Section
1 Problem A
3 Transition A-B
2 Problem B

Section
2 Problem B
4 Transition B-A
1 Problem A

Section
2 Problem B
4 Transition B-A
1 Problem A
3 Transition A-B

⇒ Satisfy a maximal subset of the original constraints.
⇒ It is still in NP to decide if something is a possible world.
⇒ It is NP-hard even for 2 documents (from Unary 3-partition).
⇒ Thanks: http://cstheory.stackexchange.com/a/19415/

19/27

http://cstheory.stackexchange.com/a/19415/

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Weird cases

Sometimes weird!

Section
1 Problem A
3 Transition A-B
2 Problem B

Section
2 Problem B
4 Transition B-A
1 Problem A

Section
2 Problem B
4 Transition B-A
1 Problem A
3 Transition A-B

⇒ Satisfy a maximal subset of the original constraints.

⇒ It is still in NP to decide if something is a possible world.
⇒ It is NP-hard even for 2 documents (from Unary 3-partition).
⇒ Thanks: http://cstheory.stackexchange.com/a/19415/

19/27

http://cstheory.stackexchange.com/a/19415/

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Weird cases

Sometimes weird!

Section
1 Problem A
3 Transition A-B
2 Problem B

Section
2 Problem B
4 Transition B-A
1 Problem A

Section
2 Problem B
4 Transition B-A
1 Problem A
3 Transition A-B

⇒ Satisfy a maximal subset of the original constraints.
⇒ It is still in NP to decide if something is a possible world.
⇒ It is NP-hard even for 2 documents (from Unary 3-partition).
⇒ Thanks: http://cstheory.stackexchange.com/a/19415/

19/27

http://cstheory.stackexchange.com/a/19415/

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Table of contents

...1 Introduction

...2 Merge model

...3 Merge without IDs

...4 Merge with move

...5 Conclusion

20/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Nested hierarchies

Necessary for XML.
Hardness results still holds.
Dynamic algorithm can be extended:

When solving the problem for two forests:
Solve for each pair of children.
Use the dynamic algorithm to solve the child sequence.

When solving the problem for two trees:
Check equality of the root labels.
Solve the forests of children.

21/27

.
Introduction

. . .
Merge model

. . . .
Merge without IDs

. . .
Merge with move

. .
Conclusion

Relational algebra

Add order to relational databases.
Allow arbitrary relational operations.
Track provenance of the data.
Use provenance for order uncertainty.
Connected with provenance for aggregates.

22/27

. . . .
Supplementary material

Thanks!

Thanks for your attention!

(Work in progress, questions and feedback welcome.)

23/27

. . . .
Supplementary material

Hardness of multiple documents

Reduction from MinSAT:
Input. n clauses ±xi ∨ ±xj, k variables, integer d

Output. can we avoid satisfying > d clauses?
IDs:

e+i for +xi, e−i for −xi
ci for clause i

Labels:
Clause, for clauses,
Vari for variable i

Document set D:
e±i cj if ±xi occurs in cj

Possible world W:
Vari from 1 to k
Clause n − d times
Vari from 1 to k
Clause d times

24/27

. . . .
Supplementary material

Hardness of multiple documents (example)

MinSAT instance:
C1 : x ∨ y
C2 : ¬x ∨ ¬y
d = 0

Encoding (D, and W):

Label
e+x Varx
c1 Clause

Label
e+y Vary
c1 Clause

Label
e−x Varx
c2 Clause

Label
e−y Vary
c2 Clause

Label
Varx
Vary
Clause
Clause
Varx
Vary

Thanks: http://cstheory.stackexchange.com/a/19081/

25/27

http://cstheory.stackexchange.com/a/19081/

. . . .
Supplementary material

Hardness of multiple documents (example)

MinSAT instance:
C1 : x ∨ y
C2 : ¬x ∨ ¬y
d = 0

Encoding (D, and W):

Label
e+x Varx
c1 Clause

Label
e+y Vary
c1 Clause

Label
e−x Varx
c2 Clause

Label
e−y Vary
c2 Clause

Label
Varx
Vary
Clause
Clause
Varx
Vary

Thanks: http://cstheory.stackexchange.com/a/19081/

25/27

http://cstheory.stackexchange.com/a/19081/

. . . .
Supplementary material

Hardness of multiple documents (example)

