Enumerating regular languages with bounded delay

Antoine Amarilli, Mikaël Monet; STACS'23
July 27, 2023
TELECOM

IP PARIS

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time
Computation problem
Input $\rightarrow\{\square \nabla, \square \square \nabla, \square \nabla \nabla\}$

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time
Computation problem
Input $\rightarrow \quad\{\square \nabla, \square \square \nabla, \square \nabla \nabla\} \quad$ Measure: running time

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time
Computation problem
Input $\rightarrow \quad\{\square \nabla, \square \square \nabla, \square \nabla \nabla\} \quad$ Measure: running time
Enumeration problem

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time
Computation problem
Input $\rightarrow \quad\{\square \nabla, \square \square \nabla, \square \nabla \nabla\} \quad$ Measure: running time
Enumeration problem
Input \rightarrow

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time
Computation problem
Input $\rightarrow \quad\{\square \nabla, \square \square \nabla, \square \nabla \nabla\} \quad$ Measure: running time
Enumeration problem
Input $\rightarrow\{\square \nabla$,

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time
Computation problem
Input $\rightarrow \quad\{\square \nabla, \square \square \nabla, \square \nabla \nabla\} \quad$ Measure: running time
Enumeration problem
Input $\rightarrow \quad\left\{\begin{array}{r} \\ \\ \\ \\ \square \square,\end{array}\right.$,

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time
Computation problem
Input $\rightarrow \quad\{\square \nabla, \square \square \nabla, \square \nabla \nabla\} \quad$ Measure: running time
Enumeration problem

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input \rightarrow YES/NO Measure: running time
Computation problem
Input $\rightarrow \quad\{\square \nabla, \square \square \nabla, \square \nabla \nabla\} \quad$ Measure: running time
Enumeration problem
$\left.\begin{array}{rl}\text { Input } \rightarrow \quad\{ & \square \nabla, \\ & \square \square \nabla,\end{array}\right]$ Measure: max delay between two consecutive results

Holy grail: Constant-delay enumeration

Holy grail: Constant-delay enumeration

On acyclic conjunctive queries and constant delay enumeration

Guillaume Bagan * Arnaud Durand ${ }^{\dagger}$ Etienne Grandjean ${ }^{\ddagger}$

On acyclic conjunctive queries and constant delay enumeration

${ }^{\text {Guillar }}$ Enumeration of MSO Queries on Strings with Constant Delay and Logarithmic Updates

Matthias Niewerth

University of Bayreuth

Luc Segoufin

INRIA and ENS Ulm

On acyclic conjunctive queries and constant delay enumeration

Guillar Enumeration of MSO Queries on Strings with Constant Delav and Inoarithmic Undates Constant delay enumeration for FO queries over databases with , local bounded expansion L
 Luc Segoufin INRIA and ENS Ulm Paris
 Alexandre Vigny
 Université Paris Diderot Paris 7
 Paris

On acyclic c A glimpse on constant delay enumeration
Luc Segoufin
Guillar Enu|
INRIA and ENS Cachan
Constant delay enumeration for FO queries over databases with1U

Luc Segoufin INRIA and ENS Ulm Paris

Alexandre Vigny
Université Paris Diderot Paris 7
Paris
On acyclic c A glimpse on constant delay enumeration
Luc Segoufin
Guillar Enu|INRIA and ENS CachanConstant delay enumeration for FO queries over databases with1local bounded expansion

Constant Delay Enumeration for Conjunctive Queries - a Tutorial

On acyclic c A glimpse on constant delay enumeration Luc Segoufin

Guillar Enu|

Constant-delay enumeration for SLP-compress

C documents
C Martín Muñoz and Cristian Riveros - .:ca: ITniversidad Católica de Chile

On acyclic c A glimpse on constant delay enumeration Luc Segoufin

 Guillar Enu|

 Guillar Enu|
 Constant-delay enumeration for SLP-compress documents

Problem: assumes that the results to enumerate have constant size

On acyclic c \mathbf{A} glimpse on constant delay enumeration Luc Segoufin

Guillar Enu|

Constant-delay enumeration for SLP-compress documents
C
Martín Muñoz and Cristian Riveros - .: :ュ.in Tniversidad Católica de Chile

Problem: assumes that the results to enumerate have constant size
Ambitious goal
How can we enumerate results of unbounded size in constant delay?

