

Enumerating Pattern Matches in Words and Trees

Antoine Amarilli ${ }^{1}$, Pierre Bourhis ${ }^{2}$, Stefan Mengel ${ }^{3}$, Matthias Niewerth ${ }^{4}$ October 8th, 2018
${ }^{1}$ Télécom ParisTech
${ }^{2}$ CNRS CRIStAL
${ }^{3}$ CNRS CRIL
${ }^{4}$ Universität Bayreuth

Problem: Finding patterns in text

- We have a long text T :

```
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, }46\mathrm{ rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
```


Problem: Finding patterns in text

- We have a long text T:

```
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, }46\mathrm{ rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
```

- We want to find a pattern P in the text T :
\rightarrow Example: find email addresses

Problem: Finding patterns in text

- We have a long text T:

```
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, }46\mathrm{ rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
```

- We want to find a pattern P in the text T :
\rightarrow Example: find email addresses

Problem: Finding patterns in text

- We have a long text T:

```
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, }46\mathrm{ rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
```

- We want to find a pattern P in the text T :
\rightarrow Example: find email addresses

Problem: Finding patterns in text

- We have a long text T:

```
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
```

- We want to find a pattern P in the text T :
\rightarrow Example: find email addresses
- Write the pattern as a regular expression:

$$
P:=\sqcup^{+}[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \sqcup^{+}
$$

Problem: Finding patterns in text

- We have a long text T:

```
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
```

- We want to find a pattern P in the text T :
\rightarrow Example: find email addresses
- Write the pattern as a regular expression:

$$
P:=\sqcup^{+}[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \sqcup^{+}
$$

\rightarrow How to find the pattern P efficiently in the text T ?

Solution: automata

- Convert the pattern from a regular expression to an automaton

Solution: automata

- Convert the pattern from a regular expression to an automaton

$$
P:=\sqcup^{+}[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \sqcup^{+}
$$

Solution: automata

- Convert the pattern from a regular expression to an automaton

$$
P:=\sqcup^{+}[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \sqcup^{+}
$$

Solution: automata

- Convert the pattern from a regular expression to an automaton

$$
P:=\sqcup^{+}[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \sqcup^{+}
$$

- Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer ...

Solution: automata

- Convert the pattern from a regular expression to an automaton

$$
P:=\sqcup^{+}[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \sqcup^{+}
$$

- Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer ...
- How efficient is this?

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A
- If the automaton A is deterministic...

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A
- If the automaton A is deterministic...
- Data complexity is linear in T

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A
- If the automaton A is deterministic...
- Data complexity is linear in T
- Combined complexity is polynomial in T and A

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A
- If the automaton A is deterministic...
- Data complexity is linear in T
- Combined complexity is polynomial in T and A
- In general...

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A
- If the automaton A is deterministic...
- Data complexity is linear in T
- Combined complexity is polynomial in T and A
- In general...
- Compute a deterministic automaton from A...

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A
- If the automaton A is deterministic...
- Data complexity is linear in T
- Combined complexity is polynomial in T and A
- In general...
- Compute a deterministic automaton from A...
\rightarrow Linear data complexity but exponential combined complexity

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A
- If the automaton A is deterministic...
- Data complexity is linear in T
- Combined complexity is polynomial in T and A
- In general...
- Compute a deterministic automaton from A...
\rightarrow Linear data complexity but exponential combined complexity
- Better: Read T while remembering the current set of states (like determinizing A, but on the fly)

Complexity of automaton evaluation

- Task: testing if an automaton A accepts a text T
- We measure complexity according to two metrics:
- Data complexity: in the text T
- Combined complexity: in T and A
- If the automaton A is deterministic...
- Data complexity is linear in T
- Combined complexity is polynomial in T and A
- In general...
- Compute a deterministic automaton from A...
\rightarrow Linear data complexity but exponential combined complexity
- Better: Read T while remembering the current set of states (like determinizing A, but on the fly)
\rightarrow Linear data complexity and polynomial combined complexity

Actual problem: Extracting all patterns

- This only tests if the pattern exactly matches the whole text!
\rightarrow 'YES'"

Actual problem: Extracting all patterns

- This only tests if the pattern exactly matches the whole text!
\rightarrow 'YES'"
- We want to actually find all pattern matches!
\rightarrow Find all pairs of positions that are the end points of a match

Actual problem: Extracting all patterns

- This only tests if the pattern exactly matches the whole text!
\rightarrow 'YES'"
- We want to actually find all pattern matches!
\rightarrow Find all pairs of positions that are the end points of a match
- Generalization: patterns that can capture a tuple of positions
\rightarrow Find the email addresses without leading/trailing spaces
\rightarrow Find all pairs of a name followed by an email address

Patterns with capture variables

- Write the pattern P as a regular expression with capture variables

$$
P:=\bullet^{*} \sqcup^{+} \alpha[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \beta \sqcup^{+} \bullet *
$$

Patterns with capture variables

- Write the pattern P as a regular expression with capture variables

$$
P:=\bullet^{*} \sqcup^{+} \alpha[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \beta \sqcup^{+} \bullet *
$$

- Semantics: a match of P maps α and β to positions of T

Patterns with capture variables

- Write the pattern P as a regular expression with capture variables

$$
P:=\bullet^{*} \sqcup^{+} \alpha[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \beta \sqcup^{+} \bullet *
$$

- Semantics: a match of P maps α and β to positions of T

> ... Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer ...

