

A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

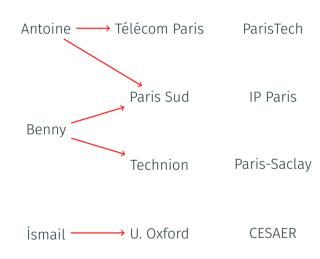
Antoine Amarilli¹ and İsmail İlkan Ceylan²

September 16, 2020

¹Télécom Paris

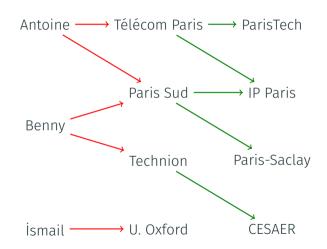
²University of Oxford

WorksAt		
Antoine	Télécom Paris	
Antoine	Paris Sud	
Benny	Paris Sud	
Benny	Technion	
İsmail	U. Oxford	


WorksAt		
Antoine	Télécom Paris	
Antoine	Paris Sud	
Benny	Paris Sud	
Benny	Technion	
İsmail	U. Oxford	

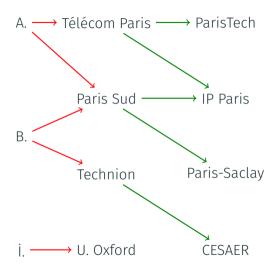
MemberOf			
Télécom Paris	ParisTech		
Télécom Paris	IP Paris		
Paris Sud	IP Paris		
Paris Sud	Paris-Saclay		
Technion	CESAER		

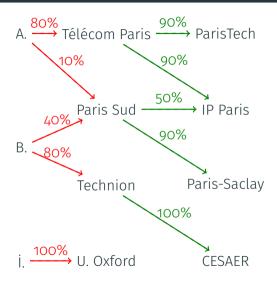
WorksAt		Antoine	Télécom Paris	ParisTech
Antoine Benny Benny	lécom Paris Paris Sud Paris Sud Technion U. Oxford	Ponny	Paris Sud	IP Paris
MemberOf Télécom Paris ParisTech Télécom Paris IP Paris Paris Sud IP Paris		Benny	Technion	Paris-Saclay
Paris Sud Paris Sud Technion	Paris-Saclay CESAER	İsmail	U. Oxford	CESAER


WorksAt		
Télécom Paris		
Paris Sud		
Paris Sud		
Technion		
U. Oxford		

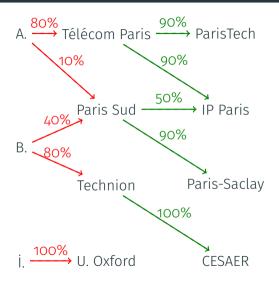
MemberOf			
Télécom Paris	ParisTech		
Télécom Paris	IP Paris		
Paris Sud	IP Paris		
Paris Sud	Paris-Saclay		
Technion	CESAER		

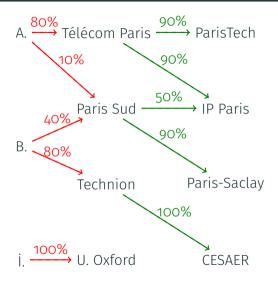
WorksAt		
Antoine	Télécom Paris	
Antoine	Paris Sud	
Benny	Paris Sud	
Benny	Technion	
İsmail	U. Oxford	

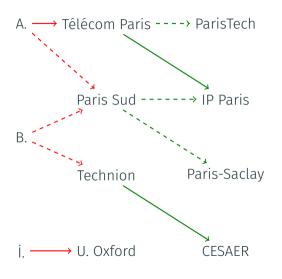

MemberOf			
Télécom Paris	ParisTech		
Télécom Paris	IP Paris		
Paris Sud	IP Paris		
Paris Sud	Paris-Saclay		
Technion	CESAER		

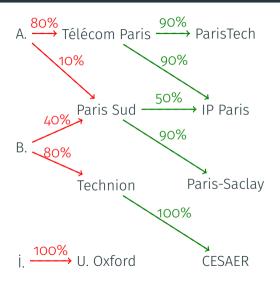

In this talk, we manage data represented as a labeled graph

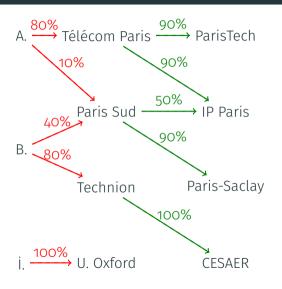
WorksAt		Antoine Télécom Par	is
Antoine Antoine Benny Benny İsmail	Télécom Paris Paris Sud Paris Sud Technion U. Oxford	Paris Sud Benny	→ IP Paris
M	lemberOf		
Télécom Paris Su Paris Su Paris Su	aris IP Paris d IP Paris	Technion	Paris-Saclay
Technio	n CESAER	İsmail → U. Oxford	CESAER


