

Query Evaluation: Enumeration, Maintenance, Reliability

Soutenance d'habilitation à diriger des recherches

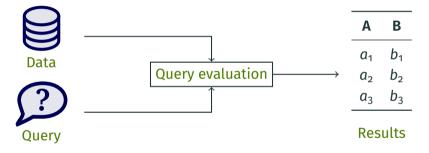
Antoine Amarilli

April 4, 2023

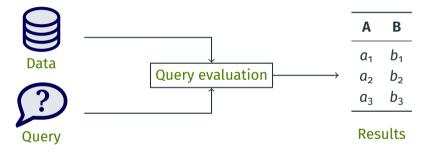
Télécom Paris

Introduction

Central question studied in my research: how to efficiently evaluate queries on data?

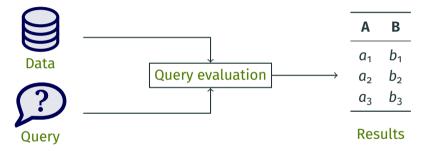


Central question studied in my research: how to efficiently evaluate queries on data?



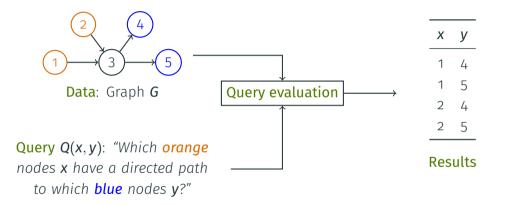
• Measure the **efficiency** of this task

Central question studied in my research: how to efficiently evaluate queries on data?

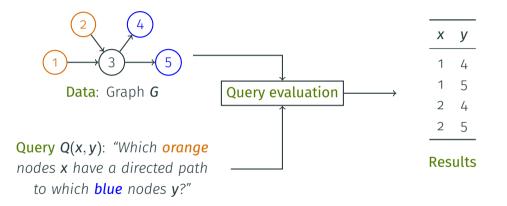


- Measure the **efficiency** of this task
- Theoretical study (asymptotic complexity, lower bounds) rather than practical

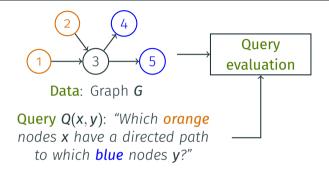
Example: Reachability query



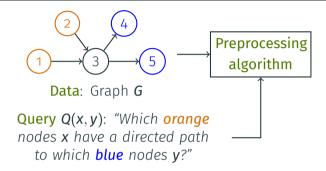
Example: Reachability query



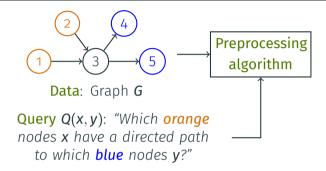
Extend to three tasks: enumeration, maintenance, and reliability



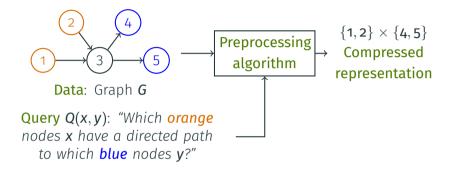
• Usual complexity measure: time to produce the entire output



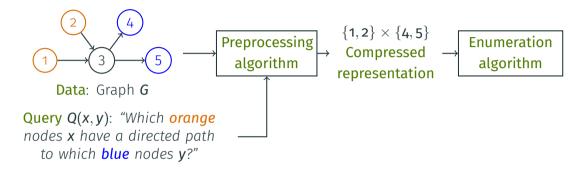
- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:



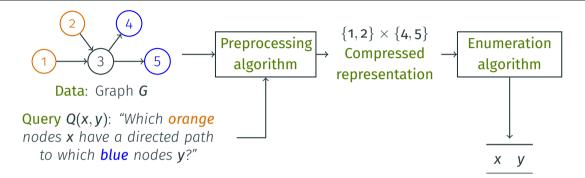
- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
 - Preprocessing time: time to produce compressed representation



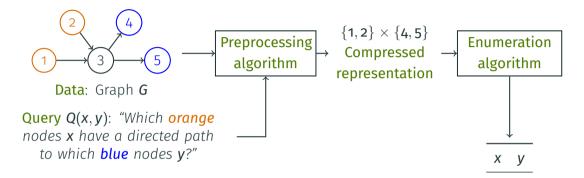
- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
 - Preprocessing time: time to produce compressed representation



- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
 - Preprocessing time: time to produce compressed representation

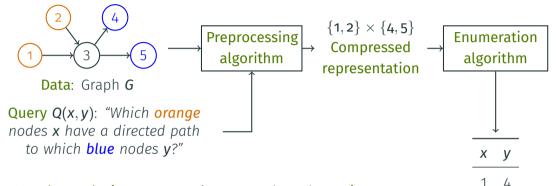


- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
 - Preprocessing time: time to produce compressed representation



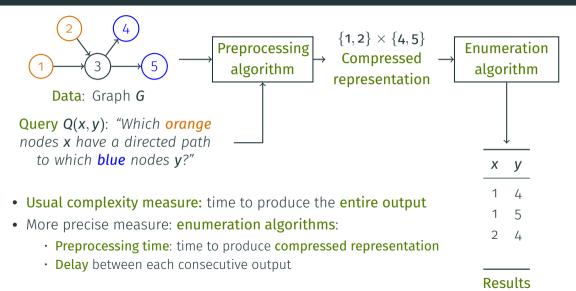
- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
 - Preprocessing time: time to produce compressed representation
 - Delay between each consecutive output