Patterns with capture variables

- Write the pattern P as a regular expression with capture variables

$$
P:=\bullet^{*} \sqcup^{+} \alpha[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \beta \sqcup^{+} \bullet *
$$

- Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer ...
\rightarrow One match: $\langle\alpha: 20, \beta: 32\rangle$

Formal problem statement

- Problem description:

Formal problem statement

- Problem description:
- Input:
- A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

Formal problem statement

- Problem description:
- Input:
- A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

- A pattern P given as a regular expression with capture variables

$$
P:=\bullet^{*} \sqcup^{+} \alpha[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \beta \text { u }^{+} \bullet *
$$

Formal problem statement

- Problem description:
- Input:
- A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F- 75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

- A pattern P given as a regular expression with capture variables

$$
P:=\bullet^{*} \sqcup^{+} \alpha[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \beta \text { u }^{+} \bullet^{*}
$$

- Output: the list of matches of P on T

$$
\langle\alpha: 187, \beta: 199\rangle, \ldots
$$

Formal problem statement

- Problem description:
- Input:
- A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017 . Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the Ecole normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git...
- A pattern P given as a regular expression with capture variables

$$
P:=\bullet^{*} \sqcup^{+} \alpha[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \beta \text { u }^{+} \bullet^{*}
$$

- Output: the list of matches of P on T

$$
\langle\alpha: 187, \beta: 199\rangle, \ldots
$$

- We measure the complexity of the problem:
- In data complexity, as a function of T
- In combined complexity, as a function of P and T

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

$\alpha \beta$	1	\circ

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

α	1	β	\circ		1

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

α	1	\circ	β	1

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

α	1	\circ	1	β

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern | $\beta l \alpha$ | \circ |
| :--- | :--- | :--- | :--- |

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern
$1 \alpha \beta \quad 1$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern
1
1 $\circ \quad \beta 1$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

| 1 | α | 1 | β |
| :--- | :--- | :--- | :--- | :--- |

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

β	1	\circ	1

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern
$1 \beta \circ \alpha 1$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	\circ	$\alpha \beta$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	\circ	α	1	β

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

βl	\circ	1

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	β	\circ	1	α

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern
$1 \quad 0 \quad \beta \quad 1 \quad \alpha$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	\circ	1

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

\rightarrow For k capture variables, data complexity...

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

\rightarrow For k capture variables, data complexity... $O\left(|T|^{k+1}\right)$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

\rightarrow For k capture variables, data complexity... $O\left(|T|^{k+1}\right)$

- Hope: If T is big, we want data complexity to be in $O(|T|)$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

\rightarrow For k capture variables, data complexity... $O\left(|T|^{k+1}\right)$

- Hope: If T is big, we want data complexity to be in $O(|T|)$
- Challenge: This is impossible, there can be too many matches:

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

\rightarrow For k capture variables, data complexity... $O\left(|T|^{k+1}\right)$

- Hope: If T is big, we want data complexity to be in $O(|T|)$
- Challenge: This is impossible, there can be too many matches:
- Consider the text T :

```
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
```


Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

\rightarrow For k capture variables, data complexity... $O\left(|T|^{k+1}\right)$

- Hope: If T is big, we want data complexity to be in $O(|T|)$
- Challenge: This is impossible, there can be too many matches:
- Consider the text T :

```
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
```

- Consider the regexp with captures $\mathbf{P}:=\bullet * \mathrm{a}^{*} \beta \bullet *$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

\rightarrow For k capture variables, data complexity... $O\left(|T|^{k+1}\right)$

- Hope: If T is big, we want data complexity to be in $O(|T|)$
- Challenge: This is impossible, there can be too many matches:
- Consider the text T :

```
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
```

- Consider the regexp with captures $\boldsymbol{P}:=\bullet * \alpha \mathrm{a}^{*} \beta \bullet *$
- The number of matches is $O\left(|T|^{2}\right)$

Measuring the complexity

- Naive algorithm: Consider all ways to assign capture variables and test for each of them if it satisfies the pattern

1	0	1

\rightarrow For k capture variables, data complexity... $O\left(|T|^{k+1}\right)$

- Hope: If T is big, we want data complexity to be in $O(|T|)$
- Challenge: This is impossible, there can be too many matches:
- Consider the text T :

```
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
```

- Consider the regexp with captures $\boldsymbol{P}:=\bullet * \alpha \mathrm{a}^{*} \beta \bullet *$
- The number of matches is $O\left(|T|^{2}\right)$
\rightarrow We need a different way to measure complexity

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers we just need to be able to enumerate answers quickly

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers we just need to be able to enumerate answers quickly

Q how to find patterns

Search

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers we just need to be able to enumerate answers quickly

