Probabilistic Databases: Introduction

EDBT-Intended Summer School

Antoine Amarilli

Numerous sources of **uncertain data**:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automated processes (information extraction, NLP, etc.)
- Imperfect human judgment
- $\cdot\,$ Lies, opinions, rumors

Recently-Learned Facts witter

Refresh

instance	iteration	date learned	
oliguric_phase is a non-disease physiological condition	1111	06-jul-2018	97.5 🏠 ኛ
alaska_airlines is an organization	1114	25-aug-2018	100.0 🏠 ኛ
heating_insurance_policies is a physical action	1111	06-jul-2018	90.4 🏠 ኛ
<u>n98_12</u> is a term used by physicists	1111	06-jul-2018	94.2 🖓 🖏
dragonball_zsuper_butoden_2 is software	1111	06-jul-2018	100.0 🏠 ኛ
<u>general_motors_corp_</u> is a company <u>headquartered in</u> the city <u>detroit</u>	1116	12-sep-2018	100.0 🏠 🖏
the companies <u>herald</u> and <u>la compete with</u> eachother	1111	06-jul-2018	99.6 🏖 ኛ
stanford hired montgomery	1111	06-jul-2018	98.4 🏖 ኛ
kimn is a radio station in the city denver	1116	12-sep-2018	100.0 🏖 ኛ
<u>radisson_sas_portman_hotel</u> is a park <u>in the city central_london</u>	1116	12-sep-2018	100.0 🏠 🖏

Never-ending Language Learning (NELL, CMU), http://rtw.ml.cmu.edu/rtw/kbbrowser/

Subject	Predicate	Object	Confidence
Elvis Presley	diedOnDate	1977-08-16	97.91%
Elvis Presley	isMarriedTo	Priscilla Presley	97.29%
Elvis Presley	influences	Carlo Wolff	96.25%

YAGO, https://www.yago-knowledge.org/

Other use case: Information extraction from scientific articles

From GeoDeepDive / xDD

Other use case: Crowdsourcing

All HITs

1-10 of 2751 Results

Sort by:	HITs	Available	(most first) 🔹 😡	Show all details	Hide all details	1 2 3 4 5 >	<u>Next</u> ^{>>} <u>Last</u>
Transcrib	oe data	<u>a</u>				View a HIT	in this group
Reques	ster:	p9r	HIT Expiration Date:	Nov 18, 2015 (2	3 hours 59 minutes)	Reward:	\$0.03
			Time Allotted:	45 minutes			
Descrip	otion:	Please t	ranscribe the data from th	e following images			
Keywo	rds:	<u>transcril</u>	be, <u>handwriting</u> , <u>data en</u>	try			
Qualifi	cation	ns Requi	red:				
HIT app	oroval	rate (%)	is greater than 90				
Classify I	Receip	<u>t</u>				<u>View a HIT</u>	in this group
Reques	ster:	Jon Brel	ig HIT Expiration Da	te: Nov 24, 201	5 (6 days 23 hours)	Reward:	\$0.02
			Time Allotted:	20 minutes			
Descrip	Description: Looking at a receipt image, identify the business of the receipt						
Keywo	rds:		<u>receipt, categorize, tran</u> a <u>tion, jon, brelig, prod</u>	scribe, extract, da	ata, entry, transcrip	otion, <u>text</u> ,	<u>easy</u> ,

Other use case: Speech recognition and OCR

Different types of uncertainty

- The uncertainty can be **qualitative** (e.g., NULL)...
- ... or quantitative (e.g., 95%)

Further, there are different types:

- Unknown value: NULL in an RDBMS
- Alternative between several possibilities: either A or B or C
- Imprecision on a numeric value: a sensor gives a value that is an approximation of the actual value
- · Confidence in a fact as a whole: cf. information extraction
- Structural uncertainty: the schema of the data itself is uncertain
- Missing data: we know that some data is missing (open-world semantics)

Naive solution

Forget about uncertainty, or apply a threshold after each computation step

Naive solution

Forget about uncertainty, or apply a threshold after each computation step

Ideal solution

Instead of neglecting uncertainty, let's manage it rigorously throughout the whole process of answering a query

Naive solution

Forget about uncertainty, or apply a threshold after each computation step

Ideal solution

Instead of neglecting uncertainty, let's manage it rigorously throughout the whole process of answering a query

Also: it leads to interesting theoretical questions! :)

Possible world: A regular (deterministic) relational database

Possible world: A **regular** (deterministic) relational database **Uncertain database:** (Compact) representation of a **set of possible worlds**

Possible world: A regular (deterministic) relational database
 Uncertain database: (Compact) representation of a set of possible worlds
 Probabilistic database: (Compact) representation of a probability distribution over possible worlds,

Possible world: A regular (deterministic) relational database
 Uncertain database: (Compact) representation of a set of possible worlds
 Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:

finite: a set of possible worlds, each with their probability **continuous:** more complicated

Possible world: A regular (deterministic) relational database
 Uncertain database: (Compact) representation of a set of possible worlds
 Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:

finite: a set of possible worlds, each with their probability **continuous:** more complicated

date	teacher	
08	Diego	0.9
09	Paolo	0.8
09	Floris	0.7

- Present the most common models of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)

- Present the most common models of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - $\rightarrow\,$ Central task: evaluating queries over probabilistic databases

- Present the most common **models** of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - $\rightarrow~$ Central task: evaluating queries over probabilistic databases
- Present the **dichotomy** by Dalvi and Suciu on the complexity of PQE for UCQs

- Present the most common **models** of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - $\rightarrow~$ Central task: evaluating queries over probabilistic databases
- Present the **dichotomy** by Dalvi and Suciu on the complexity of PQE for UCQs
- Present the **intensional approach** to PQE and its connections to **knowledge compilation** and **circuit classes**

- Present the most common **models** of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - $\rightarrow~$ Central task: evaluating queries over probabilistic databases
- Present the **dichotomy** by Dalvi and Suciu on the complexity of PQE for UCQs
- Present the **intensional approach** to PQE and its connections to **knowledge compilation** and **circuit classes**
- Present treewidth-based approaches to efficient PQE

- Present the most common **models** of probabilistic data
 - \rightarrow Focus on the **simplest one**, tuple-independent databases (TID)
- Introduce the **probabilistic query evaluation** problem (PQE):
 - $\rightarrow~$ Central task: evaluating queries over probabilistic databases
- Present the **dichotomy** by Dalvi and Suciu on the complexity of PQE for UCQs
- Present the **intensional approach** to PQE and its connections to **knowledge compilation** and **circuit classes**
- Present treewidth-based approaches to efficient PQE
- Give an overview of **other topics** on probabilistic databases