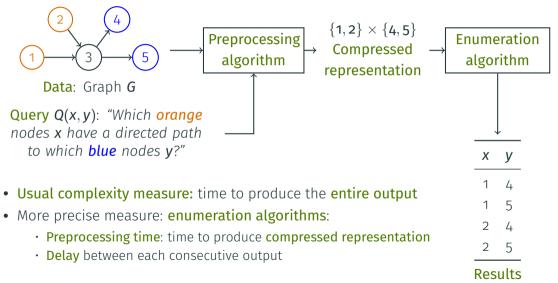
4

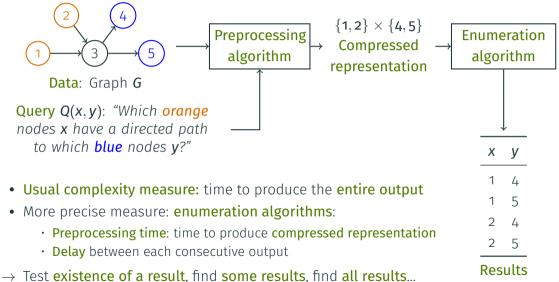


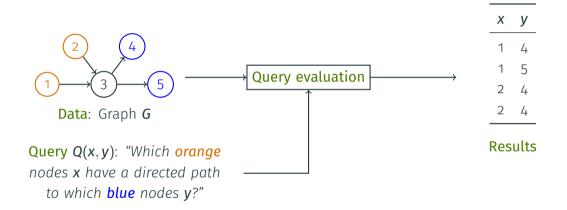
- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
 - Preprocessing time: time to produce compressed representation
 - **Delay** between each consecutive output

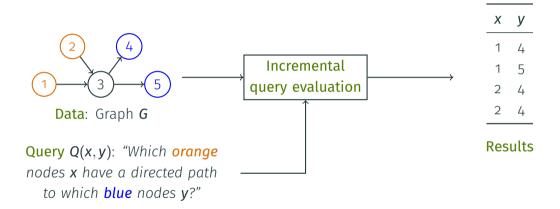
1 5

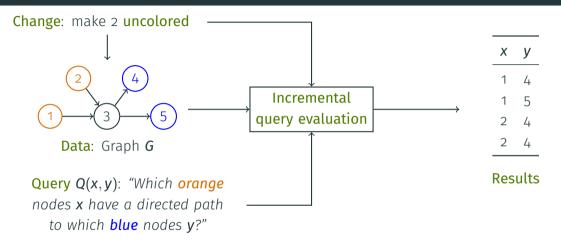


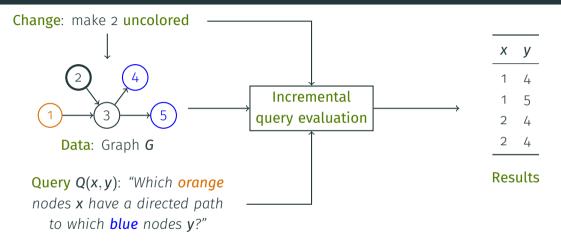


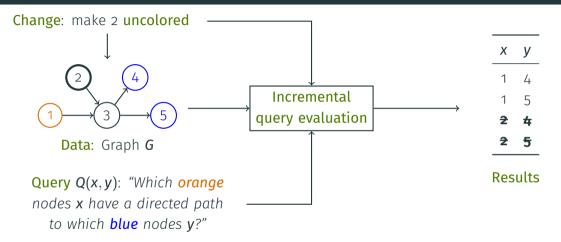


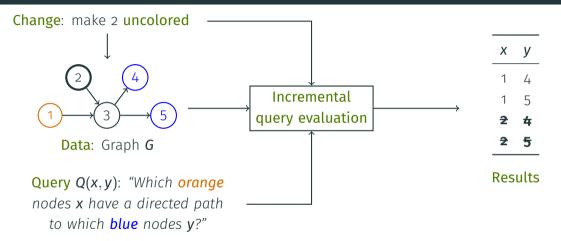




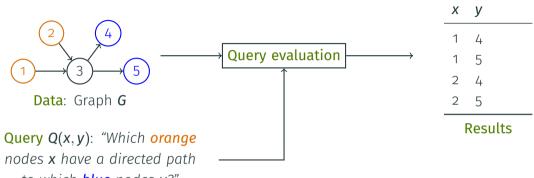




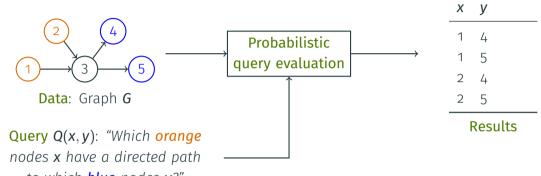




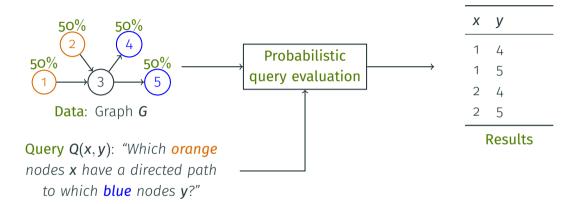
- Whenever the data is changed, do not recompute the whole result
- Relabeling updates vs more general updates



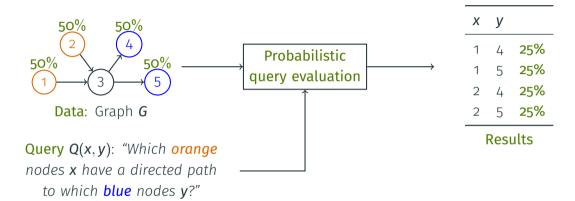
to which **blue** nodes **y**?"



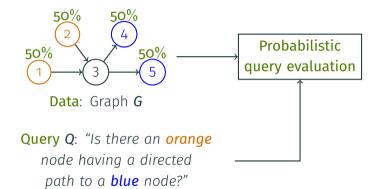
to which **blue** nodes **y**?"