→ **Problem:** we are not **certain** about the true state of the data


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a **probability**
- Each fact exists with its given probability
- All facts are independent


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a **probability**
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- **Probability** of **W**:

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- Probability of W:

$$\Pr(W) = \left(\prod_{F \in W} \Pr(F)\right) \times \left(\prod_{F \notin W} \left(1 - \Pr(F)\right)\right)$$

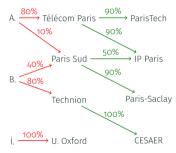
• Query: maps a graph (without probabilities) to YES/NO

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
- Union of conjunctive queries (UCQ): does one of the CQs match?

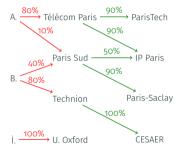
- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
- Union of conjunctive queries (UCQ): does one of the CQs match?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
- Union of conjunctive queries (UCQ): does one of the CQs match?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q


They generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

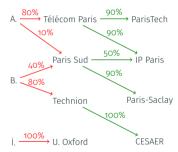
Here is the problem PQE(Q):

• We fix a query $Q: x \longrightarrow y \longrightarrow z$


Here is the problem PQE(Q):

- We fix a query $Q: x \longrightarrow y \longrightarrow z$
- The **input** is a TID **D**:

Here is the problem PQE(Q):


- We fix a query $Q: x \longrightarrow y \longrightarrow z$
- The input is a TID D:

• The **output** is the **probability** that the query is true

Here is the problem PQE(Q):

- We fix a query $Q: x \longrightarrow y \longrightarrow z$
- The input is a TID D:

- The **output** is the **probability** that the query is true
- \rightarrow Question: What is the complexity of PQE(Q) depending on the query Q?

Existing dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and PQE(Q) is #P-hard

Existing dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and PQE(Q) is #P-hard

We study PQE for **homomorphism-closed queries** and show:

Existing dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and PQE(Q) is #P-hard

We study PQE for homomorphism-closed queries and show:

Theorem [Amarilli and Ceylan, 2020]

For any query Q closed under homomorphisms:

• Either ${f Q}$ is equivalent to a safe UCQ and ${
m PQE}({f Q})$ is in PTIME

Existing dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and PQE(Q) is #P-hard

We study PQE for homomorphism-closed queries and show:

Theorem [Amarilli and Ceylan, 2020]

For any query Q closed under homomorphisms:

- Either ${f Q}$ is equivalent to a safe UCQ and ${
 m PQE}({f Q})$ is in PTIME
- In all other cases, PQE(Q) is #P-hard

Existing dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and PQE(Q) is #P-hard

We study PQE for homomorphism-closed queries and show:

Theorem [Amarilli and Ceylan, 2020]

For any query Q closed under homomorphisms:

- Either ${f Q}$ is equivalent to a safe UCQ and ${
 m PQE}({f Q})$ is in PTIME
- In all other cases, PQE(Q) is #P-hard

So **bad news**: all homomorphism-closed queries are **hard** except safe UCQs

What's next?

- The result only applies to **graphs**, not higher-arity databases
 - We **conjecture** that it holds for arbitrary arity

What's next?

- The result only applies to **graphs**, not higher-arity databases
 - · We conjecture that it holds for arbitrary arity
- Adapting to unweighted PQE, where all probabilities are 1/2?
 - We have a recent result on non-hierarchical self-join-free CQs [Amarilli and Kimelfeld, 2020]
 - · Recent paper by Suciu and Kenig [Kenig and Suciu, 2020]

What's next?

- The result only applies to graphs, not higher-arity databases
 - · We conjecture that it holds for arbitrary arity
- Adapting to unweighted PQE, where all probabilities are 1/2?
 - We have a recent result on non-hierarchical self-join-free CQs [Amarilli and Kimelfeld, 2020]
 - · Recent paper by Suciu and Kenig [Kenig and Suciu, 2020]

Thanks for your attention!

References i

🗎 Amarilli, A. and Ceylan, I. I. (2020).

A dichotomy for homomorphism-closed queries on probabilistic graphs. In *ICDT*.

Amarilli, A. and Kimelfeld, B. (2020).Uniform reliability of self-join-free conjunctive queries.

arXiv preprint arXiv:1908.07093.

Dalvi, N. and Suciu, D. (2012).

The dichotomy of probabilistic inference for unions of conjunctive queries.

J. ACM, 59(6).

References ii

Kenig, B. and Suciu, D. (2020).

A dichotomy for the generalized model counting problem for unions of conjunctive queries.

arXiv preprint arXiv:2008.00896.