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\overline{1} \overline{2} \quad \overline{3} \quad \overline{4} \quad \cdots \quad \text { Results: }
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{aligned}
& \overline{1} \overline{2} \overline{3} \overline{4} \overline{5} \cdots, \quad \text { Results: } \\
& \text { Put }(1, \square) \text {; }
\end{aligned}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{aligned}
& \frac{\square}{1} \frac{\square}{2} \quad \frac{}{4} \quad \frac{}{5} \quad \text { Results: } \\
& \text { Put }(1, \square) \text {; }
\end{aligned}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{aligned}
& \frac{\square}{1} \frac{\square}{2} \frac{}{4} \frac{}{5} \quad \cdots \quad \text { Results: } \\
& \text { Put }(1, \square) ; \operatorname{Put}(2, \nabla) ;
\end{aligned}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{aligned}
& \frac{\square}{1} \frac{\nabla}{2} \frac{}{3} \frac{}{4} \frac{}{5} \quad \cdots \\
& \text { Put(1, } \square \text {); Put(} 2, \nabla \text {); }
\end{aligned}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{aligned}
& \frac{\square}{1} \frac{\nabla}{2} \frac{}{3} \frac{}{4} \frac{}{5} \quad \cdots \\
& \text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); }
\end{aligned}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{array}{ccc}
\frac{\square}{1} \frac{\nabla}{2} \frac{}{3} \frac{}{4} \frac{}{5} \cdots & \text { Results: } \\
\text { Put(1, } \square) ; \operatorname{Put}(2, \nabla) ; \text { Output(); } & \square \nabla
\end{array}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{aligned}
& \frac{\square}{1} \frac{\nabla}{2} \frac{}{3} \frac{}{4} \frac{}{5} \cdots \\
& \text { Results: } \\
& \text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); } \\
& \text { Put(3, } \nabla \text {); }
\end{aligned}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{aligned}
& \frac{\square}{1} \frac{\nabla}{2} \frac{\nabla}{3} \frac{}{4} \frac{}{5} \cdots \\
& \text { Results: } \\
& \text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); } \\
& \text { Put(3, } \nabla \text {); }
\end{aligned}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{aligned}
& \frac{\square}{1} \frac{\nabla}{2} \frac{\nabla}{3} \frac{}{4} \frac{}{5} \cdots \\
& \text { Results: } \\
& \text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); } \\
& \text { Put(3, } \nabla \text {); Output(); }
\end{aligned}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{array}{lll}
\frac{\square}{1} \frac{\nabla}{2} \frac{\nabla}{3} \frac{}{4} \frac{}{5} \cdots & \text { Results: } \\
\text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); } & & \square \nabla \\
\text { Put(3, } \nabla \text {); Output(); } & \square \nabla
\end{array}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{array}{lll}
\frac{\square}{1} \frac{\nabla}{2} \frac{\nabla}{3} \frac{}{4} \frac{}{5} \cdots & \text { Results: } \\
\text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); } & & \square \nabla \\
\text { Put(3, } \nabla \text {); Output(); } & \square \nabla
\end{array}
$$

Put(2, \square);

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{array}{lll}
\frac{\square}{1} \frac{\square}{2} \frac{\square}{3} \frac{\square}{4} \frac{}{5} & \cdots & \text { Results: } \\
\text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); } & & \square \nabla \\
\text { Put(3, } \nabla \text {); Output(); } & \square \nabla
\end{array}
$$

Put(2, \square);

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{array}{lll}
\frac{\square}{1} \frac{\square}{2} \frac{\square}{3} \frac{\square}{4} \frac{}{5} & \cdots & \text { Results: } \\
\text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); } & & \square \nabla \\
\text { Put(3, } \nabla \text {); Output(); } & \square \nabla
\end{array}
$$

Put(2, \square); Output();

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{array}{lll}
\frac{\square}{1} \frac{\square}{2} \frac{\square}{3} \frac{\square}{4} \frac{}{5} & \text { Results: } \\
\operatorname{Put}(1, \square) ; \operatorname{Put}(2, \nabla) ; \operatorname{Output}() ; & & \square \nabla \\
\operatorname{Put}(3, \nabla) ; \operatorname{Output}() ; & & \square \nabla \\
\operatorname{Put}(2, \square) ; \operatorname{Output}() ; & & \square \square
\end{array}
$$