MinSAT instance:
C1 : x ∨ y
C2 : ¬x ∨ ¬y
d = 0

Encoding (D, and W):

Label
e+x Varx
c1 Clause

Label
e+y Vary
c1 Clause

Label
e−x Varx
c2 Clause

Label
e−y Vary
c2 Clause

Label
Varx
Vary
Clause
Clause
Varx
Vary

Thanks: http://cstheory.stackexchange.com/a/19081/

25/27

http://cstheory.stackexchange.com/a/19081/

. . . .
Supplementary material

Hardness of multiple documents (example)

MinSAT instance:
C1 : x ∨ y
C2 : ¬x ∨ ¬y
d = 0

Encoding (D, and W):

Label
e+x Varx
c1 Clause

Label
e+y Vary
c1 Clause

Label
e−x Varx
c2 Clause

Label
e−y Vary
c2 Clause

Label
Varx
Vary
Clause
Clause
Varx
Vary

Thanks: http://cstheory.stackexchange.com/a/19081/

25/27

http://cstheory.stackexchange.com/a/19081/

. . . .
Supplementary material

Hardness of multiple documents (example)

MinSAT instance:
C1 : x ∨ y
C2 : ¬x ∨ ¬y
d = 0

Encoding (D, and W):

Label
e+x Varx
c1 Clause

Label
e+y Vary
c1 Clause

Label
e−x Varx
c2 Clause

Label
e−y Vary
c2 Clause

Label
Varx
Vary
Clause
Clause
Varx
Vary

Thanks: http://cstheory.stackexchange.com/a/19081/

25/27

http://cstheory.stackexchange.com/a/19081/

. . . .
Supplementary material

Hardness of multiple documents (example)

MinSAT instance:
C1 : x ∨ y
C2 : ¬x ∨ ¬y
d = 0

Encoding (D, and W):

Label
e+x Varx
c1 Clause

Label
e+y Vary
c1 Clause

Label
e−x Varx
c2 Clause

Label
e−y Vary
c2 Clause

Label
Varx
Vary
Clause
Clause
Varx
Vary

Thanks: http://cstheory.stackexchange.com/a/19081/
25/27

http://cstheory.stackexchange.com/a/19081/

. . . .
Supplementary material

Hardness

Merging two versions is already NP-complete.
Reduction from Unary 3-partition:

Input. 3m integers ni in unary, and integer B.
Output. can we partition in triples with sum always B?

Create two blocks per integer ni:
Both start with an element labeled Open.
Both contain ni elements labeled Item:
⇒ First block in one order.
⇒ Second block in reverse order.

Both end with an element labeled Close.
Document set D:

D1: concatenate all blocks in one order.
D2: concatenate all blocks in the reverse order.

Possible world W:
Open3, ItemB, Close3.
Repeat m times.

26/27

. . . .
Supplementary material

Hardness (intuition and example)

Induced order constraints:
All Item elements are incomparable.
Open and Close precede and follow all of their Item’s.
Open, Item, Close blocks are incomparable among them.

3-partition instance: {1, 1, 1, 2, 3, 4}, B = 6.
Open, Item, Close
Open, Item, Close
Open, Item, Close
Open, Item2, Close
Open, Item3, Close
Open, Item4, Close

⇒ Open3, Item6, Close3, Open3, Item6, Close3.

Thanks: http://cstheory.stackexchange.com/a/19415/

27/27

http://cstheory.stackexchange.com/a/19415/

. . . .
Supplementary material

Hardness (intuition and example)

Induced order constraints:
All Item elements are incomparable.
Open and Close precede and follow all of their Item’s.
Open, Item, Close blocks are incomparable among them.

3-partition instance: {1, 1, 1, 2, 3, 4}, B = 6.
Open, Item, Close
Open, Item, Close
Open, Item, Close
Open, Item2, Close
Open, Item3, Close
Open, Item4, Close

⇒ Open3, Item6, Close3, Open3, Item6, Close3.