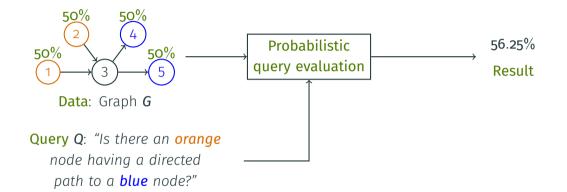
• The color of each node is kept with a given probability, assuming independence



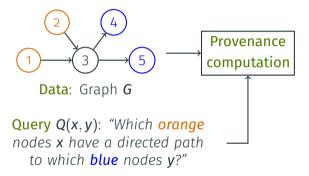
- The color of each node is kept with a given probability, assuming independence
- We want to know the probability of all results

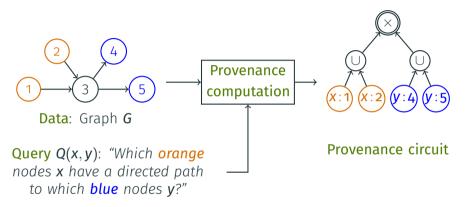


- The color of each node is kept with a given probability, assuming independence
- We want to know the probability of all results
- Here, more interesting: probability of the Boolean query

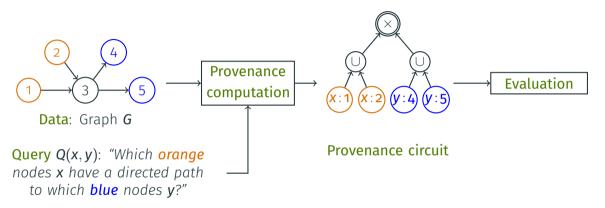


- The color of each node is kept with a given probability, assuming independence
- We want to know the probability of all results
- Here, more interesting: probability of the Boolean query

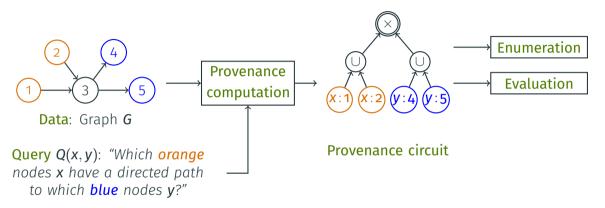




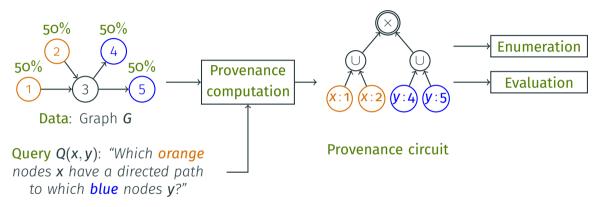
- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation



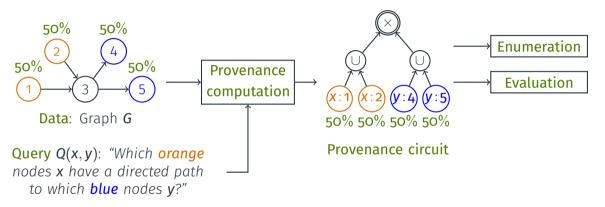
- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation,



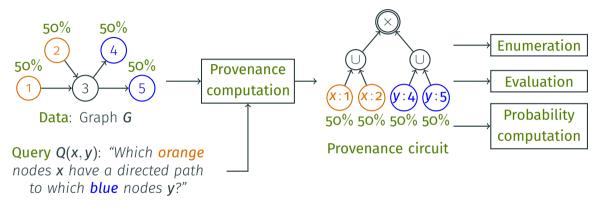
- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration,



- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation



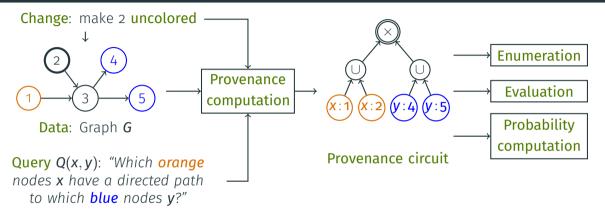
- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation



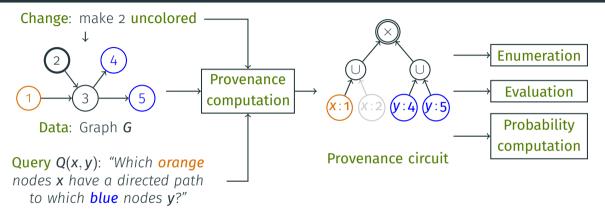
- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation



- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation
- Update it if there are **changes** on the data



- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation
- Update it if there are **changes** on the data



- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation
- Update it if there are **changes** on the data

- Present **data** and **query** formalisms:
 - \rightarrow Monadic second-order logic (MSO) on words/trees

- Present **data** and **query** formalisms:
 - \rightarrow Monadic second-order logic (MSO) on words/trees
- Results on enumeration

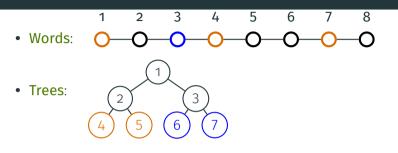
- Present **data** and **query** formalisms:
 - \rightarrow Monadic second-order logic (MSO) on words/trees
- Results on **enumeration**
- Results on incremental maintenance

- Present **data** and **query** formalisms:
 - \rightarrow Monadic second-order logic (MSO) on words/trees
- Results on **enumeration**
- Results on incremental maintenance
- Results on probabilistic query evaluation

Context

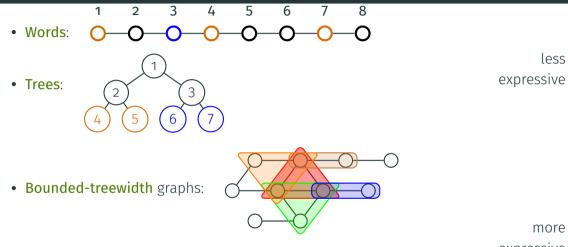
less expressive

more expressive



less expressive

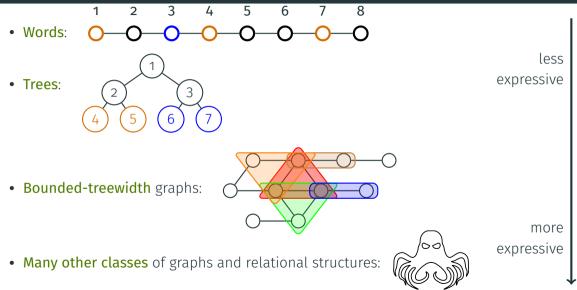
more expressive



expressive

more

less



- Conjunctive queries (CQs): find a pattern
 - Q(x, y): "Find two adjacent blue nodes x and y with y having an orange neighbor"
 - · Q(x,y) : $\exists z \quad x \quad y \quad z$