Probabilistic Databases: Models and PQE

EDBT-Intended Summer School

Antoine Amarilli

Relational model by example

Guest			
id	name	email	
1	John Smith	john.smith@gmail.com	
2	Alice Black	alice@black.name	
3	John Smith	john.smith@ens.fr	

Reservation				
id	guest	room	arrival	nights
1	1	504	2022-01-01	5
2	2	107	2022-01-10	3
3	3	302	2022-01-15	6
4	2	504	2022-01-15	2
5	2	107	2022-01-30	1

Formally:

 A database schema D maps each relation name to an arity (we add attribute names in our examples) Formally:

- A database schema D maps each relation name to an arity (we add attribute names in our examples)
- A database instance over database schema \mathcal{D} maps each relation name R of \mathcal{D} with arity k to a set of k-tuples

Formally:

- A database schema D maps each relation name to an arity (we add attribute names in our examples)
- A database instance over database schema \mathcal{D} maps each relation name R of \mathcal{D} with arity k to a set of k-tuples

We can write tuples as table rows or as ground facts:

	Guest			
id	name	email		
1	John Smith	john.smith@gmail.com		
2	Alice Black	alice@black.name		
3	John Smith	john.smith@ens.fr		

Guest(1, John Smith, john.smith@gmail.com), Guest(2, Alice Black, alice@black.name), Guest(3, John Smith, john.smith@ens.fr)

- \cdot A **query** is an arbitrary **function** over database instances over a fixed schema \mathcal{D}
- We only study **Boolean queries**, i.e., queries returning only **true** or **false**

- \cdot A query is an arbitrary function over database instances over a fixed schema ${\cal D}$
- We only study **Boolean queries**, i.e., queries returning only **true** or **false**
- Example of query languages:
 - Conjunctive queries (CQ)
 - $\cdot ~ \exists \bigwedge \cdots$: existentially quantified conjunctions of atoms
 - $\cdot \ \ Q: \exists x \, y \, z \, x' \, y' \, \, Guest(x,y,z) \land \, Guest(x',y',z)$

- \cdot A query is an arbitrary function over database instances over a fixed schema ${\cal D}$
- We only study **Boolean queries**, i.e., queries returning only **true** or **false**
- Example of query languages:
 - Conjunctive queries (CQ)
 - $\cdot ~ \exists \bigwedge \cdots$: existentially quantified conjunctions of atoms
 - $Q : \exists x \, y \, z \, x' \, y' \, Guest(x, y, z) \land Guest(x', y', z)$
 - \cdot Unions of conjunctive queries (UCQ)
 - $\cdot \bigcup \exists \bigwedge \cdots$: unions of CQs

- \cdot A query is an arbitrary function over database instances over a fixed schema ${\cal D}$
- We only study **Boolean queries**, i.e., queries returning only **true** or **false**
- Example of query languages:
 - Conjunctive queries (CQ)
 - $\cdot ~ \exists \bigwedge \cdots$: existentially quantified conjunctions of atoms
 - $\cdot \ \ Q: \ \exists x \, y \, z \, x' \, y' \ \ Guest(x,y,z) \land \ Guest(x',y',z)$
 - \cdot Unions of conjunctive queries (UCQ)
 - $\cdot \bigcup \exists \bigwedge \cdots$: unions of CQs
 - First-Order logic (FO)
 - Monadic-Second Order logic (MSO)

TID

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher
08	Diego
09	Paolo
09	Floris

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

- The **simplest** model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

 \rightarrow Assume **independence** between facts

- Each fact is **kept** or **discarded** with the indicated probability
- Probabilistic choices are **independent** across facts

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%		
09	Paolo	80%		
09	Floris	70%		

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%		
09	Floris	70%		

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%		

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the **probability** of this possible world?

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the **probability** of this possible world?

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the **probability** of this possible world?

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the **probability** of this possible world?

90% × (100% – 80%)

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are **independent** across facts

date	teacher		date	teacher
08	Diego	90%	08	Diego
09	Paolo	80%	09	Paolo
09	Floris	70%	09	Floris

What's the probability of this possible world?

90% imes (100% - 80%) imes 70%

ightarrow the **possible worlds** are the subsets of facts of *I*

ightarrow the **possible worlds** are the subsets of facts of *I*

ightarrow always keeping facts with **probability 1**

ightarrow the **possible worlds** are the subsets of facts of *I*

ightarrow always keeping facts with **probability 1**

Formally, for a TID I, the **probability** of $J \subseteq I$ is:

ightarrow the **possible worlds** are the subsets of facts of *I*

ightarrow always keeping facts with **probability 1**

Formally, for a TID I, the **probability** of $J \subseteq I$ is:

- product of $\Pr(F)$ for each fact F kept in J
- product of 1 Pr(F) for each fact F not kept in J

- Let *N* be the number of facts
- There are 2^N possible worlds

- Let *N* be the number of facts
- There are 2^N possible worlds
- The probability of a possible world is a product which involves a factor $\Pr(F_i)$ or $1 \Pr(F_i)$ for each fact F_1, \ldots, F_N

- Let *N* be the number of facts
- There are 2^N possible worlds
- The probability of a possible world is a product which involves a factor $\Pr(F_i)$ or $1 \Pr(F_i)$ for each fact F_1, \ldots, F_N
- → The sum of these probabilities is the result of **expanding** the expression: $(\Pr(F_1) + (1 - \Pr(F_1))) \times \cdots \times (\Pr(F_N) + (1 - \Pr(F_N)))$

- Let *N* be the number of facts
- There are 2^N possible worlds
- The probability of a possible world is a product which involves a factor $\Pr(F_i)$ or $1 \Pr(F_i)$ for each fact F_1, \ldots, F_N
- → The sum of these probabilities is the result of **expanding** the expression: $(\Pr(F_1) + (1 - \Pr(F_1))) \times \cdots \times (\Pr(F_N) + (1 - \Pr(F_N)))$
 - All factors are **equal to 1**, so the probabilities **sum to 1**

"The class is taught by Jane or Joe or no one but not both"

<i>U</i> ₁
teacher
Jane
$\pi(U_1) = 80\%$

9/25

U ₁	U ₂
teacher	teacher
Jane	Joe
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%

<i>U</i> ₁	U ₂	U ₃
teacher	teacher	teacher
Jane	Joe	
$\pi(U_1)=$ 80%	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

<i>U</i> ₁	U ₂	U_3
teacher	teacher	teacher
Jane	Joe	
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%
		teacher
		Jane Joe

<i>U</i> ₁	U ₂	U_3	
teacher	teacher	teacher	
Jane	Joe		
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%	
		teacher	
		Jane 10% Joe	

<i>U</i> ₁	U ₂	U	3
teacher	teacher	teache	er
Jane	Joe		
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%	
		teachei	r
		Jane	10%
		Joe	80%

"The class is taught by Jane or Joe or no one but **not both**"

U ₁	U ₂	U	3
teacher	teacher	teache	r
Jane	Joe		
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%	
		teacher	,
		Jane Joe	10% 80%

 \rightarrow We **cannot** forbid that both teach the class!