Q how to find patterns

Search

Results 1-20 of 10,514

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers we just need to be able to enumerate answers quickly

Q how to find patterns

Search

Results 1-20 of 10,514

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers we just need to be able to enumerate answers quickly

Q how to find patterns

Search

Results 1-20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers we just need to be able to enumerate answers quickly

Q how to find patterns

Search

Results 1-20 of 10,514

View (previous 20 | next 20) (20 | 50 | $100|250| 500)$
\rightarrow Formalization: enumeration algorithms

Formalizing enumeration algorithms

```
Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor
```

Text T
$\bullet^{*} \sqcup^{+} \alpha[a-z 0-9 .]^{*} @$ $[\mathrm{a}-\mathrm{z0}-9 .]^{*} \beta_{\sqcup}{ }^{+} \bullet *$

Pattern P

Formalizing enumeration algorithms

Formalizing enumeration algorithms

Formalizing enumeration algorithms

Formalizing enumeration algorithms

Results

Formalizing enumeration algorithms

Results

Formalizing enumeration algorithms

Results

Formalizing enumeration algorithms

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T
$\bullet *{ }^{+} \alpha[a-z 0-9 .]^{*}$ © [a-z0-9.]* $\beta_{\sqcup}{ }^{+} \bullet *$

Pattern P

Data structure

Phase 2:
Enumeration
State

$\{\langle\alpha: 42, \beta: 57\rangle$,
$\langle\alpha: 1337, \beta: 1351\rangle\}$
Results

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is...

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A
- Data complexity is...

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A
- Data complexity is... constant: nothing to do on T

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A
- Data complexity is... constant: nothing to do on T
- In terms of delay...

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A
- Data complexity is... constant: nothing to do on T
- In terms of delay...
- Combined complexity is...

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A
- Data complexity is... constant: nothing to do on T
- In terms of delay...
- Combined complexity is... polynomial: check if A accepts T

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A
- Data complexity is... constant: nothing to do on T
- In terms of delay...
- Combined complexity is... polynomial: check if A accepts T
- Data complexity is...

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A
- Data complexity is... constant: nothing to do on T
- In terms of delay...
- Combined complexity is... polynomial: check if A accepts T
- Data complexity is... polynomial in T : time to find the next match

Complexity of enumeration algorithms

- Recall the inputs to our problem:
- The text T
- The regexp with captures P
\rightarrow Assumption: there is a constant number k of capture variables
- What is the performance of the naive algorithm?
- In terms of preprocessing...
- Combined complexity is... polynomial: convert P to an automaton A
- Data complexity is... constant: nothing to do on T
- In terms of delay...
- Combined complexity is... polynomial: check if A accepts T
- Data complexity is... polynomial in T : time to find the next match
\rightarrow Can we do better?

Results for enumerating pattern matches

- Existing work has shown the best possible bounds:

Results for enumerating pattern matches

- Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can find all matches of a regexp with captures P on text T with:

- Preprocessing linear in T
- Delay constant in T

Results for enumerating pattern matches

- Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can find all matches of a regexp with captures P on text T with:

- Preprocessing linear in T (data)
- Delay constant in T (data)
\rightarrow Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

Results for enumerating pattern matches

- Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]

We can find all matches of a regexp with captures P on text T with:

- Preprocessing linear in T (data)
- Delay constant in T (data)
\rightarrow Problem: They only measure data complexity!
The combined complexity is exponential with their approach!
- Our contribution is:

Theorem

We can find all matches of a regexp with captures P on text T with:

- Preprocessing linear in T (data) and polynomial in T and P (combined)
- Delay constant in T (data) and polynomial in T and P (combined)

Automaton formalism

- We use automata that read letters and capture variables

Automaton formalism

- We use automata that read letters and capture variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta$ •*

Automaton formalism

- We use automata that read letters and capture variables
\rightarrow Example: $P:=\bullet^{*} \alpha a^{*} \beta \bullet *$

Automaton formalism

- We use automata that read letters and capture variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta \bullet *$

- Semantics of the automaton A :
- Reads letters from the text
- Guesses variables at positions in the text

Automaton formalism

- We use automata that read letters and capture variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta \bullet *$

- Semantics of the automaton A :
- Reads letters from the text
- Guesses variables at positions in the text
\rightarrow Output: tuples $\langle\alpha: i, \beta: j\rangle$ such that A has an accepting run reading α at position \boldsymbol{i} and β at \boldsymbol{j}

Automaton formalism

- We use automata that read letters and capture variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta$ •*

- Semantics of the automaton A :
- Reads letters from the text
- Guesses variables at positions in the text
\rightarrow Output: tuples $\langle\alpha: i, \beta: j\rangle$ such that \boldsymbol{A} has an accepting run reading α at position \boldsymbol{i} and β at \boldsymbol{j}
- Assumption: There is no run for which A reads the same capture variable twice at the same position

Automaton formalism

- We use automata that read letters and capture variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta \bullet *$

- Semantics of the automaton A :
- Reads letters from the text
- Guesses variables at positions in the text
\rightarrow Output: tuples $\langle\alpha: i, \beta: j\rangle$ such that \boldsymbol{A} has an accepting run reading α at position \boldsymbol{i} and β at \boldsymbol{j}
- Assumption: There is no run for which A reads the same capture variable twice at the same position
- Challenge: Because of nondeterminism we can have many different runs of A producing the same tuple!

