Tractable Query Answering Under Probabilistic Constraints

Antoine Amarilli ${ }^{1}$, Pierre Bourhis ${ }^{2}$, Pierre Senellart ${ }^{1,3}$

${ }^{1}$ Télécom ParisTech
${ }^{2}$ CNRS-LIFL
${ }^{3}$ National University of Singapore

September 4th, 2014

Tractable Query Evaluation On Probabilistic Instances

Antoine Amarilli ${ }^{1}$, Pierre Bourhis ${ }^{2}$, Pierre Senellart ${ }^{1,3}$
${ }^{1}$ Télécom ParisTech
${ }^{2}$ CNRS-LIFL
${ }^{3}$ National University of Singapore

September 4th, 2014

Instances and queries

- Given a relational instance (= set of facts, hypergraph) $I=\{R(a, b), R(b, c), S(c)\}$
- Given a conjunctive query (CQ) (existentially quantified) $q: \exists x y R(x, y) \wedge S(y)$

Instances and queries

- Given a relational instance (= set of facts, hypergraph) $I=\{R(a, b), R(b, c), S(c)\}$
- Given a conjunctive query (CQ) (existentially quantified) $q: \exists x y R(x, y) \wedge S(y)$
\rightarrow Query evaluation (model checking) of q on I

Instances and queries

- Given a relational instance (= set of facts, hypergraph) $I=\{R(a, b), R(b, c), S(c)\}$
- Given a conjunctive query (CQ) (existentially quantified) $q: \exists x y R(x, y) \wedge S(y)$
\rightarrow Query evaluation (model checking) of q on I

Instances and queries

- Given a relational instance (= set of facts, hypergraph) $I=\{R(a, b), R(b, c), S(c)\}$
- Given a conjunctive query (CQ) (existentially quantified) $q: \exists x y R(x, y) \wedge S(y)$
\rightarrow Query evaluation (model checking) of q on I

Instances and queries

- Given a relational instance (= set of facts, hypergraph) $I=\{R(a, b), R(b, c), S(c)\}$
- Given a conjunctive query (CQ) (existentially quantified) $q: \exists x y R(x, y) \wedge S(y)$
\rightarrow Query evaluation (model checking) of q on I
\rightarrow Data complexity: q is fixed

Uncertain and probabilistic instances

- Set of uncertain events
$e_{\text {flight }}$ CDG \rightarrow VIE flight AF1756 takes place
$e_{\text {bus }}$ Vienna \rightarrow Bratislava buses are running

Uncertain and probabilistic instances

- Set of uncertain events
$e_{\text {flight }}$ CDG \rightarrow VIE flight AF1756 takes place
$e_{\text {bus }}$ Vienna \rightarrow Bratislava buses are running
- Annotate instance facts with formulae on the events

Is $\ln ($ AA, Paris $)$	$\neg e_{\text {flight }}$
$\operatorname{Is} \ln (A A$, Vienna $)$	$e_{\text {flight }} \wedge \neg e_{\text {bus }}$
$\operatorname{Is} \ln (A A$, Bratislava $)$	$e_{\text {flight }} \wedge e_{\text {bus }}$

Uncertain and probabilistic instances

- Set of uncertain events
$e_{\text {flight }}$ CDG \rightarrow VIE flight AF1756 takes place $e_{\text {bus }}$ Vienna \rightarrow Bratislava buses are running
- Annotate instance facts with formulae on the events

$\operatorname{Is} \ln ($ AA, Paris $)$	$\neg e_{\text {flight }}$
$\operatorname{Is} \ln (A A, ~ V i e n n a)$	$e_{\text {flight }} \wedge \neg e_{\text {bus }}$
$\operatorname{Is} \ln (A A$, Bratislava $)$	$e_{\text {flight }} \wedge e_{\text {bus }}$

\rightarrow Semantics: a set of instances (possible worlds).

Uncertain and probabilistic instances

- Set of uncertain events
$e_{\text {flight }}$ CDG \rightarrow VIE flight AF1756 takes place $e_{\text {bus }}$ Vienna \rightarrow Bratislava buses are running
- Annotate instance facts with formulae on the events

$\operatorname{Is} \ln ($ AA, Paris $)$	$\neg e_{\text {flight }}$
$\operatorname{Is} \ln (A A, ~ V$ ienna $)$	$e_{\text {flight }} \wedge \neg e_{\text {bus }}$
$\operatorname{Is} \operatorname{In}(\mathrm{AA}$, Bratislava $)$	$e_{\text {flight }} \wedge e_{\text {bus }}$

\rightarrow Semantics: a set of instances (possible worlds).