BID

- A more expressive framework than TID
- Call some attributes the **key** (<u>underlined</u>)

- A more expressive framework than TID
- Call some attributes the **key** (<u>underlined</u>)

		U
day	<u>time</u>	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U
day	<u>time</u>	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

• The **blocks** are the sets of tuples with the same key

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U
day	<u>time</u>	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

- The **blocks** are the sets of tuples with the same key
- Each **tuple** has a probability

- A more expressive framework than TID
- Call some attributes the key (underlined)

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- The **blocks** are the sets of tuples with the same key
- Each **tuple** has a probability

- A more expressive framework than TID
- Call some attributes the key (<u>underlined</u>)

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- The **blocks** are the sets of tuples with the same key
- Each tuple has a probability
- + Probabilities must $sum \, up$ to ≤ 1 in each block

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	РМ	Paolo	1%

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

• For each **block**:

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	РМ	Paolo	1%

- For each **block**:
 - Pick **one** fact according to probabilities

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each **block**:
 - Pick **one** fact according to probabilities
 - + Possibly **no** fact if probabilities sum up to < 1

		U	
day	<u>time</u>	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each **block**:
 - Pick **one** fact according to probabilities
 - Possibly **no** fact if probabilities sum up to < 1
- \rightarrow Do choices **independently** in each block

		U			U	
day	<u>time</u>	teacher		day	<u>time</u>	teacher
09 09	AM AM	Paolo Floris	80% 10%			
09 09	PM PM	Floris Paolo	70% 1%			

- For each **block**:
 - Pick **one** fact according to probabilities
 - Possibly **no** fact if probabilities sum up to < 1
- $\rightarrow\,$ Do choices independently in each block

		U			U	
day	<u>time</u>	teacher		day	<u>time</u>	teacher
09 09	AM AM	Paolo Floris	80% 10%	09 09	AM AM	Paolo Floris
09 09	PM PM	Floris Paolo	70% 1%			

- For each **block**:
 - Pick **one** fact according to probabilities
 - Possibly **no** fact if probabilities sum up to < 1
- \rightarrow Do choices **independently** in each block

		U			U	
day	<u>time</u>	teacher		day	<u>time</u>	teacher
09	AM	Paolo	80%	09	AM	Paolo
09	AM	Floris	10%	09	AM	Floris
09	PM	Floris	70%	09	PM	Floris
09	PM	Paolo	1%	09	PM	Paolo

- For each **block**:
 - Pick **one** fact according to probabilities
 - Possibly **no** fact if probabilities sum up to < 1
- \rightarrow Do choices **independently** in each block

• Each **TID** can be expressed as a BID...

BID captures TID

- Each **TID** can be expressed as a BID...
 - \rightarrow Take <u>all</u> <u>attributes</u> as **key**
 - \rightarrow Each block contains a single fact

BID captures TID

- $\cdot\,$ Each TID can be expressed as a BID...
 - \rightarrow Take <u>all</u> <u>attributes</u> as **key**
 - $\rightarrow~$ Each block contains a single fact

	U	
<u>date</u>	<u>teacher</u>	
09	Diego	90%
09	Paolo	80%
09	Floris	70%

"The class is taught by exactly two among Diego, Paolo, Floris."

"The class is taught by exactly two among Diego, Paolo, Floris."

 U_1 teacher
Diego
Paolo $\pi(U_1) = 80\%$

"The class is taught by exactly two among Diego, Paolo, Floris."

<i>U</i> ₁	U ₂	
teacher	teacher	
Diego	Diego	
Paolo	Floris	
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	

"The class is taught by exactly two among Diego, Paolo, Floris."

U ₁	U ₂	U_3
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

"The class is taught by exactly two among Diego, Paolo, Floris."

<i>U</i> ₁	U ₂	U_3
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

 \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**

"The class is taught by exactly two among Diego, Paolo, Floris."

<i>U</i> 1	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi(U_1)=80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

- \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**
- \rightarrow If **teacher** is not a key, then **only one fact**

"The class is taught by exactly two among Diego, Paolo, Floris."

<i>U</i> 1	U ₂	<i>U</i> ₃
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi(U_1) = 80\%$	$\pi(U_2)=$ 10%	$\pi(U_3)=$ 10%

- \rightarrow If **teacher** is a key **<u>teacher</u>**, then **TID**
- \rightarrow If **teacher** is not a key, then **only one fact**
- ightarrow We **cannot represent** this probabilistic instance as a BID

Boolean c-tables

- Set of Boolean variables x_1, x_2, \ldots
- Each fact has a condition: Variables, Boolean operators

- Set of Boolean variables x_1, x_2, \ldots
- Each fact has a condition: Variables, Boolean operators

date	teacher	room	
04	Jane	Amphi A	$\neg x_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg X_2 \land \neg X_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

- **x**₁ Jane is sick
- **x**₂ Amphi B is available

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable x_i to o or 1

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to **true** under ν
- The **probability** of a valuation ν is:

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The **probability** of a valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The **probability** of a valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The **probability** of a valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$
 - $\rightarrow~$ This is like TIDs

A (Boolean) **pc-table** is:

- a database I where each tuple is annotated by a Boolean function on variables x_i
- a **probability** p_i that each variable x_i is true (assuming independence)

- A Boolean valuation ν of the variables maps each variable x_i to o or 1
- The valuation ν defines a **possible world** I_{ν} of I containing the tuples whose Boolean function evaluates to **true** under ν
- The **probability** of a valuation ν is:
 - Product of the p_i for the x_i with $\nu(x_i) = 1$
 - Product of the $1 p_i$ for the x_i with $\nu(x_i) = 0$
 - $\rightarrow~$ This is like TIDs
- The **probability** of a possible world $J \subseteq I$ is the total probability of the valuations ν such that $I_{\nu} = J$

