Efficient Enumeration via Factorized Representations

Antoine Amarilli
August 2nd, 2022
Télécom Paris

Dramatis Personae

Antoine Amarilli

Pierre Bourhis

Louis Jachiet

Stefan Mengel

Matthias Niewerth

And our recent co-authors: Martín Muñoz, Cristian Riveros

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S.
A Circuit-Based Approach to Efficient Enumeration. ICALP 2017.Amarilli, A., Bourhis, P., and Mengel, S.
Enumeration on Trees under Relabelings. ICDT 2018.Niewerth, M.
MSO Queries on Trees: Enumerating Answers under Updates Using Forest Algebras. LICS 2018.Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. ICDT 2019.Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. TODS 2020.Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C.
Efficient Enumeration for Annotated Grammars. PODS 2022

Problem statement

Enumeration algorithm

Input

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

State

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

Enumeration algorithm

The knowledge compilation approach to enumeration

Currently:

The knowledge compilation approach to enumeration

Currently:

The knowledge compilation approach to enumeration

Currently:

The knowledge compilation approach to enumeration

Set circuits

- Directed acyclic graph of gates

Set circuits

- Directed acyclic graph of gates
- Output gate:

Set circuits

- Directed acyclic graph of gates
- Output gate:
- Variable gates: x

Set circuits

- Directed acyclic graph of gates
- Output gate:
- Variable gates:

- Constant gates: $ナ \perp$

Set circuits

- Directed acyclic graph of gates
- Output gate:

- Variable gates:
(x)
- Constant gates:
- Internal gates:

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$

Semantics of set circuits

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :
$S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}$
- \cup-gate with children g_{1}, g_{2} :
$S(g):=S\left(g_{1}\right) \cup S\left(g_{2}\right)$

Semantics of set circuits

Every gate g captures a set $S(g)$ of sets (called assignments)

- Variable gate with label $x: S(g):=\{\{x\}\}$
- T-gates: $S(g)=\{\{ \}\}$
- \perp-gates: $S(g)=\emptyset$
- \times-gate with children g_{1}, g_{2} :

$$
S(g):=\left\{s_{1} \cup s_{2} \mid s_{1} \in S\left(g_{1}\right), s_{2} \in S\left(g_{2}\right)\right\}
$$

- \cup-gate with children g_{1}, g_{2} :

$$
S(g):=S\left(g_{1}\right) \cup S\left(g_{2}\right)
$$

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g \rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Circuit restrictions

d-DNNF set circuit:

- (U) are all deterministic:

The inputs are disjoint
(= no assignment is captured by two inputs)

Circuit restrictions

d-DNNF set circuit:

- (U) are all deterministic:

The inputs are disjoint
(= no assignment is captured by two inputs)

- \times are all decomposable:

The inputs are independent
(= no variable x has a path to two different inputs)

Set circuits vs factorized representations

- Set circuits can be seen as factorized representations
\rightarrow Not necessarily well-typed, height and/or assignment size may be non-constant
- Determinism: unions are disjoint
- Decomposability: no duplicate attribute names in products
- Structuredness: always the same decomposition of the attributes

Main results

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Main results

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments with preprocessing linear in $|C|$ and delay linear in each assignment

Also: restrict to assignments of constant size $k \in \mathbb{N}$

Theorem

Given a d-DNNF set circuit C, we can enumerate its captured assignments of size $\leq k$ with preprocessing linear in $|C|$ and constant delay

Proof techniques

Proof overview

Preprocessing phase:

d-DNNF
set circuit

Proof overview

Preprocessing phase:

Proof overview

Preprocessing phase:

Proof overview

Preprocessing phase:

Enumeration phase:

Indexed
normalized
circuit

Proof overview

Preprocessing phase:

Enumeration phase:

circuit

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable X :

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$ Determinism: no duplicates

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$ Determinism: no duplicates

Lexicographic product: enumerate $S(g)$ and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set $S(g)$ captured by a gate g
\rightarrow E.g., for $S(g)=\{\{x\},\{x, y\}\}$, enumerate $\{x\}$ and then $\{x, y\}$
Base case: variable x : enumerate $\{x\}$ and stop