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A Example: Text $T:=$ aaaba and $P:=\bullet^{*} \alpha a^{*} \beta \bullet *$,

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A Example: Text $T:=$ aaaba and $P:=\bullet^{*} \alpha a^{*} \beta \bullet *$,

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A Example: Text $T:=$ aaaba and $P:=\bullet^{*} \alpha a^{*} \beta \bullet *$,

a	a	a	b	a

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A Example: $\operatorname{Text} T:=$ aaaba and $P:=\bullet^{*} \alpha a^{*} \beta \bullet *$,

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A Example: $\operatorname{Text} T:=$ aaaba and $P:=\bullet^{*} \alpha a^{*} \beta \bullet *$,

\rightarrow Each path in the product DAG corresponds to a match

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A Example: Text $T:=$ aaaba and $P:=\bullet^{*} \alpha a^{*} \beta \bullet *$, match $\langle\alpha: \mathbf{0}, \beta: 3\rangle$

\rightarrow Each path in the product DAG corresponds to a match

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A Example: Text $T:=$ aaaba and $P:=\bullet^{*} \alpha a^{*} \beta \bullet *$,

\rightarrow Each path in the product DAG corresponds to a match
\rightarrow Challenge: Enumerate paths but avoid duplicate matches and do not waste time to ensure constant delay

Proof idea: on-the-fly computation to avoid duplicates

$$
i \quad i+1
$$

- We are at a position i and set of states in blue

Proof idea: on-the-fly computation to avoid duplicates

$$
i \quad i+1
$$

- We are at a position i and set of states in blue

Proof idea: on-the-fly computation to avoid duplicates

$i \quad i+1$

- We are at a position i and set of states in blue
- Partition tuples based on the set S of variables assigned at the current position

Proof idea: on-the-fly computation to avoid duplicates

$i \quad i+1$

- We are at a position i and set of states in blue
- Partition tuples based on the set S of variables assigned at the current position
- For each S, consider the set of states where we can be at $i+1$ when reading S at i

Proof idea: on-the-fly computation to avoid duplicates

$i \quad i+1$

- We are at a position i and set of states in blue
- Partition tuples based on the set S of variables assigned at the current position
- For each S, consider the set of states where we can be at $i+\mathbf{1}$ when reading S at i
- Example: $\boldsymbol{S}=\{\alpha\}$

Proof idea: on-the-fly computation to avoid duplicates

$i \quad i+1$

- We are at a position i and set of states in blue
- Partition tuples based on the set S of variables assigned at the current position
- For each S, consider the set of states where we can be at $i+\mathbf{1}$ when reading S at i
- Example: $\boldsymbol{S}=\{\alpha\}$

Proof idea: on-the-fly computation to avoid duplicates

$i \quad i+1$

- We are at a position i and set of states in blue
- Partition tuples based on the set S of variables assigned at the current position
- For each S, consider the set of states where we can be at $i+\mathbf{1}$ when reading S at i
- Example: $\boldsymbol{S}=\{\alpha\}$

Proof idea: on-the-fly computation to avoid duplicates

$i \quad i+1$

- We are at a position i and set of states in blue
- Partition tuples based on the set S of variables assigned at the current position
- For each S, consider the set of states where we can be at $i+\mathbf{1}$ when reading S at i
- Example: $\boldsymbol{S}=\{\alpha\}$
\rightarrow We must have preprocessed the DAG to make sure that we can always finish the run

Proof idea: jump pointers to save time

- Issue: When we can’t assign variables, we do not make progress

Proof idea: jump pointers to save time

- Issue: When we can't assign variables, we do not make progress

Proof idea: jump pointers to save time

- Issue: When we can't assign variables, we do not make progress

Proof idea: jump pointers to save time

- Issue: When we can't assign variables, we do not make progress

Proof idea: jump pointers to save time

- Issue: When we can't assign variables, we do not make progress

Proof idea: jump pointers to save time

- Issue: When we can't assign variables, we do not make progress

Proof idea: jump pointers to save time

- Issue: When we can’t assign variables, we do not make progress

- Idea: Directly jump to the reachable states at the next position where we can assign a variable

Proof idea: jump pointers to save time

- Issue: When we can’t assign variables, we do not make progress

- Idea: Directly jump to the reachable states at the next position where we can assign a variable
- Challenge: Preprocessing in linear time in T and polynomial in A :

Proof idea: jump pointers to save time

- Issue: When we can't assign variables, we do not make progress

- Idea: Directly jump to the reachable states at the next position where we can assign a variable
- Challenge: Preprocessing in linear time in T and polynomial in A:
\rightarrow Compute for each state the next position where we can reach some state that can assign a variable

Proof idea: jump pointers to save time

- Issue: When we can't assign variables, we do not make progress

- Idea: Directly jump to the reachable states at the next position where we can assign a variable
- Challenge: Preprocessing in linear time in T and polynomial in A :
\rightarrow Compute for each state the next position where we can reach some state that can assign a variable
\rightarrow Compute at each position i the transitive closure to all positions j such that j is the next position of some state at i (there are $\leq\left.|A|\right|_{6 / 36}$

Proof idea: flashlight search

- Issue: Finding which variable sets we can assign at position i?