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$\neg x_2 \wedge x_1$

x₁ Jane is sick

x₂ Amphi B is available

date	teacher	room	
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$\neg x_2 \land x_1$

x₁ Jane is sick

ightarrow Probability 10%

x₂ Amphi B is available

ightarrow Probability 20%

pc-table semantics example

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$x_2 \wedge \neg x_1$
11	Joe	Amphi B	$x_2 \wedge x_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$\neg x_2 \land x_1$

pc-table semantics example

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$x_2 \wedge x_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

• Take ν mapping x_1 to 0 and x_2 to 1

pc-table semantics example

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$x_2 \wedge \neg x_1$
11	Joe	Amphi B	$x_2 \wedge x_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν :

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- Probability of ν : (100% 10%) × 20% = 18%

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%
04	Jane	Amphi A	$\neg X_1$
04	Joe	Amphi A	<i>X</i> ₁
11	Jane	Amphi B	$X_2 \land \neg X_1$
11	Joe	Amphi B	$X_2 \wedge X_1$
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$
11	Joe	Amphi C	$ eg x_2 \wedge x_1$

- Take ν mapping x_1 to 0 and x_2 to 1
- Probability of ν : (100% 10%) × 20% = 18%
- Evaluate the **conditions**

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%	date	teacher	room
04	Jane	Amphi A	¬X ₁	04	Jane	Amphi A
04	Joe	Amphi A	<i>X</i> ₁	04	Joe	Amphi A
11	Jane	Amphi B	$x_2 \wedge \neg x_1$	11	Jane	Amphi B
11	Joe	Amphi B	$X_2 \wedge X_1$	11	Joe	Amphi B
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$	11	Jane	Amphi C
11	Joe	Amphi C	$\neg x_2 \land x_1$	11	Joe	Amphi C

- Take ν mapping x_1 to 0 and x_2 to 1
- **Probability** of ν : (100% 10%) × 20% = 18%
- Evaluate the **conditions**

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%	date	teacher	room
04	Jane	Amphi A	¬X ₁	04	Jane	Amphi A
04	Joe	Amphi A	<i>X</i> ₁	04	Joe	Amphi A
11	Jane	Amphi B	$x_2 \wedge \neg x_1$	11	Jane	Amphi B
11	Joe	Amphi B	$X_2 \wedge X_1$	11	Joe	Amphi B
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$	11	Jane	Amphi C
11	Joe	Amphi C	$\neg x_2 \land x_1$	11	Joe	Amphi C

- Take ν mapping x_1 to 0 and x_2 to 1
- Probability of ν : (100% 10%) × 20% = 18%
- Evaluate the **conditions**
- $\rightarrow\,$ Probability of possible world: sum over the valuations

date	teacher	room	<i>X</i> ₁ : 10%, <i>X</i> ₂ : 20%	date	teacher	room
04	Jane	Amphi A	¬X ₁	04	Jane	Amphi A
04	Joe	Amphi A	<i>X</i> ₁	04	Joe	Amphi A
11	Jane	Amphi B	$x_2 \wedge \neg x_1$	11	Jane	Amphi B
11	Joe	Amphi B	$X_2 \wedge X_1$	11	Joe	Amphi B
11	Jane	Amphi C	$\neg x_2 \land \neg x_1$	11	Jane	Amphi C
11	Joe	Amphi C	$\neg x_2 \land x_1$	11	Joe	Amphi C

- Take ν mapping x_1 to 0 and x_2 to 1
- Probability of ν : (100% 10%) × 20% = 18%
- $\cdot\,$ Evaluate the conditions
- ightarrow Probability of possible world: sum over the valuations
 - ightarrow Here: **only** this valuation, **18%**

- pc-tables capture **TIDs**:
 - $\rightarrow~$ Simply give each fact its own **probability value**

- pc-tables capture **TIDs**:
 - \rightarrow Simply give each fact its own **probability value**
- pc-tables capture **BIDs**:
 - $\rightarrow\,$ Make a $decision\,tree$ for every block

- pc-tables capture **TIDs**:
 - \rightarrow Simply give each fact its own **probability value**
- pc-tables capture **BIDs**:
 - $\rightarrow\,$ Make a $decision\,tree$ for every block
- In fact pc-tables can express arbitrary probability distributions

- pc-tables capture **TIDs**:
 - \rightarrow Simply give each fact its own **probability value**
- pc-tables capture **BIDs**:
 - $\rightarrow\,$ Make a decision tree for every block
- In fact pc-tables can express arbitrary probability distributions
- Further, they are a **strong representation system**: the union, product, etc., of two pc-tables, can be easily represented as a pc-table

- pc-tables capture **TIDs**:
 - \rightarrow Simply give each fact its own **probability value**
- pc-tables capture **BIDs**:
 - $\rightarrow~$ Make a decision~tree for every block
- In fact pc-tables can express arbitrary probability distributions
- Further, they are a **strong representation system**: the union, product, etc., of two pc-tables, can be easily represented as a pc-table

Yet, in the rest of the talk, we focus on $\mathsf{TIDs} \to \mathsf{easier}$ to characterize tractable queries

PQE

How can we evaluate a query Q over a probabilistic database D?

How can we evaluate a query Q over a probabilistic database D?

• Probability that **Q** holds over **D**:

$$\Pr(D \models Q) = \sum_{\substack{D' \subseteq D \\ D' \models Q}} \Pr(D')$$

• Intuitively: the probability that Q holds is the probability of drawing a possible world $D' \subseteq D$ which satisfies Q

How can we evaluate a query Q over a probabilistic database D?

• Probability that **Q** holds over **D**:

$$\Pr(D \models Q) = \sum_{\substack{D' \subseteq D \\ D' \models Q}} \Pr(D')$$

• Intuitively: the probability that Q holds is the probability of drawing a possible world $D' \subseteq D$ which satisfies Q

Probabilistic query evaluation (PQE) problem for a query **Q** over TIDs: given a TID, compute the probability that **Q** holds

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

• It is **one minus** the probability of not having such a tuple

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is **one minus** the probability of not having such a tuple
- Not having such a tuple is the **independent AND** of not having each tuple

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is **one minus** the probability of not having such a tuple
- Not having such a tuple is the independent AND of not having each tuple
- $\cdot\,$ So the result is $1-(1-0.5)\times(1-0.7)=0.85$

• We fix a Boolean query, e.g., $\exists xy \ R(x), S(x, y), T(y)$

- We fix a Boolean query, e.g., $\exists xy \ R(x), S(x, y), T(y)$
- We are given a **tuple-independent database** *D*, i.e., a relational database where facts are independent and have probabilities

- We fix a Boolean query, e.g., $\exists xy \ R(x), S(x,y), T(y)$
- We are given a **tuple-independent database** *D*, i.e., a relational database where facts are independent and have probabilities
- Can we **compute** the total probability of the possible worlds of **D** that satisfy **Q**?