- Add a probability distribution on each event
- each event has probability $0<p<1$ of being true
- all events are assumed to be independent

Uncertain and probabilistic instances

- Set of uncertain events
$e_{\text {flight }}$ CDG \rightarrow VIE flight AF1756 takes place $e_{\text {bus }}$ Vienna \rightarrow Bratislava buses are running
- Annotate instance facts with formulae on the events

$\operatorname{Is} \ln ($ AA, Paris $)$	$\neg e_{\text {flight }}$
$\operatorname{Is} \ln (A A, ~ V i e n n a)$	$e_{\text {flight }} \wedge \neg e_{\text {bus }}$
$\operatorname{Is} \ln (A A$, Bratislava $)$	$e_{\text {flight }} \wedge e_{\text {bus }}$

\rightarrow Semantics: a set of instances (possible worlds).

- Add a probability distribution on each event
- each event has probability $0<p<1$ of being true
- all events are assumed to be independent
\rightarrow Semantics: a probability distribution on instances.

Uncertain and probabilistic instances

- Set of uncertain events
$e_{\text {flight }}$ CDG \rightarrow VIE flight AF1756 takes place $e_{\text {bus }}$ Vienna \rightarrow Bratislava buses are running
- Annotate instance facts with formulae on the events

$\operatorname{Is} \ln ($ AA, Paris $)$	$\neg e_{\text {flight }}$
$\operatorname{Is} \ln (A A, ~ V i e n n a)$	$e_{\text {flight }} \wedge \neg e_{\text {bus }}$
$\operatorname{Is} \ln (A A$, Bratislava $)$	$e_{\text {flight }} \wedge e_{\text {bus }}$

\rightarrow Semantics: a set of instances (possible worlds).

- Add a probability distribution on each event
- each event has probability $0<p<1$ of being true
- all events are assumed to be independent
\rightarrow Semantics: a probability distribution on instances.
\rightarrow Query evaluation: determine the probability of q on \widehat{l}.

Hardness and tractability

- With arbitrary annotations
\rightarrow Query evaluation is \#P-hard even with a single fact (Immediate reduction from \#SAT)
- With simple annotations (one unique event per tuple)
\rightarrow Query evaluation is \#P-hard on arbitrary instances (Use the instance to do the reduction)

Hardness and tractability

- With arbitrary annotations
\rightarrow Query evaluation is \#P-hard even with a single fact (Immediate reduction from \#SAT)
- With simple annotations (one unique event per tuple)
\rightarrow Query evaluation is \#P-hard on arbitrary instances (Use the instance to do the reduction)
- Existing work:
\rightarrow Fix a simple annotation scheme
\rightarrow Show dichotomy between \#P-hard and PTIME queries

Hardness and tractability

- With arbitrary annotations
\rightarrow Query evaluation is \#P-hard even with a single fact (Immediate reduction from \#SAT)
- With simple annotations (one unique event per tuple)
\rightarrow Query evaluation is \#P-hard on arbitrary instances (Use the instance to do the reduction)
- Existing work:
\rightarrow Fix a simple annotation scheme
\rightarrow Show dichotomy between \#P-hard and PTIME queries
- Our approach:
\rightarrow Find a restriction on the instance and annotations
\rightarrow Show that many queries are tractable in this case

Bounded treewidth

An idea from instances without probabilities...

- If an instance has low treewidth then it is almost a tree
- Assume that the instance treewidth is constant...

Bounded treewidth

An idea from instances without probabilities...

- If an instance has low treewidth then it is almost a tree
- Assume that the instance treewidth is constant...

```
    instance I
R(a,b)R(b,c)S(c)
```


Bounded treewidth

An idea from instances without probabilities...

- If an instance has low treewidth then it is almost a tree
- Assume that the instance treewidth is constant...

Bounded treewidth

An idea from instances without probabilities...

- If an instance has low treewidth then it is almost a tree
- Assume that the instance treewidth is constant...

$\exists x y R(x, y) \wedge S(y)$
query q

Bounded treewidth

An idea from instances without probabilities...

- If an instance has low treewidth then it is almost a tree
- Assume that the instance treewidth is constant...

rewriting
$\mathrm{O}(1)$ data complexity

Bounded treewidth

An idea from instances without probabilities...

- If an instance has low treewidth then it is almost a tree
- Assume that the instance treewidth is constant...

Bounded treewidth

An idea from instances without probabilities...

- If an instance has low treewidth then it is almost a tree
- Assume that the instance treewidth is constant...

Bounded treewidth

An idea from instances without probabilities...

- If an instance has low treewidth then it is almost a tree
- Assume that the instance treewidth is constant...