- Conjunctive queries (CQs): find a pattern
 - Q(x, y): "Find two adjacent blue nodes x and y with y having an orange neighbor"
 - Q(x,y) : $\exists z \quad x \quad y \quad z$
- Unions of CQs (UCQs): disjunction of CQs
 - Q(x, y): "Find two adjacent **blue** nodes x and y or two adjacent **orange** nodes x and y"

- Conjunctive queries (CQs): find a pattern
 - Q(x, y): "Find two adjacent **blue** nodes x and y with y having an **orange** neighbor"
 - Q(x,y) : $\exists z \quad x \quad y \quad z$
- Unions of CQs (UCQs): disjunction of CQs
 - Q(x, y): "Find two adjacent **blue** nodes x and y or two adjacent **orange** nodes x and y"
- First-order logic (FO):

ightarrow conjunction, disjunction, negation, existential quantification, universal quantification

- Conjunctive queries (CQs): find a pattern
 - Q(x, y): "Find two adjacent **blue** nodes x and y with y having an **orange** neighbor"
 - Q(x,y) : $\exists z \quad x \quad y \quad z$
- Unions of CQs (UCQs): disjunction of CQs
 - Q(x, y): "Find two adjacent **blue** nodes x and y or two adjacent **orange** nodes x and y"
- First-order logic (FO):
 - \rightarrow conjunction, disjunction, negation, existential quantification, universal quantification
- Monadic second-order logic (MSO): extend FO with quantification over sets
 - Equivalent to finite automata on words, trees, tree encodings

Enumeration

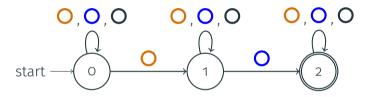
On words, MSO queries are equivalent to automata

On words, MSO queries are equivalent to automata

Q: "Is there an **orange** node before a **blue** node?"

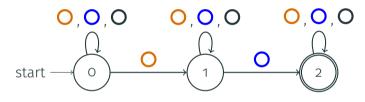
On words, MSO queries are equivalent to automata

Q: "Is there an orange node before a blue node?"



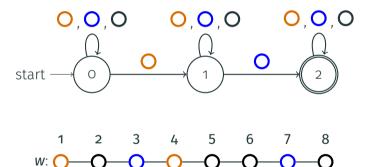
On words, MSO queries are equivalent to automata

Q: "Is there an orange node before a blue node?"



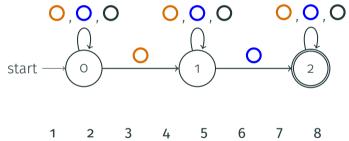
On words, MSO queries are equivalent to automata

Q: "Is there an orange node before a blue node?"



On words, MSO queries are equivalent to automata with captures

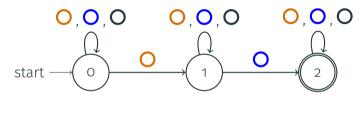
Q: "Is there an **orange** node before a **blue** node?"



w: O O O O O C

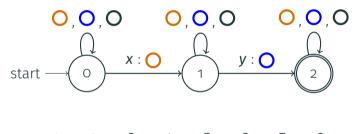
On words, MSO queries are equivalent to automata with captures

Q(x,y): "Find an orange node x before a blue node y"



On words, MSO queries are equivalent to automata with captures

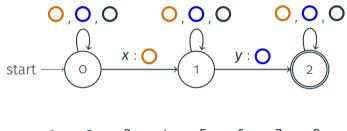
Q(x,y): "Find an orange node x before a blue node y"



1 2 3 4 5 6 7 8 W: O O O O O O

On words, MSO queries are equivalent to automata with captures

Q(x,y): "Find an orange node x before a blue node y"



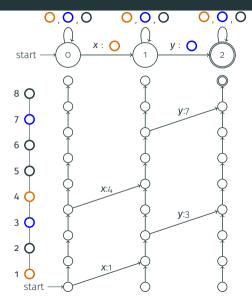
1 2 3 4 5 6 7 8 W: O O O O O O

Results: (x:1, y:3), (x:1, y:7), (x:4, y:7)

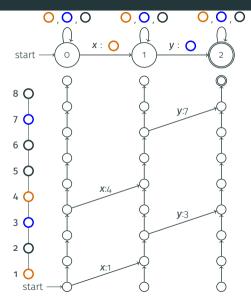
• Product of word and automaton

$$\begin{array}{c|c} O, O, O & O, O, O & O, O, O \\ \hline \\ \text{start} & O & 1 \\ \hline \\ y: O & 2 \\ \hline \end{array}$$

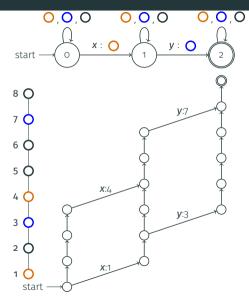
• Product of word and automaton



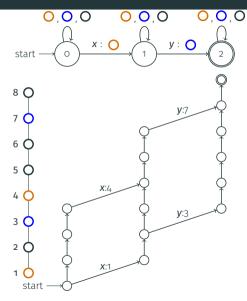
• Product of word and automaton



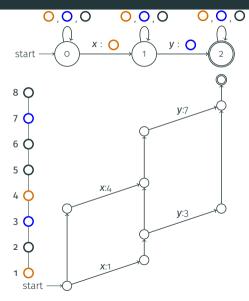
- Product of word and automaton
- Trim nodes that are not reachable/co-reachable