Thanks: http://cstheory.stackexchange.com/a/19415/

27/27

http://cstheory.stackexchange.com/a/19415/

. . . .
Supplementary material

Hardness (intuition and example)

Induced order constraints:
All Item elements are incomparable.
Open and Close precede and follow all of their Item’s.
Open, Item, Close blocks are incomparable among them.

3-partition instance: {1, 1, 1, 2, 3, 4}, B = 6.
Open, Item, Close
Open, Item, Close
Open, Item, Close
Open, Item2, Close
Open, Item3, Close
Open, Item4, Close

⇒ Open3, Item6, Close3, Open3, Item6, Close3.

Thanks: http://cstheory.stackexchange.com/a/19415/

27/27

http://cstheory.stackexchange.com/a/19415/

. . . .
Supplementary material

Hardness (intuition and example)

Induced order constraints:
All Item elements are incomparable.
Open and Close precede and follow all of their Item’s.
Open, Item, Close blocks are incomparable among them.

3-partition instance: {1, 1, 1, 2, 3, 4}, B = 6.
Open, Item, Close
Open, Item, Close
Open, Item, Close
Open, Item2, Close
Open, Item3, Close
Open, Item4, Close

⇒ Open3, Item6, Close3, Open3, Item6, Close3.

Thanks: http://cstheory.stackexchange.com/a/19415/

27/27

http://cstheory.stackexchange.com/a/19415/

. . . .
Supplementary material

Hardness (intuition and example)

Induced order constraints:
All Item elements are incomparable.
Open and Close precede and follow all of their Item’s.
Open, Item, Close blocks are incomparable among them.

3-partition instance: {1, 1, 1, 2, 3, 4}, B = 6.
Open, Item, Close
Open, Item, Close
Open, Item, Close
Open, Item2, Close
Open, Item3, Close
Open, Item4, Close

⇒ Open3, Item6, Close3, Open3, Item6, Close3.

Thanks: http://cstheory.stackexchange.com/a/19415/

27/27

http://cstheory.stackexchange.com/a/19415/

. . . .
Supplementary material

Hardness (intuition and example)

Induced order constraints:
All Item elements are incomparable.
Open and Close precede and follow all of their Item’s.
Open, Item, Close blocks are incomparable among them.

3-partition instance: {1, 1, 1, 2, 3, 4}, B = 6.
Open, Item, Close
Open, Item, Close
Open, Item, Close
Open, Item2, Close
Open, Item3, Close
Open, Item4, Close

⇒ Open3, Item6, Close3, Open3, Item6, Close3.

Thanks: http://cstheory.stackexchange.com/a/19415/

27/27

http://cstheory.stackexchange.com/a/19415/

. . . .
Supplementary material

Hardness (intuition and example)

Induced order constraints:
All Item elements are incomparable.
Open and Close precede and follow all of their Item’s.
Open, Item, Close blocks are incomparable among them.

3-partition instance: {1, 1, 1, 2, 3, 4}, B = 6.
Open, Item, Close
Open, Item, Close
Open, Item, Close
Open, Item2, Close
Open, Item3, Close
Open, Item4, Close

⇒ Open3, Item6, Close3, Open3, Item6, Close3.

Thanks: http://cstheory.stackexchange.com/a/19415/

27/27

http://cstheory.stackexchange.com/a/19415/

. . . .
Supplementary material

Hardness (intuition and example)

Induced order constraints:
All Item elements are incomparable.
Open and Close precede and follow all of their Item’s.
Open, Item, Close blocks are incomparable among them.

3-partition instance: {1, 1, 1, 2, 3, 4}, B = 6.
Open, Item, Close
Open, Item, Close
Open, Item, Close
Open, Item2, Close
Open, Item3, Close
Open, Item4, Close

⇒ Open3, Item6, Close3, Open3, Item6, Close3.

Thanks: http://cstheory.stackexchange.com/a/19415/

27/27

http://cstheory.stackexchange.com/a/19415/

	Introduction
	Merge model
	Merge without IDs
	Merge with move
	Conclusion