\rightarrow Linear time data complexity

Tractable inference

An idea from probabilities without instances...

- Represent a propositional formula F as a Boolean circuit
- Assume the circuit has constant treewidth
\rightarrow Probability of F can be computed in linear time (using junction tree algorithm for Bayesian networks) (assuming constant-time arithmetic operations)

cc-tables

- Boolean circuit for the annotations

cc-tables

- Boolean circuit for the annotations

cc-tables

- Boolean circuit for the annotations

- Circuit must have low treewidth
- Instance must have low treewidth
\rightarrow Need simultaneous decomposition

cc-tables

- Boolean circuit for the annotations

- Circuit must have low treewidth
- Instance must have low treewidth
\rightarrow Need simultaneous decomposition

Main result

instance /

Main result

Main result

[^0]
Main result

Main result

Main result

$\mathrm{O}(1)$ data complexity

probabilistic inference $\mathrm{O}(|C|)$ for fixed width \downarrow
0.42
probability p

Main result

$\mathrm{O}(1)$ data complexity
$\exists x y R(x, y) \wedge S(y)$ query q
 deterministic 0.42 tree automaton A_{q}
probabilistic inference $\mathrm{O}(|C|)$ for fixed width \downarrow
bounded treewidth circuit C

probability p

Consequences

- For queries representable as deterministic automata ...
\rightarrow CQs
\rightarrow Monadic second-order
\rightarrow Guarded second-order

Consequences

- For queries representable as deterministic automata ...
\rightarrow CQs
\rightarrow Monadic second-order
\rightarrow Guarded second-order
- ... on various probabilistic models ...
\rightarrow Tuple-independent tables
\rightarrow Block-independent disjoint tables
\rightarrow pc-tables (presented before)
\rightarrow Probabilistic XML

Consequences

- For queries representable as deterministic automata ...
\rightarrow CQs
\rightarrow Monadic second-order
\rightarrow Guarded second-order
- ... on various probabilistic models ...
\rightarrow Tuple-independent tables
\rightarrow Block-independent disjoint tables
\rightarrow pc-tables (presented before)
\rightarrow Probabilistic XML
- ... assuming bounded treewidth (for reasonable definitions) ...

Consequences

- For queries representable as deterministic automata ...
\rightarrow CQs
\rightarrow Monadic second-order
\rightarrow Guarded second-order
- ... on various probabilistic models ...
\rightarrow Tuple-independent tables
\rightarrow Block-independent disjoint tables
\rightarrow pc-tables (presented before)
\rightarrow Probabilistic XML
- ... assuming bounded treewidth (for reasonable definitions) ...
$\rightarrow \ldots$ probability of fixed q can be computed in $\mathrm{O}(\mid \widehat{\|})$!

Conclusion

- We can combine the following techniques:
- Computing tree decompositions
- Encoding problems to automata on tree encodings of instances
- Evaluating probabilities on bounded-treewidth circuits

Conclusion

- We can combine the following techniques:
- Computing tree decompositions
- Encoding problems to automata on tree encodings of instances
- Evaluating probabilities on bounded-treewidth circuits
- Applications:
- Tractable probabilistic query evaluation in practice?
- Reasoning under uncertain rules (hence the bait-and-switch on the title...)

Conclusion

- We can combine the following techniques:
- Computing tree decompositions
- Encoding problems to automata on tree encodings of instances
- Evaluating probabilities on bounded-treewidth circuits
- Applications:
- Tractable probabilistic query evaluation in practice?
- Reasoning under uncertain rules (hence the bait-and-switch on the title...)
- Questions:
- Other semirings than Boolean AND/OR?
- Other tasks than probabilistic inference?

Conclusion

- We can combine the following techniques:
- Computing tree decompositions
- Encoding problems to automata on tree encodings of instances
- Evaluating probabilities on bounded-treewidth circuits
- Applications:
- Tractable probabilistic query evaluation in practice?
- Reasoning under uncertain rules (hence the bait-and-switch on the title...)
- Questions:
- Other semirings than Boolean AND/OR?
- Other tasks than probabilistic inference?

Conclusion

- We can combine the following techniques:
- Computing tree decompositions
- Encoding problems to automata on tree encodings of instances
- Evaluating probabilities on bounded-treewidth circuits
- Applications:
- Tractable probabilistic query evaluation in practice?
- Reasoning under uncertain rules (hence the bait-and-switch on the title...)
- Questions:
- Other semirings than Boolean AND/OR?
- Other tasks than probabilistic inference?

Thanks for your attention!

[^0]: $\exists x y R(x, y) \wedge S(y)$
 query q