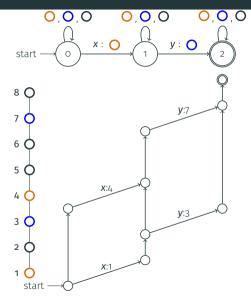
- Product of word and automaton
- Trim nodes that are not reachable/co-reachable



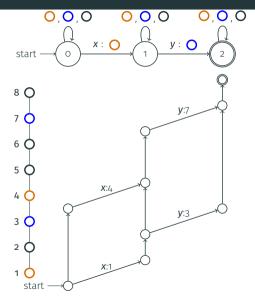
- Product of word and automaton
- Trim nodes that are not reachable/co-reachable
- Collapse transitions with no assignments



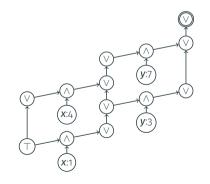
- Product of word and automaton
- Trim nodes that are not reachable/co-reachable
- Collapse transitions with no assignments



- Product of word and automaton
- Trim nodes that are not reachable/co-reachable
- Collapse transitions with no assignments
- Equivalent provenance circuit:



- Product of word and automaton
- Trim nodes that are not reachable/co-reachable
- Collapse transitions with no assignments
- Equivalent provenance circuit:



• Generalizes from words to trees

- Generalizes from words to **trees**
- Also works for non-deterministic automata

- Generalizes from words to **trees**
- Also works for non-deterministic automata

Theorem (ICDT'19 on words, PODS'19 on trees; with Bourhis, Mengel, Niewerth)

Given an automaton with captures **A** with constant number of variables, given a word **w**, we can enumerate the results of **A** on **w** with preprocessing $O(Poly(|A|) \times |w|)$ and delay O(Poly(|A|)).

- Generalizes from words to **trees**
- Also works for non-deterministic automata

Theorem (ICDT'19 on words, PODS'19 on trees; with Bourhis, Mengel, Niewerth)

Given an automaton with captures **A** with constant number of variables, given a word **w**, we can enumerate the results of **A** on **w** with preprocessing $O(Poly(|A|) \times |w|)$ and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

• **Decomposable:** no variable occurs on both inputs of an \land -gate

- **Decomposable:** no variable occurs on both inputs of an A-gate
- Deterministic: inputs to an V-gate are mutually exclusive

- **Decomposable:** no variable occurs on both inputs of an A-gate
- Deterministic: inputs to an ∨-gate are mutually exclusive
- Negation normal form: negation on leaves

- **Decomposable:** no variable occurs on both inputs of an A-gate
- Deterministic: inputs to an ∨-gate are mutually exclusive
- Negation normal form: negation on leaves
- Structured by a v-tree

- **Decomposable:** no variable occurs on both inputs of an \land -gate
- Deterministic: inputs to an ∨-gate are mutually exclusive
- Negation normal form: negation on leaves
- Structured by a v-tree

Theorem (ICALP'17; with Bourhis, Jachiet, Mengel)

Given a d-SDNNF **C** and a v-tree that structures **C**, we can enumerate the satisfying assignments of **C** with **linear preprocessing** and **output-linear delay**.

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x, y): "Find all endpoints x, y of factors of the form $\bigcirc n \bigcirc n$ "

$$S \rightarrow \Sigma^* (x : \bigcirc) \land (y : \bigcirc) \Sigma^*$$
$$A \rightarrow \bigcirc \land \bigcirc \land \bigcirc | \epsilon$$

Q(x, y): "Find all endpoints x, y of factors of the form $\bigcirc n \bigcirc n$ "

$$S \rightarrow \Sigma^{*} (x: \bigcirc) \land (y: \bigcirc) \Sigma^{*}$$
$$A \rightarrow \bigcirc \land \bigcirc \land \bigcirc | \epsilon$$

Annotation grammar must be input-output-unambiguous: no result is captured twice

Q(x, y): "Find all endpoints x, y of factors of the form $\bigcirc n \bigcirc n$ "

 $S \rightarrow \Sigma^{*} (x: \bigcirc) \land (y: \bigcirc) \Sigma^{*}$ $A \rightarrow \bigcirc \land \bigcirc \land \bigcirc | \epsilon$

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS'22; with Jachiet, Muñoz, Riveros)

Given an unambiguous annotation grammar **G** and word **w**, we can enumerate the results of **G** on **w** with preprocessing $O(|G| \times |w|^3)$ and output-linear delay

Q(x, y): "Find all endpoints x, y of factors of the form $\bigcirc n \bigcirc n$ "

 $S \rightarrow \Sigma^{*} (x: \bigcirc) \land (y: \bigcirc) \Sigma^{*}$ $A \rightarrow \bigcirc \land \bigcirc \land \bigcirc | \epsilon$

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS'22; with Jachiet, Muñoz, Riveros)

Given an unambiguous annotation grammar **G** and word **w**, we can enumerate the results of **G** on **w** with preprocessing $O(|G| \times |w|^3)$ and output-linear delay

Better preprocessing time for restricted grammar classes

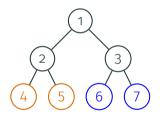
Maintenance

We use provenance circuits for automata on words and trees

Q(x,y): "Find pairs of an orange node x and a blue node y"

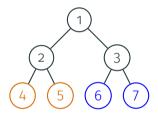
We use provenance circuits for automata on words and trees

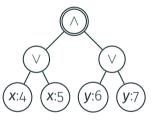
Q(x,y): "Find pairs of an orange node x and a blue node y"



We use provenance circuits for automata on words and trees

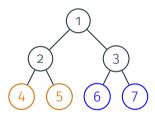
Q(x, y): "Find pairs of an orange node x and a blue node y"

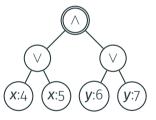




We use provenance circuits for automata on words and trees

Q(x, y): "Find pairs of an orange node x and a blue node y"

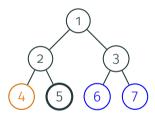


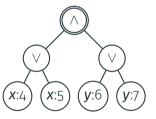


What happens if the tree is modified?