Proof idea: flashlight search

- Issue: Finding which variable sets we can assign at position i?

- Idea: Explore a decision tree on the variables (built on the fly)

Proof idea: flashlight search

- Issue: Finding which variable sets we can assign at position i?

- Idea: Explore a decision tree on the variables (built on the fly)

Proof idea: flashlight search

- Issue: Finding which variable sets we can assign at position i?

- Idea: Explore a decision tree on the variables (built on the fly)
- At each decision tree node, find the reachable states which have all required variables (1) and no forbidden variables (0)

Proof idea: flashlight search

- Issue: Finding which variable sets we can assign at position i?

- Idea: Explore a decision tree on the variables (built on the fly)
- At each decision tree node, find the reachable states which have all required variables (1) and no forbidden variables (o)
\rightarrow Assumption: we don't see the same variable twice on a path

Extension: From Text to Trees

Pattern matching on trees

- The data T is no longer text but is now a tree:

Pattern matching on trees

- The data T is no longer text but is now a tree:

- The pattern P asks about the structure of the tree: Is there an h2 header and an image in the same section?

Pattern matching on trees

- The data T is no longer text but is now a tree:

- The pattern P asks about the structure of the tree: Is there an h2 header and an image in the same section?
- Results:

Pattern matching on trees

- The data T is no longer text but is now a tree:

- The pattern P asks about the structure of the tree: Is there α : an h2 header and β : an image in the same section?
- Results:

Pattern matching on trees

- The data T is no longer text but is now a tree:

- The pattern P asks about the structure of the tree: Is there α : an h2 header and β : an image in the same section?
- Results: $\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle$

Definitions and Results on Trees

- Tree patterns can be written as a tree automaton with captures

Definitions and Results on Trees

- Tree patterns can be written as a tree automaton with captures
- Like for text, we can enumerate the matches of tree automata...

Definitions and Results on Trees

- Tree patterns can be written as a tree automaton with captures
- Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can find all matches on a tree T of a tree automaton A (with constantly many capture variables) with:

- Preprocessing linear in T (data)
- Delay constant in T (data)

Definitions and Results on Trees

- Tree patterns can be written as a tree automaton with captures
- Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can find all matches on a tree T of a tree automaton A (with constantly many capture variables) with:

- Preprocessing linear in T (data)
- Delay constant in T (data)
- Again, this is only in data complexity!

Definitions and Results on Trees

- Tree patterns can be written as a tree automaton with captures
- Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]

We can find all matches on a tree T of a tree automaton A (with constantly many capture variables) with:

- Preprocessing linear in T (data)
- Delay constant in T (data)
- Again, this is only in data complexity!
- We conjecture the following bounds for this task (ongoing work):

Conjecture

- Preprocessing linear in T (data) and polynomial in A and T (combined)
- Delay constant in T (data) and polynomial in \mathbf{A} and T (combined)

Proof idea for trees: structure

Similar structure to the previous proof, but with a circuit:

Pattern

Proof idea for trees: structure

Similar structure to the previous proof, but with a circuit:

- Preprocessing: Compute a circuit representation of the answers
- Enumeration: Apply a generic algorithm on the circuit

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Three kinds of set-valued gates:

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Three kinds of set-valued gates:

- Variable gate $\alpha: 4$:
\rightarrow captures $\{\langle\alpha: 4\rangle\}$

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Three kinds of set-valued gates:

- Variable gate $\alpha: 4$
\rightarrow captures $\{\langle\alpha: 4\rangle\}$
- Union gate

\rightarrow union of sets of tuples

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Three kinds of set-valued gates:

- Variable gate $\alpha: 4$
\rightarrow captures $\{\langle\alpha: 4\rangle\}$
- Union gate

\rightarrow union of sets of tuples
- Product gate

\rightarrow relational product

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Three kinds of set-valued gates:

- Variable gate $\alpha: 4$
\rightarrow captures $\{\langle\alpha: 4\rangle\}$
- Union gate

\rightarrow union of sets of tuples
- Product gate

\rightarrow relational product

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Three kinds of set-valued gates:

- Variable gate $\alpha: 4$
\rightarrow captures $\{\langle\alpha: 4\rangle\}$
- Union gate

\rightarrow union of sets of tuples
- Product gate

\rightarrow relational product

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Three kinds of set-valued gates:

- Variable gate $\alpha=4$ captures $\{\langle\alpha: 4\rangle\}$
$\quad \rightarrow \quad$
- Union gate

\rightarrow union of sets of tuples
- Product gate

\rightarrow relational product

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Three kinds of set-valued gates:

- Variable gate $\alpha: 4$:
\rightarrow captures $\{\langle\alpha: 4\rangle\}$
- Union gate

\rightarrow union of sets of tuples
- Product gate

\rightarrow relational product

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern $\boldsymbol{P}(\alpha, \beta)$

- Singleton $\alpha: 6 \rightarrow$ "the variable α is mapped to node 6 "
- Tuple $\langle\alpha: 4, \beta: 6\rangle$: tuple of singletons
- The circuit captures a set of tuples, e.g., $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}$

Proof idea for trees: set circuit construction

Theorem

For any tree automaton \boldsymbol{A} with capture variables $\alpha_{1}, \ldots, \alpha_{k}$, given a tree T, we can build in $O(|T| \times|A|)$ a set circuit capturing exactly the set of tuples $\left\{\left\langle\alpha_{1}: n_{1}, \ldots, \alpha_{k}: n_{k}\right\rangle\right.$ in the output of A on T

Proof idea for trees: set circuit construction (details)

- Automaton: "Select all node pairs (α, β) "
- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$

Proof idea for trees: set circuit construction (details)

- Automaton: "Select all node pairs (α, β) "
- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$

Proof idea for trees: set circuit construction (details)

- Automaton: "Select all node pairs (α, β) "
- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$

Proof idea for trees: set circuit construction (details)

- Automaton: "Select all node pairs (α, β) "
- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$

Proof idea for trees: set circuit construction (details)

- Automaton: "Select all node pairs (α, β) "
- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$

Proof idea for trees: set circuit construction (details)

- Automaton: "Select all node pairs (α, β) "
- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$

Proof idea for trees: set circuit construction (details)

- Automaton: "Select all node pairs (α, β) "
- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$

Proof idea for trees: enumeration on set circuits

Theorem

Given a set circuit satisfying some conditions, we can enumerate all tuples that it captures with linear preprocessing and constant delay
E.g., for $\{\langle\alpha: 4, \beta: 6\rangle,\langle\alpha: 4, \beta: 7\rangle\}:$ enumerate $\langle\alpha: 4, \beta: 6\rangle$ then $\langle\alpha: 4, \beta: 7\rangle$

Proof idea for trees: general enumeration approach

\rightarrow Enumerate the set $T(g)$ captured by each gate g
\rightarrow Do it by top-down induction on the circuit

Proof idea for trees: general enumeration approach

\rightarrow Enumerate the set $T(g)$ captured by each gate g
\rightarrow Do it by top-down induction on the circuit

Base case: variable $\alpha: n$:

Proof idea for trees: general enumeration approach

\rightarrow Enumerate the set $T(g)$ captured by each gate g
\rightarrow Do it by top-down induction on the circuit
Base case: variable $\alpha: n$: enumerate $\langle\alpha: n\rangle$ and stop

Proof idea for trees: general enumeration approach

\rightarrow Enumerate the set $T(g)$ captured by each gate g
\rightarrow Do it by top-down induction on the circuit

Concatenation: enumerate $T\left(g_{1}\right)$
and then enumerate $T\left(g_{2}\right)$

Proof idea for trees: general enumeration approach

\rightarrow Enumerate the set $T(g)$ captured by each gate g
\rightarrow Do it by top-down induction on the circuit

Concatenation: enumerate $T\left(g_{1}\right)$ and then enumerate $T\left(g_{2}\right)$

Lexicographic product: for every t_{1} in $T\left(g_{1}\right)$: for every t_{2} in $T\left(g_{2}\right)$: output $t_{1}+t_{2}$

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

- (U) are all deterministic:

For any two inputs g_{1} and g_{2} of a \cup-gate, the captured sets $T\left(g_{1}\right)$ and $T\left(g_{2}\right)$ are disjoint (they have no tuple in common)
\rightarrow Avoids duplicate tuples

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

- (U) are all deterministic:

For any two inputs g_{1} and g_{2} of a \cup-gate, the captured sets $T\left(g_{1}\right)$ and $T\left(g_{2}\right)$ are disjoint (they have no tuple in common)
\rightarrow Avoids duplicate tuples

- × are all decomposable:

For any two inputs g_{1} and g_{2} of a \times-gate, no variable has a path to both g_{1} and g_{2}

\rightarrow Avoids duplicate singletons

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

- (U) are all deterministic:

For any two inputs g_{1} and g_{2} of a \cup-gate, the captured sets $T\left(g_{1}\right)$ and $T\left(g_{2}\right)$ are disjoint (they have no tuple in common)
\rightarrow Avoids duplicate tuples

- \times are all decomposable:

For any two inputs g_{1} and g_{2} of a \times-gate, no variable has a path to both g_{1} and g_{2}

\rightarrow Avoids duplicate singletons

- Also an additional upwards-determinism condition

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

- (U) are all deterministic:

For any two inputs g_{1} and g_{2} of a \cup-gate, the captured sets $T\left(g_{1}\right)$ and $T\left(g_{2}\right)$ are disjoint (they have no tuple in common)
\rightarrow Avoids duplicate tuples

- \times are all decomposable:

For any two inputs g_{1} and g_{2} of a \times-gate, no variable has a path to both g_{1} and g_{2}

\rightarrow Avoids duplicate singletons

- Also an additional upwards-determinism condition
- Our circuit satisfies these thanks to automaton determinism

Proof idea for trees: enumeration subtleties

- We must not waste time in gates capturing \emptyset

Proof idea for trees: enumeration subtleties

- We must not waste time in gates capturing \emptyset
\rightarrow Label them during the preprocessing

Proof idea for trees: enumeration subtleties

- We must not waste time in gates capturing \emptyset
\rightarrow Label them during the preprocessing
- We must not waste time because of gates capturing $\{\rangle\}$

Proof idea for trees: enumeration subtleties

- We must not waste time in gates capturing \emptyset
\rightarrow Label them during the preprocessing
- We must not waste time because of gates capturing $\{\rangle\}$
\rightarrow Homogenization to set them aside

Proof idea for trees: enumeration subtleties

- We must not waste time in gates capturing \emptyset
\rightarrow Label them during the preprocessing
- We must not waste time because of gates capturing $\{\rangle\}$
\rightarrow Homogenization to set them aside
- We must not waste time in hierarchies of \cup-gates

Proof idea for trees: enumeration subtleties

- We must not waste time in gates capturing \emptyset
\rightarrow Label them during the preprocessing
- We must not waste time because of gates capturing $\{\rangle\}$
\rightarrow Homogenization to set them aside
- We must not waste time in hierarchies of \cup-gates
\rightarrow Precompute a reachability index (uses upwards-determinism)

Extension: Handling Updates

Updates

Tree T

- The input data can be modified after the preprocessing

Updates

- The input data can be modified after the preprocessing

Updates

- The input data can be modified after the preprocessing

Updates

- The input data can be modified after the preprocessing
- If this happen, we must rerun the preprocessing from scratch

Updates

- The input data can be modified after the preprocessing
- If this happen, we must rerun the preprocessing from scratch
\rightarrow Can we do better?

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work

Data Preproc. Delay
Updates
[Bagan, 2006], trees $O(T) \quad O(1) \quad O(T)$
[Kazana and Segoufin, 2013]

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work

[Bagan, 2006],

Data Preproc. Delay

Updates
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014] trees $O(T) \quad O\left(\log ^{2} T\right) \quad O\left(\log ^{2} T\right)$

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work

[Bagan, 2006],

Data Preproc. Delay

Updates
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014] trees $O(T) \quad O\left(\log ^{2} T\right) O\left(\log ^{2} T\right)$
[Losemann and Martens, 2014] text $O(T) \quad O(\log T) \quad O(\log T)$

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work

[Bagan, 2006],

Data Preproc. Delay

Updates
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014
trees $O(T) \quad O(1) \quad O(T)$
[Losemann and Martens, 2014]
[Niewerth and Segoufin, 2018]
text
$O(T)$
$O\left(\log ^{2} T\right) \quad O\left(\log ^{2} T\right)$
$O(T) \quad O(\log T) \quad O(\log T)$
$O(T) \quad O(1) \quad O(\log T)$

Relabelings

- Special kind of updates: relabelings that change the label of a node

Relabelings

- Special kind of updates: relabelings that change the label of a node
- Example: relabel node 7 to <video>

Relabelings

- Special kind of updates: relabelings that change the label of a node
- Example: relabel node 7 to <video>

Relabelings

New results on dynamic trees

- If we allow only relabeling updates, we can show:

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	$O(T)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$

New results on dynamic trees

- If we allow only relabeling updates, we can show:

Work

[Bagan, 2006],
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014]
[Amarilli et al., 2018]

Data Preproc. Delay
trees $O(T) \quad O(1)$
Updates
trees $O(T)$
trees $O(T)$
$O\left(\log ^{2} T\right) \quad O\left(\log ^{2} T\right)$
$O(1) \quad O(\log T)$

New results on dynamic trees

- If we allow only relabeling updates, we can show:

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014] [Amarilli et al., 2018]	trees	$O(T)$	$O\left(\log ^{2} T\right)$	$O\left(\log ^{2} T\right)$

New results on dynamic trees

- If we allow only relabeling updates, we can show:

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	$O(T)$	$O(1)$	$O(T)$
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014] [Amarilli et al., 2018]	trees	$O(T)$	$O(T)$	$O(1)$

- Current proof uses hybrid circuits but we want to simplify it

New results on dynamic trees

- If we allow only relabeling updates, we can show:

Work

[Bagan, 2006],
[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014]
[Amarilli et al., 2018]

Data Preproc. Delay
trees $O(T) \quad O(1)$
Updates
trees $O(T)$
trees $O(T)$
$O\left(\log ^{2} T\right) \quad O\left(\log ^{2} T\right)$
$O(1) \quad O(\log T)$

- Current proof uses hybrid circuits but we want to simplify it
- Remaining open questions:
\rightarrow Does this hold for more general updates (insert/delete, etc.)?
\rightarrow Can we also achieve tractable combined complexity?