- We fix a Boolean query, e.g., $\exists xy \ R(x), S(x, y), T(y)$
- We are given a **tuple-independent database** *D*, i.e., a relational database where facts are independent and have probabilities
- Can we **compute** the total probability of the possible worlds of **D** that satisfy **Q**?
- Note that we study **data complexity**, i.e., *Q* is **fixed** and the input is *D*

• Consider all **possible worlds** of the input

- Consider all **possible worlds** of the input
- Run the query over **each possible world**

- Consider all **possible worlds** of the input
- Run the query over **each possible world**
- Sum the **probabilities** of all worlds that satisfy the query

Naive probabilistic query evaluation example

	TID	D	Query Q			
in	out		$R(x,y) \wedge R(y,z)$			
А	В	0.8				
В	С	0.2				

Naive probabilistic query evaluation example

	TID	D	Query Q
in	out		$R(x,y) \wedge R(y,z)$
А	В	0.8	
В	С	0.2	

Possible worlds and probabilities:

in	out	in	out	in	out		in	out
А	В	A	В	A	В		А	В
В	С	В	С	В	С		В	С
0.8	× 0.2	(1-0	.8) × 0.2	0.8 ×	(1 – 0.2)	(1 –	0.8)	\times (1 – 0.2)

Naive probabilistic query evaluation example

	TID	D	Query Q			
in	out		$R(x,y) \wedge R(y,z)$			
А	В	0.8				
В	С	0.2				

Possible worlds and probabilities:

in	out	in	out	in	out		in	out
Α	В	A	В	A	В		А	В
В	С	В	С	В	С		В	С
0.8	× 0.2	(1-0.	8) × 0.2	0.8 ×	(1-0.2)	(1 – (o.8)	× (1 – 0.2)

Total probability that Q holds: $0.8 \times 0.2 = 0.16$.

• Naive evaluation is always possible

- Naive evaluation is **always possible**
- However, it takes **exponential time** in general
 - \rightarrow Even if the query output has **few possible worlds**!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)

- Naive evaluation is always possible
- However, it takes **exponential time** in general
 - $\rightarrow\,$ Even if the query output has few possible worlds!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)
- $\cdot\,$ In fact, naive evaluation is in **#P**
 - → Can be expressed (up to normalization) as the **number of accepting paths** of a **nondeterministic PTIME Turing machine**
 - \rightarrow To see why: guess a possible world (with the right probabilities) and check the query

- Naive evaluation is **always possible**
- However, it takes **exponential time** in general
 - $\rightarrow\,$ Even if the query output has few possible worlds!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)
- $\cdot\,$ In fact, naive evaluation is in **#P**
 - → Can be expressed (up to normalization) as the **number of accepting paths** of a **nondeterministic PTIME Turing machine**
 - ightarrow To see why: guess a possible world (with the right probabilities) and check the query
- Probabilistic query evaluation is **computationally intractable** so it is unlikely that we can beat naive evaluation **in general**

- Naive evaluation is **always possible**
- However, it takes **exponential time** in general
 - $\rightarrow\,$ Even if the query output has few possible worlds!
 - \rightarrow Feasible if the **input** has few possible worlds (few tuples)
- $\cdot\,$ In fact, naive evaluation is in **#P**
 - → Can be expressed (up to normalization) as the **number of accepting paths** of a **nondeterministic PTIME Turing machine**
 - ightarrow To see why: guess a possible world (with the right probabilities) and check the query
- Probabilistic query evaluation is **computationally intractable** so it is unlikely that we can beat naive evaluation **in general**
 - $\rightarrow~$ But some queries admit an efficient algorithm!

Some examples of PQE

• What is the probability of the query: $\exists x \ R(x)$?

Some examples of PQE

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"

Some examples of PQE

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - $\rightarrow\,$ It is:

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - $\rightarrow\,$ It is: 1 -

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)}$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get:

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - \cdot We get: 1 –

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - We get: 1 \prod_a

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - \cdot We get: 1 \prod_a (1 -

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - We get: 1 $\prod_a \left(1 \Pr(\textit{R}(a)) \times \right)$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - We get: 1 $\prod_a \left(1 \Pr(R(a)) \times \left(1 \prod_a \left(1 \Pr(R(a)) \times \left(1 \prod_a (1 \prod_a \left(1 \prod_a \left(1 \prod_a (1 \prod_a (1$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: **case disjunction** based on the value of **x**
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b n))$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: 1 $\prod_a \left(1 \Pr(R(a)) \times \left(1 \prod_b \left(1 \prod_b \right)\right)\right)$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b))))))$

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b)))))$
 - Make sure you understand **why** everything is independent in this case!

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b)))))$
 - Make sure you understand **why** everything is independent in this case!
- What is the probability of the query: $\exists xy \ R(x), S(x,y), T(y)$?

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b)))))$
 - Make sure you understand **why** everything is independent in this case!
- What is the probability of the query: $\exists xy \ R(x), S(x, y), T(y)$?
 - This one is **#P-hard**!

- What is the probability of the query: $\exists x \ R(x)$?
 - It asks: "do we have an R-fact?"
 - \rightarrow It is: $1 \prod_{R(a)} (1 \Pr(R(a)))$
- What is the probability of the query: $\exists xy \ R(x), S(x, y)$?
 - It asks: "is there an R-fact which also has an S-fact?"
 - Idea: case disjunction based on the value of x
 - We get: $1 \prod_a (1 \Pr(R(a)) \times (1 \prod_b (1 \Pr(S(a, b)))))$
 - Make sure you understand **why** everything is independent in this case!
- What is the probability of the query: $\exists xy \ R(x), S(x,y), T(y)$?
 - This one is **#P-hard**!

Research question: can we characterize the easy cases and prove hardness otherwise?

Probabilistic Databases: The Dichotomy of PQE

EDBT-Intended Summer School

Antoine Amarilli

What is the complexity of PQE(Q) depending on the query Q?

What is the complexity of PQE(Q) depending on the query Q?

 \rightarrow Recall that we study **data complexity**, i.e., **Q** is **fixed** and the input is the **data**

What is the complexity of PQE(Q) depending on the query Q?

 \rightarrow Recall that we study **data complexity**, i.e., **Q** is **fixed** and the input is the **data**

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

What is the complexity of PQE(Q) depending on the query Q?

ightarrow Recall that we study **data complexity**, i.e., **Q** is **fixed** and the input is the **data**

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

We will present the **dichotomy** of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

What is the complexity of PQE(Q) depending on the query Q?