We use provenance circuits for automata on words and trees

Q(x, y): "Find pairs of an orange node x and a blue node y"

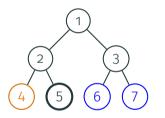


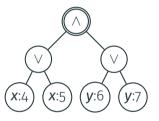


What happens if the tree is modified?

We use provenance circuits for automata on words and trees

Q(x, y): "Find pairs of an orange node x and a blue node y"



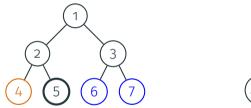


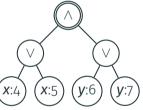
What happens if the tree is **modified**?

• Can we update the provenance circuit instead of recomputing it from scratch?

We use provenance circuits for automata on words and trees

Q(x, y): "Find pairs of an orange node x and a blue node y"





What happens if the tree is **modified**?

- Can we update the provenance circuit instead of recomputing it from scratch?
- Can we avoid re-running the **preprocessing phase** of the enumeration?

 \rightarrow The provenance circuit computation and enumeration preprocessing are **bottom-up**

- \rightarrow The provenance circuit computation and enumeration preprocessing are **bottom-up**
- It suffices to **balance the tree** at the start (uses balanced tree decompositions)

ightarrow The provenance circuit computation and enumeration preprocessing are **bottom-up**

It suffices to **balance the tree** at the start (uses balanced tree decompositions)

Theorem (ICDT'18; with Bourhis, Mengel)

For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q on T with linear preprocessing and output-linear delay, and we can handle relabeling updates to T in time $O(\log |T|)$.

ightarrow The provenance circuit computation and enumeration preprocessing are **bottom-up**

It suffices to **balance the tree** at the start (uses balanced tree decompositions)

Theorem (ICDT'18; with Bourhis, Mengel)

For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q on T with linear preprocessing and output-linear delay, and we can handle relabeling updates to T in time $O(\log |T|)$.

Same for updates that **change the tree structure** (PODS'19; with Bourhis, Mengel, Niewerth) assuming we have an algorithm to **keep the tree balanced**

• The update time is $O(\log n)$ and there is a lower bound of $\Omega(\log n / \log \log n)$ \rightarrow Already for Boolean queries on words under relabeling updates

- The update time is $O(\log n)$ and there is a lower bound of $\Omega(\log n / \log \log n)$ \rightarrow Already for Boolean queries on words under relabeling updates
- Yet, we can do **better** for some queries, e.g.:

Q: "Is there both an orange node and a blue node?"

- The update time is $O(\log n)$ and there is a lower bound of $\Omega(\log n / \log \log n)$ \rightarrow Already for Boolean queries on words under relabeling updates
- Yet, we can do **better** for some queries, e.g.:

Q: "Is there both an orange node and a blue node?"

• Simply maintain the counts! update time O(1)

- The update time is $O(\log n)$ and there is a lower bound of $\Omega(\log n / \log \log n)$ \rightarrow Already for Boolean queries on words under relabeling updates
- Yet, we can do **better** for some queries, e.g.:

Q: "Is there both an orange node and a blue node?"

- Simply maintain the counts! update time O(1)
- \rightarrow For a fixed language *L*, given a word *w* of length *n*, what is the **best update time** to maintain membership of *w* to *L* under relabelings?

Incremental maintenance for regular word languages

We define regular language classes **QLZG** and **QSG** such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language **L** on words under relabeling updates

Incremental maintenance for regular word languages

We define regular language classes **QLZG** and **QSG** such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language **L** on words under relabeling updates

• If L is in QLZG, then the problem is in O(1)

Incremental maintenance for regular word languages

We define regular language classes **QLZG** and **QSG** such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language **L** on words under relabeling updates

- If L is in QLZG, then the problem is in O(1)
- If L is in QSG \ QLZG, then the problem is in O(log log n) and conditionally not in O(1)

QLZG : in <i>O</i> (1)
QSG : in <i>O</i> (log log <i>n</i>) not in <i>O</i> (1)?

Incremental maintenance for regular word languages

We define regular language classes $\ensuremath{\textbf{QLZG}}$ and $\ensuremath{\textbf{QSG}}$ such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language **L** on words under relabeling updates

- If L is in QLZG, then the problem is in O(1)
- If L is in QSG \ QLZG, then the problem is in O(log log n) and conditionally not in O(1)
- If L is not in **QSG**, then the problem is in $\Theta(\log n / \log \log n)$

QLZG : in <i>O</i> (1)
QSG : in <i>O</i> (log log <i>n</i>) not in <i>O</i> (1)?
All: in $\Theta(\log n / \log \log n)$

Incremental maintenance for regular word languages

We define regular language classes **QLZG** and **QSG** such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language L on words under relabeling updates

- If L is in QLZG, then the problem is in O(1)
- If L is in **QSG** \ **QLZG**, then the problem is in $O(\log \log n)$ and conditionally **not in O(1)**
- If L is not in **QSG**, then the problem is in $\Theta(\log n / \log \log n)$

QLZG : in <i>O</i> (1)
QSG : in <i>O</i> (log log <i>n</i>) not in <i>O</i> (1)?

All: in $\Theta(\log n / \log \log n)$

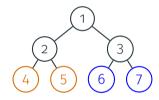
- **QLZG**: "in all submonoids of the stable semigroup, all subgroup elements are central" \rightarrow Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...
- **QSG**: "the stable semigroup satisfies the equation $x^{\omega+1}vx^{\omega} = x^{\omega}vx^{\omega+1}$ " \rightarrow Aperiodic languages, tame combinations of aperiodic and commutative languages...