Concatenation: enumerate $S(g)$ and then enumerate $S\left(g^{\prime}\right)$ Determinism: no duplicates

Lexicographic product: enumerate $S(g)$ and for each result t enumerate $S\left(g^{\prime}\right)$ and concatenate t with each result

Decomposability: no duplicates

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$

Normalization: handling \emptyset

- Problem: if $S(g)=\emptyset$ we waste time
- Solution: in preprocessing
- compute bottom-up if $S(g)=\emptyset$
- then get rid of the gate

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1

Normalization: handling empty assignments

- Problem: if $S(g)$ contains $\}$ we waste time in chains of \times-gates
- Solution:
- split g between $S(g) \cap\{\}\}$ and $S(g) \backslash\{\}\}$ (homogenization)
- remove inputs with $S(g)=\{\{ \}\}$ for \times-gates
- collapse \times-chains with fan-in 1
\rightarrow Now, when traversing a \times-gate we make progress: non-trivial split of each set

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)

Indexing: handling U-hierarchies

- Problem: we waste time in \cup-hierarchies to find a reachable exit (non- \cup gate)
- Solution: compute reachability index
- Problem: must be done in linear time
- Solution: Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

Applications

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

"Find the pairs of a pink node and a blue node?" $Q(x, y):=P_{\circ}(x) \wedge P_{\circ}(y)$

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

"Find the pairs of a pink node and a blue node?" $Q(x, y):=P_{\circ}(x) \wedge P_{\circ}(y)$
results: $(2,7),(3,7)$

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

"Find the pairs of a pink node and a blue node?" $Q(x, y):=P_{\circ}(x) \wedge P_{\circ}(y)$
results: $(2,7),(3,7)$

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

We can prove this with our methods:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP'15, ICALP'17)
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit capturing the results of A on T in $O(|A| \times|T|)$

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

We can prove this with our methods:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP'15, ICALP'17)
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit capturing the results of A on T in $O(|A| \times|T|)$

- Can be extended to support relabeling updates to the tree in $O(\log n)$ time (A., Bourhis, Mengel, ICDT'18)

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

We can prove this with our methods:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP'15, ICALP'17)
For any bottom-up deterministic tree automaton A and input tree T, we can build a d-DNNF set circuit capturing the results of A on T in $O(|A| \times|T|)$

- Can be extended to support relabeling updates to the tree in $O(\log n)$ time (A., Bourhis, Mengel, ICDT'18)
- Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS'19) up to fixing a buggy result [Niewerth, 2018]

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git

Query: a pattern P given as a regular expression

$$
P:=\sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*}
$$

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git

Query: a pattern P given as a regular expression

$$
P:=\sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*}
$$

1 Output: the list of substrings of T that match P :

$$
[186,200\rangle, \quad[483,500\rangle, \ldots
$$

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git

Query: a pattern P given as a regular expression

$$
P:=\sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*}
$$

1 Output: the list of substrings of T that match P :

$$
[186,200\rangle, \quad[483,500\rangle, \ldots
$$

Goal:

- be very efficient in T (constant-delay)
- be reasonably efficient in P (polynomial-time)

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton
\rightarrow Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton
\rightarrow Generalizes earlier result on deterministic automata [Florenzano et al., 2018]
- Does not really use d-DNNFs, but bounded-width structured DNNFs

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19)

We can enumerate all matches of an input nondeterministic automaton with captures on an input text with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton
\rightarrow Generalizes earlier result on deterministic automata [Florenzano et al., 2018]
- Does not really use d-DNNFs, but bounded-width structured DNNFs
\rightarrow Actually equivalent to MSO evaluation on text; generalizes to trees

Application 3: Enumerating matches of annotated grammars

```
Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);
}
```


Application 3: Enumerating matches of annotated grammars

```
Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);
}
```

? Query: a pattern P given as a context-free grammar with annotated terminals

$$
P:=\text { "find all quoted strings in the program" }
$$

Application 3: Enumerating matches of annotated grammars

(1)
Query: a pattern P given as a context-free grammar with annotated terminals

$$
P:=\text { "find all quoted strings in the program" }
$$

Theorem (A., Jachiet, Muñoz, Riveros, PODS'22)