 $\rightarrow\,$ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

We will present the **dichotomy** of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

What is the complexity of PQE(Q) depending on the query Q?

 $\rightarrow\,$ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

We will present the **dichotomy** of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two
- Large dichotomy: arbitrary unions of conjunctive queries

What is the complexity of PQE(Q) depending on the query Q?

 $\rightarrow\,$ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

- For **Q** : **R**(**x**) the problem is **easy** (PTIME)
- For *Q* : *R*(*x*), *S*(*x*, *y*), *T*(*y*) the problem is hard (#P-hard)

We will present the **dichotomy** of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two
- Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard

• Conjunctive query (CQ): existentially quantified conjunction of atoms

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
 - We represent the queries as graphs: R(x,y), S(y,z) is $x \longrightarrow y \longrightarrow z$

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
 - We represent the queries as graphs: R(x, y), S(y, z) is $x \longrightarrow y \longrightarrow z$
- Self-join-free CQ: only one edge of each color (no repeated color)

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
 - We represent the queries as graphs: R(x,y), S(y,z) is $x \longrightarrow y \longrightarrow z$
- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])

Let **Q** be an arity-two self-join-free CQ:

- If **Q** is a conjunction of stars, then PQE(**Q**) is in **PTIME**
- Otherwise, PQE(**Q**) is **#P-hard**

- A star is a CQ with a separator variable that occurs in all edges
- A conjunction of stars is a conjunction of one or several stars

$$x \xrightarrow{\sim} y \xrightarrow{w}_{z} u \longrightarrow v$$

The following is **not a star**: $x \longrightarrow y \longrightarrow z \longrightarrow w$

Proving the small dichotomy (upper bound, 1)

 $x \xrightarrow{\sim} y \xrightarrow{w}_{z} u \xrightarrow{w}_{z}$ How to solve PQE(Q) for Q a conjunction of stars?

Proving the small dichotomy (upper bound, 1)

- We consider each connected component separately
- \rightarrow Independent conjunction over the connected components

Proving the small dichotomy (upper bound, 1)

- We consider each connected component separately
- $\rightarrow~$ Independent conjunction over the connected components

x __ y <_ _

- We can test all possible values of the **separator variable**
- ightarrow Independent disjunction over the values of the separator

Proving the small dichotomy (upper bound, 2)

х 🔁 а

- For every match, we consider every **other variable** separately
- \rightarrow Independent conjunction over the variables

х 🔁 а

- For every match, we consider every **other variable** separately
- \rightarrow Independent conjunction over the variables

 $b_3 \supset a$

- We consider every value for the other variable
- \rightarrow Independent disjunction over the possible assignments

х 🔁 а

For every match, we consider every other variable separately
 → Independent conjunction over the variables

 $b_3 \supset a$

 $\rightarrow~$ Independent disjunction over the possible assignments

- $\rightarrow~$ Independent conjunction over the facts
- \rightarrow Just read the probability of the ground fact R(b, a).

Every arity-two self-join-free CQ which is **not a conjunction of stars** contains a pattern essentially like:

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

Every arity-two self-join-free CQ which is **not a conjunction of stars** contains a pattern essentially like:

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

We can **add facts with probability 1** to instances so the other facts are always satisfied, and focus on **only these three facts**

ightarrow Let us show #P-hardness of this query

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
- Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Build an **instance** I_{ϕ} from ϕ :

Idea:

• Valuations of ϕ correspond to possible worlds of I_{ϕ}

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Build an **instance** I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}
- A valuation satisfies ϕ iff the corresponding possible world satisfies Q

Reduce from **#PP2DNF** to PQE(**Q**) for CQ **Q** : $x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Build an **instance** I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}
- A valuation satisfies ϕ iff the corresponding possible world satisfies Q
- → The probability of Q on I_{ϕ} is the number of accepting valuations of ϕ , divided by the number of valuations $(2^{-|Vars|})$

How can we extend beyond arity-two queries?

Theorem ([Dalvi and Suciu, 2007])

Let **Q** be a arity-two self-join-free CQ:

- If **Q** is a conjunction of stars hierarchical, then PQE(**Q**) is in **PTIME**
- Otherwise, PQE(Q) is #P-hard

• A query with **no variables** is hierarchical

- A query with **no variables** is hierarchical
- A conjunction of hierarchical connected components is hierarchical

- A query with **no variables** is hierarchical
- A conjunction of hierarchical connected components is hierarchical
- Induction case: for a connected CQ:
 - It must have a **separator variable** occurring in all atoms
 - If we remove this separator variable, the query must be hierarchical

- A query with **no variables** is hierarchical
- A conjunction of hierarchical connected components is hierarchical
- Induction case: for a connected CQ:
 - It must have a **separator variable** occurring in all atoms
 - If we remove this separator variable, the query must be hierarchical

 $\exists x (\exists y (\exists z R_1(x, y, z)) \land (\exists z' R_2(x, y, z'))) \land (\exists y' \exists z'' R_3(x, y', z'')) \land (\exists u (\exists v R_4(u, v)) \land (\exists w R_5(u, v, w)))$

How does the proof change?

How does the proof change?

- Upper bound: we can generalize the algorithm
 - Independent AND of connected components
 - Independent OR of possible choices for the separator variable
 - Both cases use self-join-freeness!

How does the proof change?

- Upper bound: we can generalize the algorithm
 - Independent AND of connected components
 - Independent OR of possible choices for the separator variable
 - Both cases use self-join-freeness!
- Lower bound: a non-hierarchical expression contains a pattern like

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

How does the proof change?

- Upper bound: we can generalize the algorithm
 - Independent AND of connected components
 - Independent OR of possible choices for the separator variable
 - Both cases use self-join-freeness!
- Lower bound: a non-hierarchical expression contains a pattern like

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

Via **equivalent characterization**: a non-hierarchical query has two variables **x** and **y** and:

- One atom containing **x** and **y**
- One atom containing **x but not y**
- One atom containing **y** but not **x**

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let **Q** be a UCQ:

- If \boldsymbol{Q} is handled by a complicated algorithm then $\mathrm{PQE}(\boldsymbol{Q})$ is in **PTIME**
- Otherwise, PQE(Q) is #P-hard

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let **Q** be a UCQ:

- If Q is handled by a complicated algorithm then PQE(Q) is in PTIME
- Otherwise, PQE(Q) is #P-hard

This result is **far more challenging**:

- Upper bound:
 - \cdot an algorithm generalizing the previous case with inclusion-exclusion
 - many unpleasant details (e.g., a ranking transformation)

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let **Q** be a UCQ:

- If Q is handled by a complicated algorithm then PQE(Q) is in PTIME
- Otherwise, PQE(Q) is #P-hard

This result is **far more challenging**:

- Upper bound:
 - $\cdot\,$ an algorithm generalizing the previous case with <code>inclusion-exclusion</code>
 - many unpleasant details (e.g., a ranking transformation)
- Lower bound: hardness proof on minimal cases where the algorithm does not work (very challenging)

Dalvi, N. and Suciu, D. (2007). The dichotomy of conjunctive queries on probabilistic structures. In *Proc. PODS*. Dalvi, N. and Suciu, D. (2012). The dichotomy of probabilistic inference for unions of conjunctive queries. *J. ACM*, 59(6).

