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The knowledge compilation approach to enumeration

Currently:
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Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪
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Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}
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Circuit restrictions

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no assignment is captured by two inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}
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Set circuits vs factorized representations

A B C

a b c
a1 b′ c′

a2 b′ c′

∪

× ×

× ⟨C : c⟩

⟨A : a⟩ ⟨B : b⟩

∪

⟨A : a1⟩ ⟨A : a2⟩

×

⟨B : b′⟩ ⟨C : c′⟩

• Set circuits can be seen as factorized representations
→ Not necessarily well-typed, height and/or assignment size may be non-constant

• Determinism: unions are disjoint
• Decomposability: no duplicate attribute names in products
• Structuredness: always the same decomposition of the attributes
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Main results

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay
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Proof techniques



Proof overview
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x z
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x z
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circuit

Indexing
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x z

Indexed
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Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates
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Normalization: handling ∅

×

×

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate
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Normalization: handling empty assignments
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• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:

• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21



Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g
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Applications



Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)
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Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’15, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]
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Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)
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Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width structured DNNFs
→ Actually equivalent to MSO evaluation on text; generalizes to trees
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Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on a quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators)
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Conclusion



Summary and conclusion

• Enumerate the captured assignments of d-DNNF set circuits
→ with preprocessing linear in the d-DNNF
→ in delay linear in each assignment
→ in constant delay for constant size

→ Applies to MSO enumeration on words and trees
→ Applies to enumeration of the matches of annotated context-free grammars (with

more expensive preprocessing)

Future work:

• In-order enumeration
• Linear-time preprocessing on more general context-free grammar classes
• Connect results on updates to incremental maintenance for regular languages

(A., Jachiet, Paperman, ICALP’21)
Thanks for your attention!
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