Reliability

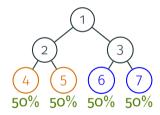
Tuple-independent probabilistic data (TID): facts carry independent probabilities

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Tuple-independent probabilistic data (TID): facts carry independent probabilities

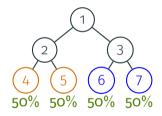


Tuple-independent probabilistic data (TID): facts carry independent probabilities



Tuple-independent probabilistic data (TID): facts carry independent probabilities

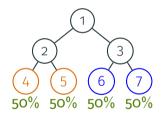
Q: "There is both an **orange** node and a **blue** node"



PQE(Q): compute the **total probability** that Q is satisfied, here:

Tuple-independent probabilistic data (TID): facts carry independent probabilities

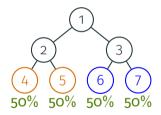
Q: "There is both an **orange** node and a **blue** node"



PQE(*Q*): compute the **total probability** that *Q* is satisfied, here: **56.25%**

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: "There is both an orange node and a blue node"



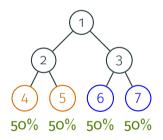
PQE(*Q*): compute the **total probability** that *Q* is satisfied, here: **56.25%**

• Known dichotomy for PQE on **unions of conjunctive queries** (on arbitrary data) [Dalvi and Suciu, 2013]: the problem is either **#P-hard** or **in PTIME**

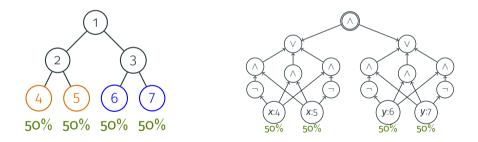
For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

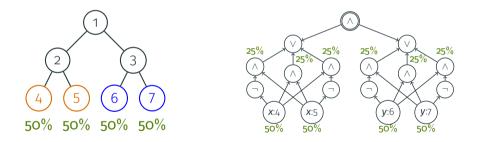
For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!



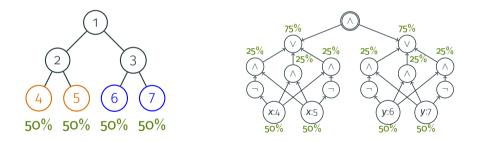
For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!



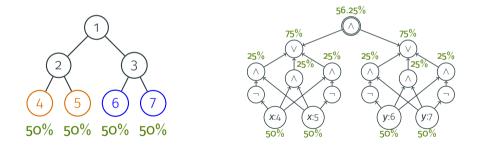
For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!



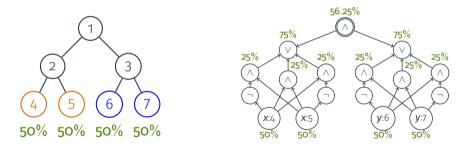
For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!



For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!



For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!



- Probability of \land is the **product** of the probabilities (uses decomposability)
- Probability of ∨ is the **sum** of the probabilities (uses determinism)

Intractability of probabilistic query evaluation in the general case

What about more general data?

Intractability of probabilistic query evaluation in the general case

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),

• On **any** unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the **matching query**:

- On **any** unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the **matching query**:
 - No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

- On **any** unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the **matching query**:
 - No **small d-SDNNFs**: we cannot efficiently solve PQE via structured circuits
 - PQE is **#P-hard under randomized reductions**

- On **any** unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the **matching query**:
 - No **small d-SDNNFs**: we cannot efficiently solve PQE via structured circuits
 - PQE is **#P-hard under randomized reductions**
- When allowing arbitrary instances:

- On **any** unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the **matching query**:
 - No **small d-SDNNFs**: we cannot efficiently solve PQE via structured circuits
 - PQE is **#P-hard under randomized reductions**
- When allowing arbitrary instances:
 - We show hardness of PQE for **non-hierarchical self-join free CQs**, in the **uniform case** (where all probabilities are 1/2)

- On **any** unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the **matching query**:
 - No **small d-SDNNFs**: we cannot efficiently solve PQE via structured circuits
 - PQE is **#P-hard under randomized reductions**
- When allowing arbitrary instances:
 - We show hardness of PQE for **non-hierarchical self-join free CQs**, in the **uniform case** (where all probabilities are 1/2)
 - We show the same for all **unbounded homomorphism-closed queries** on graphs

Theorem (ICDT'18; with Monet and Senellart)

For some $d \in \mathbb{N}$, any d-SDNNF provenance circuit for Q on a graph G of treewidth k must have size $2^{\Omega(k^{1/d})}$.

Theorem (ICDT'18; with Monet and Senellart)

For some $d \in \mathbb{N}$, any d-SDNNF provenance circuit for Q on a graph G of treewidth k must have size $2^{\Omega(k^{1/d})}$.

Theorem (MFCS'22; with Monet)

On any graph family \mathcal{G} in which we can **efficiently find high-treewidth graphs**, the PQE problem for \mathbf{Q} on an input graph $\mathbf{G} \in \mathcal{G}$ under an input probability distribution is **#P-hard under randomized reductions**.

Theorem (ICDT'18; with Monet and Senellart)

For some $d \in \mathbb{N}$, any d-SDNNF provenance circuit for Q on a graph G of treewidth k must have size $2^{\Omega(k^{1/d})}$.

Theorem (MFCS'22; with Monet)

On any graph family \mathcal{G} in which we can **efficiently find high-treewidth graphs**, the PQE problem for \mathbf{Q} on an input graph $\mathbf{G} \in \mathcal{G}$ under an input probability distribution is **#P-hard under randomized reductions**.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

A conjunctive query is **self-join-free** if all **edge colors** are different

E.g.,
$$x \rightarrow y \rightarrow z$$
 but not $x \rightarrow y \rightarrow z \leftarrow w$

A conjunctive query is self-join-free if all edge colors are different

E.g.,
$$x \rightarrow y \rightarrow z$$
 but not $x \rightarrow y \rightarrow z \leftarrow w$

Known dichotomy: PQE on tuple-independent databases is **intractable** for the **non-hierarchical** such queries [Dalvi and Suciu, 2007]

A conjunctive query is **self-join-free** if all **edge colors** are different

E.g.,
$$x \rightarrow y \rightarrow z$$
 but not $x \rightarrow y \rightarrow z \leftarrow w$

Known dichotomy: PQE on tuple-independent databases is **intractable** for the **non-hierarchical** such queries [Dalvi and Suciu, 2007]

Theorem (ICDT'21, LMCS; with Kimelfeld)

For any non-hierarchical self-join-free conjunctive query **Q**, computing probabilistic query evaluation problem for **Q** input TID databases is #P-hard even if all input probabilities are 1/2.