Probabilistic Databases: Provenance Circuits and Knowledge Compilation

EDBT-Intended Summer School

Antoine Amarilli

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no

Example: query Q: $\exists xyz \ R(x,y) \land S(y,z)$

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no

Example: query Q: $\exists xyz \ R(x,y) \land S(y,z)$

R		S	
а	b	b	С
a'	b		

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no
- Boolean provenance of *Q* on *I*: a Boolean circuit over the facts of *I* accepting exactly the subsets of *I* where *Q* is true

Example: query Q: $\exists xyz \ R(x, y) \land S(y, z)$

R			5
а	b	b	С
a'	b		

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no
- Boolean provenance of *Q* on *I*: a Boolean circuit over the facts of *I* accepting exactly the subsets of *I* where *Q* is true

Example: query *Q*: $\exists xyz \ R(x,y) \land S(y,z)$

R			S		
а	b		b	С	
a'	b				

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational algebra query with a semiring expression

Figure 5: Why-prov. and provenance polynomials

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational algebra query with a semiring expression

Figure 5: Why-prov. and provenance polynomials

What is the difference?

• We only care about Boolean provenance

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational algebra query with a semiring expression

Figure 5: Why-prov. and provenance polynomials

What is the difference?

- We only care about Boolean provenance
 - \rightarrow No **multiplicity** of facts or derivations
- Circuit representation: more concise

- **Previously**, for a tractable query Q: we can solve PQE(Q)
- Now, let's see the intensional approach
 - Compute a circuit representing the Boolean provenance of Q
 - For tractable Q the circuit falls in a tractable class and we can compute the probability

- Previously, for a tractable query **Q**: we can solve PQE(**Q**)
- Now, let's see the intensional approach
 - Compute a circuit representing the Boolean provenance of Q
 - For tractable Q the circuit falls in a tractable class and we can compute the probability
- Why do that?
 - More modular, no numerical computations, connect to known circuit classes
 - · Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

- Previously, for a tractable query **Q**: we can solve PQE(**Q**)
- Now, let's see the intensional approach
 - Compute a circuit representing the Boolean provenance of Q
 - For tractable Q the circuit falls in a tractable class and we can compute the probability
- Why do that?
 - More modular, no numerical computations, connect to known circuit classes
 - Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation:

O(**n**²) algorithms

Setting A \longrightarrow Task 1 Task 2 Setting B \longrightarrow Task 1 Task 2

- Previously, for a tractable query **Q**: we can solve PQE(**Q**)
- Now, let's see the intensional approach
 - Compute a circuit representing the Boolean provenance of Q
 - For tractable Q the circuit falls in a tractable class and we can compute the probability
- Why do that?
 - More modular, no numerical computations, connect to known circuit classes
 - Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation: $O(n^2)$ algorithms

Setting A
$$\longrightarrow$$
 Task 1
Task 2
Setting B \longrightarrow Task 1
Task 2
Task 2

With knowledge compilation:

O(n) algorithms

- Previously, for a tractable query **Q**: we can solve PQE(**Q**)
- Now, let's see the intensional approach
 - Compute a circuit representing the Boolean provenance of Q
 - For tractable Q the circuit falls in a tractable class and we can compute the probability
- Why do that?
 - More modular, no numerical computations, connect to known circuit classes
 - Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation: $O(n^2)$ algorithms

Setting A
$$\longrightarrow$$
 Task 1
Task 2
Setting B \longrightarrow Task 1
Task 2

With knowledge compilation:

O(n) algorithms

Circuit —	───→ Task 1
Circuit —	───→ Task 2

Boolean circuit representations

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- ates: V A ¬
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- ates: (\vee) (\land) (\neg)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- gates: (V) (A) (¬)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$...

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:
- ates: (\checkmark) (\land) (\neg)
- Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

• Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME

• Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME (disjunction of all matches)

• Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)

Theorem

For any ACQ, given an instance, we can construct its Boolean provenance in linear time

• Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)

Theorem

For any ACQ, given an instance, we can construct its Boolean provenance in linear time (following a join tree)

• Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME (disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)

Theorem

For any ACQ, given an instance, we can construct its Boolean provenance in linear time (following a join tree)

• Regular path queries (RPQ), Datalog, etc.

Theorem [Deutch et al., 2014]

For any Datalog query, given an instance, we can get its Boolean provenance in PTIME

Computing Boolean provenance: practice

- **ProvSQL:** PostgreSQL extension to compute provenance
- Keeps track of the **provenance** of query results as a **circuit**

Computing Boolean provenance: practice

- ProvSQL: PostgreSQL extension to compute provenance
- Keeps track of the provenance of query results as a circuit

```
id. name. citu FROM personnel:
a3nm=# SELECT
                   citu
       name
 iд
     John
               l New York
     Paul
             l New York
                Paris
     Dave
     Fllen
                Berlin
    Maqdalen | Paris
 6 | Nancu
               l Paris
 7 | Susan
               I Berlin
(7 rows)
a3nm=# SELECT *,formula(provenance(), 'personnel_id') FROM
(SELECT DISTINCT city FROM personnel) t;
  citu
              formula
Paris
           (3 @ 5 @ 6)
Berlin
          1 (4
              (±)
New York | (1 ⊕ 2)
(3 rows)
```

You can run it! https://github.com/PierreSenellart/provsql

• We have fixed the **Boolean query Q**

• We have fixed the Boolean query Q

Example: query Q: $\exists xyz \ R(x,y) \land S(y,z)$

- We have fixed the **Boolean query Q**
- We are given an input **TID** *I* with a probability *P* of each fact

Example: query Q: $\exists xyz \ R(x, y) \land S(y, z)$

- We have fixed the Boolean query Q
- We are given an input **TID** *I* with a probability *P* of each fact

Examp	le: (que	ry Q :				
∃xyz R((x , y	') ^	S(y, z)				
-		F	?	_			5
_	а	b			b	С	

n

- We have fixed the Boolean query Q
- We are given an input **TID** *I* with a probability *P* of each fact

Example: query *Q*: $\exists xyz \ R(x, y) \land S(y, z)$

	R			S		5
а	b	80%		b	С	40%
<i>a</i> ′	b	90%				

- We have fixed the Boolean query Q
- We are given an input **TID** *I* with a probability *P* of each fact
- We have computed a Boolean provenance circuit of Q on I

Example: query Q: $\exists xyz \ R(x, y) \land S(y, z)$

	R			5	5
а	b	80%	b	С	40%
a'	b	90%			

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I
- Each variable of the circuit (fact of the database) has an independent probability

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I
- Each variable of the circuit (fact of the database) has an independent probability

- We have fixed the **Boolean query Q**
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I
- Each variable of the circuit (fact of the database) has an independent probability
- Each **Boolean valuation** of the circuit corresponds to a **possible world J** of **I** and the circuit evaluates to **true** iff...