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

$$
\begin{array}{lll}
\frac{\square}{1} \frac{\square}{2} \frac{\square}{3} \frac{\square}{4} \frac{}{5} & & \text { Results: } \\
\text { Put(1, } \square \text {); Put(2, } \nabla \text {); Output(); } & & \square \nabla \\
\operatorname{Put}(3, \nabla \text {); Output(); } & & \square \nabla \\
\operatorname{Put}(2, \square) ; \text { Output(); } & & \square \square
\end{array}
$$

Remark: Solutions need to be ordered with small distance between consecutive solutions

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

- Input: Deterministic finite automaton A on alphabet Σ
- Output: The words of its language $L(A) \subseteq \Sigma^{*}$

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

- Input: Deterministic finite automaton A on alphabet Σ
- Output: The words of its language $L(A) \subseteq \Sigma^{*}$

We want to produce each word by editing the previous word.

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

- Input: Deterministic finite automaton A on alphabet Σ
- Output: The words of its language $L(A) \subseteq \Sigma^{*}$

We want to produce each word by editing the previous word. Questions:

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

- Input: Deterministic finite automaton A on alphabet Σ
- Output: The words of its language $\mathrm{L}(A) \subseteq \Sigma^{*}$

We want to produce each word by editing the previous word. Questions:

- Can we find a distance bound $C \in \mathbb{N}$ and order $L(A)=\left\{w_{1}, w_{2}, \ldots\right\}$ such that $d\left(w_{i}, w_{i+1}\right) \leq C$ for all $i \geq 1$?
- Here, d is the Levenshtein distance

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

- Input: Deterministic finite automaton A on alphabet Σ
- Output: The words of its language $\mathrm{L}(A) \subseteq \Sigma^{*}$

We want to produce each word by editing the previous word. Questions:

- Can we find a distance bound $C \in \mathbb{N}$ and order $L(A)=\left\{w_{1}, w_{2}, \ldots\right\}$ such that $d\left(w_{i}, w_{i+1}\right) \leq C$ for all $i \geq 1$?
- Here, d is the Levenshtein distance
- If yes, can we efficiently produce the sequence of edits?

Examples

a^{*}

Examples

a^{*} $\epsilon, a, a a, a a a, \ldots$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} &
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a,
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, \text { aaa, } a a b, a b b, b b b, \ldots
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*}
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*} & c, d,
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*} & c, d, a c, a d, c b, d b,
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*} & c, d, a c, a d, c b, d b, c b b, d b b, a c b, a d b, a a c, a a d, \ldots
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*} c, d, a c, a d, c b, d b, c b b, d b b, a c b, a d b, a a c, a a d, \ldots \\
a^{*}+b^{*} &
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*} & c, d, a c, a d, c b, d b, c b b, d b b, a c b, a d b, a a c, a a d, \ldots \\
a^{*}+b^{*} & \text { Not possible! (or you need two threads) }
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*} & c, d, a c, a d, c b, d b, c b b, d b b, a c b, a d b, a a c, a a d, \ldots \\
a^{*}+b^{*} & \text { Not possible! (or you need two threads) } \\
(a+b)^{*} &
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*} & c, d, a c, a d, c b, d b, c b b, d b b, a c b, a d b, a a c, a a d, \ldots \\
a^{*}+b^{*} & \text { Not possible! (or you need two threads) } \\
(a+b)^{*} & \epsilon, a, b
\end{array}
$$

Examples

$$
\begin{array}{ll}
a^{*} & \epsilon, a, a a, a a a, \ldots \\
a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\
a^{*}(c+d) b^{*} & c, d, a c, a d, c b, d b, c b b, d b b, a c b, a d b, a a c, a a d, \ldots \\
a^{*}+b^{*} & \text { Not possible! (or you need two threads) } \\
(a+b)^{*} & \epsilon, a, b, a b, a a, b a, b b,
\end{array}
$$

Examples

$\begin{array}{ll}a^{*} & \epsilon, a, a a, a a a, \ldots \\ a^{*} b^{*} & \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots \\ a^{*}(c+d) b^{*} & c, d, a c, a d, c b, d b, c b b, d b b, a c b, a d b, a a c, a a d, \ldots \\ a^{*}+b^{*} & \text { Not possible! (or you need two threads) } \\ (a+b)^{*} & \epsilon, a, b, a b, a a, b a, b b, a b b, a b a, a a a, a a b, b a b, b a a, b b a, b b b, \ldots \text { (Gray code) }\end{array}$

Examples

a* $\quad \epsilon, a$, aa, aaa, \ldots
$a^{*} b^{*} \quad \epsilon, a, b, b b, a b, a a, a a a, a a b, a b b, b b b, \ldots$
$a^{*}(c+d) b^{*} c, d, a c, a d, c b, d b, c b b, d b b, a c b, a d b, a a c, a a d, \ldots$
$a^{*}+b^{*} \quad$ Not possible! (or you need two threads)
$(a+b)^{*} \epsilon, a, b, a b, a a, b a, b b, a b b, a b a, a a a, a a b, b a b, b a a, b b a, b b b, \ldots$ (Gray code)

Can you characterize the orderable languages?