Given an unambiguous annotation grammar \mathcal{G} and input text w, we can enumerate the matches with preprocessing $O\left(|\mathcal{G}| \times|w|^{3}\right)$ and delay linear in each assignment

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);
}
```

Query: a pattern P given as a context-free grammar with annotated terminals

$$
P:=\text { "find all quoted strings in the program" }
$$

Theorem (A., Jachiet, Muñoz, Riveros, PODS'22)

Given an unambiguous annotation grammar \mathcal{G} and input text w, we can enumerate the matches with preprocessing $O\left(|\mathcal{G}| \times|w|^{3}\right)$ and delay linear in each assignment

- Improves on a quintic preprocessing result [Peterfreund, 2021]

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code

```
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);
}
```

Query: a pattern P given as a context-free grammar with annotated terminals

$$
P:=\text { "find all quoted strings in the program" }
$$

Theorem (A., Jachiet, Muñoz, Riveros, PODS'22)

Given an unambiguous annotation grammar \mathcal{G} and input text w, we can enumerate the matches with preprocessing $O\left(|\mathcal{G}| \times|w|^{3}\right)$ and delay linear in each assignment

- Improves on a quintic preprocessing result [Peterfreund, 2021]
- Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic pushdown annotators)

Conclusion

Summary and conclusion

- Enumerate the captured assignments of d-DNNF set circuits
\rightarrow with preprocessing linear in the d-DNNF
\rightarrow in delay linear in each assignment
\rightarrow in constant delay for constant size
\rightarrow Applies to MSO enumeration on words and trees
\rightarrow Applies to enumeration of the matches of annotated context-free grammars (with more expensive preprocessing)

Summary and conclusion

- Enumerate the captured assignments of d-DNNF set circuits
\rightarrow with preprocessing linear in the d-DNNF
\rightarrow in delay linear in each assignment
\rightarrow in constant delay for constant size
\rightarrow Applies to MSO enumeration on words and trees
\rightarrow Applies to enumeration of the matches of annotated context-free grammars (with more expensive preprocessing)

Future work:

- In-order enumeration
- Linear-time preprocessing on more general context-free grammar classes
- Connect results on updates to incremental maintenance for regular languages (A., Jachiet, Paperman, ICALP'21)

Summary and conclusion

- Enumerate the captured assignments of d-DNNF set circuits
\rightarrow with preprocessing linear in the d-DNNF
\rightarrow in delay linear in each assignment
\rightarrow in constant delay for constant size
\rightarrow Applies to MSO enumeration on words and trees
\rightarrow Applies to enumeration of the matches of annotated context-free grammars (with more expensive preprocessing)

Future work:

- In-order enumeration
- Linear-time preprocessing on more general context-free grammar classes
- Connect results on updates to incremental maintenance for regular languages (A., Jachiet, Paperman, ICALP'21)

References i

Einarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017).
A Circuit-Based Approach to Efficient Enumeration.
In ICALP.
: Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on Trees under Relabelings.
In ICDT.
(Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a).
Constant-Delay Enumeration for Nondeterministic Document Spanners.
In ICDT.

References ii

E Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).
Enumeration on Trees with Tractable Combined Complexity and Efficient Updates.
In PODS.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance Circuits for Trees and Treelike Instances.
In ICALP.
囯 Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C. (2022).
Efficient Enumeration for Annotated Grammars.
In PODS.
Amarilli, A., Jachiet, L., and Paperman, C. (2021).
Dynamic Membership for Regular Languages.
In ICALP.

References iii

嗇 Bagan，G．（2006）．
MSO queries on tree decomposable structures are computable with linear delay．
In CSL．
R Florenzano，F．，Riveros，C．，Ugarte，M．，Vansummeren，S．，and Vrgoc，D．（2018）．
Constant delay algorithms for regular document spanners．
In PODS．
園 Kazana，W．and Segoufin，L．（2013）．
Enumeration of monadic second－order queries on trees．
TOCL，14（4）．
國 Niewerth，M．（2018）．
MSO queries on trees：Enumerating answers under updates using forest algebras．
In LICS．

References iv

固 Peterfreund, L. (2021).
Grammars for document spanners.
In ICDT.