A query **Q** is **homomorphism-closed** if whenever **G** satisfies **Q** and **G** has a homomorphism to **G'** then **G'** satisfies **Q**

 $\rightarrow\,$ Examples: CQs, UCQs, Datalog...

A query **Q** is **homomorphism-closed** if whenever **G** satisfies **Q** and **G** has a homomorphism to **G'** then **G'** satisfies **Q**

 \rightarrow Examples: CQs, UCQs, Datalog...

Theorem (ICDT'20, LMCS; with Ceylan)

For any **unbounded homomorphism-closed query Q** on graphs, the PQE problem for **Q** is **#P-hard**.

A query **Q** is **homomorphism-closed** if whenever **G** satisfies **Q** and **G** has a homomorphism to **G'** then **G'** satisfies **Q**

 \rightarrow Examples: CQs, UCQs, Datalog...

Theorem (ICDT'20, LMCS; with Ceylan)

For any **unbounded homomorphism-closed query Q** on graphs, the PQE problem for **Q** is **#P-hard**.

Theorem (ICDT'23)

This holds even if all probabilities are 1/2.

Conclusion

- **Circuits** can be a unifying framework for **enumeration**, **incremental maintenance** and **PQE**, at least for MSO queries on bounded-treewidth data
 - Properties of the automata correspond to knowledge compilation circuit classes

- **Circuits** can be a unifying framework for **enumeration**, **incremental maintenance** and **PQE**, at least for MSO queries on bounded-treewidth data
 - Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to other settings:
 - Explored for enumeration with annotated context-free grammars on words
 - Open if circuits explain the tractability of PQE for safe UCQs
 - Other cases? (e.g., UCQs with tractable enumeration?)

- **Circuits** can be a unifying framework for **enumeration**, **incremental maintenance** and **PQE**, at least for MSO queries on bounded-treewidth data
 - Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to other settings:
 - Explored for enumeration with annotated context-free grammars on words
 - Open if circuits explain the tractability of PQE for safe UCQs
 - Other cases? (e.g., UCQs with tractable enumeration?)
- Finer bounds on incremental maintenance via algebraic methods
 - Connections with **circuits** not (yet) understood
 - $\cdot\,$ Unclear if the results extend to $\ensuremath{\mathsf{enumeration}}$ and to $\ensuremath{\mathsf{trees}}$

- **Circuits** can be a unifying framework for **enumeration**, **incremental maintenance** and **PQE**, at least for MSO queries on bounded-treewidth data
 - Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to **other settings**:
 - Explored for enumeration with annotated context-free grammars on words
 - Open if circuits explain the tractability of PQE for safe UCQs
 - Other cases? (e.g., UCQs with tractable enumeration?)
- Finer bounds on incremental maintenance via algebraic methods
 - Connections with **circuits** not (yet) understood
 - $\cdot\,$ Unclear if the results extend to $\ensuremath{\mathsf{enumeration}}$ and to $\ensuremath{\mathsf{trees}}$
- For PQE, hardness holds outside of the **bounded-treewidth setting**
 - Better joint criteria for width when considering the instance and query?

- **Circuits** can be a unifying framework for **enumeration**, **incremental maintenance** and **PQE**, at least for MSO queries on bounded-treewidth data
 - Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to **other settings**:
 - Explored for enumeration with annotated context-free grammars on words
 - Open if circuits explain the tractability of PQE for safe UCQs
 - Other cases? (e.g., UCQs with tractable enumeration?)
- Finer bounds on incremental maintenance via algebraic methods
 - Connections with **circuits** not (yet) understood
 - $\cdot\,$ Unclear if the results extend to $\ensuremath{\mathsf{enumeration}}$ and to $\ensuremath{\mathsf{trees}}$
- For PQE, hardness holds outside of the **bounded-treewidth setting**
 - Better **joint criteria** for width when considering the instance and query?
- Enumeration of large solutions by editing previous solutions? (STACS'23; with Monet)

- **Circuits** can be a unifying framework for **enumeration**, **incremental maintenance** and **PQE**, at least for MSO queries on bounded-treewidth data
 - Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to **other settings**:
 - Explored for enumeration with annotated context-free grammars on words
 - Open if circuits explain the tractability of PQE for safe UCQs
 - Other cases? (e.g., UCQs with tractable enumeration?)
- Finer bounds on incremental maintenance via algebraic methods
 - Connections with **circuits** not (yet) understood
 - Unclear if the results extend to **enumeration** and to **trees**
- For PQE, hardness holds outside of the **bounded-treewidth setting**
 - Better **joint criteria** for width when considering the instance and query?
- Enumeration of large solutions by editing previous solutions? (STACS'23; with Monet)

Thanks for your attention! 26/28

📔 Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay. In *CSL*.

- Chekuri, C. and Chuzhoy, J. (2016).
 Polynomial bounds for the grid-minor theorem. JACM, 63(5).
- Dalvi, N. and Suciu, D. (2007).
 Efficient query evaluation on probabilistic databases.
 VLDBJ, 16(4).

Dalvi, N. and Suciu, D. (2013). The dichotomy of probabilistic inference for unions of conjunctive queries. JACM, 59(6).

Kazana, W. and Segoufin, L. (2013).
 Enumeration of monadic second-order queries on trees.
 TOCL, 14(4).