Results

Theorem

Given a DFA A, we can determine in PTIME whether its language $L(A)$ is orderable

Results

Theorem

Given a DFA A, we can determine in PTIME whether its language $L(A)$ is orderable

- If yes, it suffices to use push-pop edit operations at the left and right endpoints

Results

Theorem

Given a DFA A, we can determine in PTIME whether its language $L(A)$ is orderable

- If yes, it suffices to use push-pop edit operations at the left and right endpoints
- Further, we can enumerate the infinite sequence of edit scripts in bounded delay (i.e., depending on A, not on word length)

Results

Theorem

Given a DFA A, we can determine in PTIME whether its language $L(A)$ is orderable

- If yes, it suffices to use push-pop edit operations at the left and right endpoints
- Further, we can enumerate the infinite sequence of edit scripts in bounded delay (i.e., depending on A, not on word length)
- If not, we can decompose $L(A)=L\left(A_{1}\right) \sqcup \cdots \sqcup L\left(A_{k}\right)$ in PTIME where each $L\left(A_{i}\right)$ is orderable and k is minimal (and finite)

Results

Theorem

Given a DFA A, we can determine in PTIME whether its language $L(A)$ is orderable

- If yes, it suffices to use push-pop edit operations at the left and right endpoints
- Further, we can enumerate the infinite sequence of edit scripts in bounded delay (i.e., depending on A, not on word length)
- If not, we can decompose $L(A)=L\left(A_{1}\right) \sqcup \cdots \sqcup L\left(A_{k}\right)$ in PTIME where each $L\left(A_{i}\right)$ is orderable and k is minimal (and finite)

Also:

- Characterization if we only allow edits at the right endpoint (= stack, not deque)
- Finding the minimal distance bound is NP-hard

Proof techniques

Pleasant (and elementary): orderability

- Equivalence relation on loopable states

Proof techniques

Pleasant (and elementary): orderability

- Equivalence relation on loopable states
- Two loopable states are equivalent if they co-occur in a run

Proof techniques

Pleasant (and elementary): orderability

- Equivalence relation on loopable states
- Two loopable states are equivalent if they co-occur in a run
- Two loopable states are equivalent if some word can loop on both of them

Proof techniques

Pleasant (and elementary): orderability

- Equivalence relation on loopable states
- Two loopable states are equivalent if they co-occur in a run
- Two loopable states are equivalent if some word can loop on both of them

Unpleasant (and exponential): enumeration

- Pointer machine model because memory usage goes to infinity

Proof techniques

Pleasant (and elementary): orderability

- Equivalence relation on loopable states
- Two loopable states are equivalent if they co-occur in a run
- Two loopable states are equivalent if some word can loop on both of them

Unpleasant (and exponential): enumeration

- Pointer machine model because memory usage goes to infinity
- Everything is exponential in the DFA

Proof techniques

Pleasant (and elementary): orderability

- Equivalence relation on loopable states
- Two loopable states are equivalent if they co-occur in a run
- Two loopable states are equivalent if some word can loop on both of them

Unpleasant (and exponential): enumeration

- Pointer machine model because memory usage goes to infinity
- Everything is exponential in the DFA
- Probably simplifiable...

Future work

Open questions and future work:

- Make the delay polynomial in $|A|$? (currently it is exponential)
- What about the push-left pop-right distance? the padded Hamming distance?
- What about enumeration in radix order?
- What about regular tree languages?
- Can we go beyond regular languages?
- Other uses of the enumeration model?

Future work

Open questions and future work:

- Make the delay polynomial in $|A|$? (currently it is exponential)
- What about the push-left pop-right distance? the padded Hamming distance?
- What about enumeration in radix order?
- What about regular tree languages?
- Can we go beyond regular languages?
- Other uses of the enumeration model?

Thanks for your attention!