Extension: Connection to Circuits

Connections with Boolean circuits

- Mapping DAGs and set circuits can be seen as variants of Boolean circuits

Connections with Boolean circuits

- Mapping DAGs and set circuits can be seen as variants of Boolean circuits
- The answers to enumerate are their satisfying assignments

Connections with Boolean circuits

- Mapping DAGs and set circuits can be seen as variants of Boolean circuits
- The answers to enumerate are their satisfying assignments
- These circuits fall in restricted circuit classes that allow for efficient enumeration

Connections with Boolean circuits

- Mapping DAGs and set circuits can be seen as variants of Boolean circuits
- The answers to enumerate are their satisfying assignments
- These circuits fall in restricted circuit classes that allow for efficient enumeration
\rightarrow Task: Given a Boolean circuit, how to efficiently enumerate its satisfying valuations?

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
(x)
- Internal gates:

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto \mathbf{O}, \boldsymbol{y} \mapsto 1\} \ldots$ mapped to 1

Boolean circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{\boldsymbol{x} \mapsto \mathrm{O}, \boldsymbol{y} \mapsto 1\} \ldots$ mapped to 1
- Assignment: set of variables mapped to 1 Example: $S_{\nu}=\{y\}$; more concise than ν

Boolean circuits

- Directed acyclic graph of gates

- Output gate:

- Variable gates:
- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$ mapped to 1
- Assignment: set of variables mapped to 1 Example: $S_{\nu}=\{y\}$; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

Circuit restrictions

d-DNNF:

- V are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

Circuit restrictions

d-DNNF:

- V are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

- \triangle are all decomposable: The inputs are independent (= no variable x has a path to two different inputs)

Circuit restrictions

d-DNNF:

v-tree: \wedge-gates follow a tree on the variables

- V are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

- \wedge are all decomposable: The inputs are independent (= no variable x has a path to two different inputs)

Main results

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments with preprocessing linear in $|C|+|T|$ and delay linear in each assignment

Main results

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments with preprocessing linear in $|C|+|T|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$ (at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments of size $\leq k$ with preprocessing linear in $|C|+|T|$ and constant delay

Main results

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments with preprocessing linear in $|C|+|T|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$ (at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments of size $\leq k$ with preprocessing linear in $|C|+|T|$ and constant delay

Subtleties: Must complete to a set circuit; memory usage problems

Summary and Future Work

Summary and future work

Summary:

- Problem: given a text T and a pattern P, enumerate efficiently all matches of P on T

Summary and future work

Summary:

- Problem: given a text T and a pattern P, enumerate efficiently all matches of P on T
- Result: we can do this with tractable combined complexity and linear preprocessing and constant delay in data complexity

Summary and future work

Summary:

- Problem: given a text T and a pattern P, enumerate efficiently all matches of P on T
- Result: we can do this with tractable combined complexity and linear preprocessing and constant delay in data complexity

Ongoing and future work:

- Extending the results from text to trees

Summary and future work

Summary:

- Problem: given a text T and a pattern P, enumerate efficiently all matches of P on T
- Result: we can do this with tractable combined complexity and linear preprocessing and constant delay in data complexity

Ongoing and future work:

- Extending the results from text to trees
- Supporting updates on the input data

Summary and future work

Summary:

- Problem: given a text T and a pattern P, enumerate efficiently all matches of P on T
- Result: we can do this with tractable combined complexity and linear preprocessing and constant delay in data complexity

Ongoing and future work:

- Extending the results from text to trees
- Supporting updates on the input data
- Understanding the connections with circuits

Summary and future work

Summary:

- Problem: given a text T and a pattern P, enumerate efficiently all matches of P on T
- Result: we can do this with tractable combined complexity and linear preprocessing and constant delay in data complexity

Ongoing and future work:

- Extending the results from text to trees
- Supporting updates on the input data
- Understanding the connections with circuits
- Enumerating results in a relevant order?

Summary and future work

Summary:

- Problem: given a text T and a pattern P, enumerate efficiently all matches of P on T
- Result: we can do this with tractable combined complexity and linear preprocessing and constant delay in data complexity

Ongoing and future work:

- Extending the results from text to trees
- Supporting updates on the input data
- Understanding the connections with circuits
- Enumerating results in a relevant order?
- Testing how well our methods perform in practice

Summary and future work

Summary:

- Problem: given a text T and a pattern P, enumerate efficiently all matches of P on T
- Result: we can do this with tractable combined complexity and linear preprocessing and constant delay in data complexity

Ongoing and future work:

- Extending the results from text to trees
- Supporting updates on the input data
- Understanding the connections with circuits
- Enumerating results in a relevant order?
- Testing how well our methods perform in practice

Thanks for your attention!

References i

(1. Amarilli, A., Bourhis, P., and Mengel, S. (2018).

Enumeration on trees under relabelings.
In ICDT.
圊 Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
R Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).

Constant delay algorithms for regular document spanners.
In PODS.

References ii

國 Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Losemann, K. and Martens, W. (2014).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.
目 Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and logarithmic updates.
In PODS.
To appear.