Example: query Q:

 $\exists xyz \ R(x,y) \land S(y,z)$

	R	2		5	5
а	b	80%	b	С	40%
a'	b	90%			

- We have fixed the **Boolean query Q**
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I
- Each variable of the circuit (fact of the database) has an independent probability
- Each **Boolean valuation** of the circuit corresponds to a **possible world J** of **I** and the circuit evaluates to **true** iff... **J** satisfies **Q**

Example: query Q:

 $\exists xyz \ R(x,y) \land S(y,z)$

	R	2		5	5
а	b	80%	b	С	40%
a'	b	90%			

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts

- P(x) = 40%
- P(y) = 50%

Computing the probability of the circuit

- We now have a **Boolean provenance circuit** over the **database facts**
- Each variable x is true independently with probability P(x) (probability of the fact)

- *P*(*x*) = 40%
- P(y) = 50%

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- *P*(*y*) = 50%

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true **independently** with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

Х

• P(y) = 50%

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true **independently** with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- *P*(*y*) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - $\cdot\,$ The inputs to the $\wedge\text{-gate}$ are independent

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

- P(x) = 40%
- *P*(*y*) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - $\cdot\,$ The inputs to the $\wedge\text{-gate}$ are independent

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

- P(x) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - $\cdot \,$ The inputs to the $\wedge \text{-gate}$ are independent
 - The \neg -gate has probability 1 P(input)

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true **independently** with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - $\cdot \,$ The inputs to the $\wedge \text{-gate}$ are independent
 - The \neg -gate has probability 1 P(input)

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - The inputs to the $\wedge\text{-gate}$ are independent
 - The \neg -gate has probability 1 P(input)
 - The ∨-gate has mutually exclusive inputs

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?

- *P*(*x*) = 40%
- P(y) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - The inputs to the $\wedge\text{-gate}$ are independent
 - The \neg -gate has probability 1 P(input)
 - The ∨-gate has mutually exclusive inputs

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability P(x) (probability of the fact)
- What is the probability that the circuit evaluates to true?
- √ 80%
 60% ∧ 20%
 x y
 - P(x) = 40%
 - *P*(*y*) = 50%

- In general, **#P-hard** (harder than SAT)
- Here it's **easy**:
 - The inputs to the $\wedge\text{-}\mathsf{gate}$ are $\mathsf{independent}$
 - The \neg -gate has probability 1 P(input)
 - The ∨-gate has mutually exclusive inputs
- $\rightarrow\,$ The circuit that we constructed falls in a restricted class satisfying such conditions

- V gates always have **mutually** exclusive inputs

- V gates always have **mutually** exclusive inputs
- (A) gates are all on independent inputs

... make probability computation **easy**!

• (A) gates are all on independent inputs

$$P(g) := 1 - P(g')$$

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ g_1' & & & \\ & & & \\ g_1' & & & & \\ & & & \\ & & & & \\ g_1' & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\$$

$$P(g) := 1 - P(g')$$

... make probability computation **easy**!

 g'_1

$$P(g) := 1 - P(g')$$

 g'
 $P(g) := 1 - P(g')$
 $P(g) := P(g'_1) + P(g'_2)$

• V gates always have **mutually** exclusive inputs

• (A) gates are all on independent inputs

- V gates always have **mutually** exclusive inputs
- (A) gates are all on independent inputs

$$P(g) := 1 - P(g')$$

$$\mathit{P}(g) \mathrel{\mathop:}= \mathit{P}(g_1') + \mathit{P}(g_2')$$

... make probability computation **easy**!

- V gates always have **mutually** exclusive inputs
- (A) gates are all on independent inputs

$$r(g) := 1 - r(g)$$

D(a)

D(a)

$$P(g) := P(g'_1) + P(g'_2)$$

$$P(g) := P(g'_1) \times P(g'_2)$$

... make probability computation **easy**!

•
$$\bigcirc$$
 gates only have variables as
inputs gates only have variables as
• \bigcirc gates always have mutually
exclusive inputs g'_1 g'_2 $P(g) := 1 - P(g')$
• \bigcirc gates always have mutually
 g'_1 g'_2 $P(g) := P(g'_1) + P(g'_2)$
• \bigcirc gates are all on
independent inputs g'_1 g'_2 $P(g) := P(g'_1) \times P(g'_2)$

 $\rightarrow\,$ d-DNNFs are one of many tractable circuit classes in knowledge compilation

- Read-once formula: Boolean formula where each variable occurs at most once
 - \rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation

- Read-once formula: Boolean formula where each variable occurs at most once
 - \rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs

- Read-once formula: Boolean formula where each variable occurs at most once
 - $\rightarrow\,$ If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs
- Restricted classes of **d-DNNF**:
 - **dec-DNNF:** disjunction gates are of the form $\mathbf{x} \land \alpha \lor \neg \mathbf{x} \land \beta$
 - **d-SDNNF:** the circuit uses variables in a **structured** way

- Read-once formula: Boolean formula where each variable occurs at most once
 - \rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs
- Restricted classes of **d-DNNF**:
 - **dec-DNNF:** disjunction gates are of the form $\mathbf{x} \land \alpha \lor \neg \mathbf{x} \land \beta$
 - d-SDNNF: the circuit uses variables in a structured way

For any hierarchical self-join-free CQ Q, given a TID I,

For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a read-once formula representing the Boolean provenance of Q on I

For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a read-once formula representing the Boolean provenance of Q on I

Proof: just follow the previous algorithm and its independent ANDs and ORs

For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a read-once formula representing the Boolean provenance of Q on I

Proof: just follow the previous algorithm and its independent ANDs and ORs

Corollary

For any hierarchical self-join-free CQ **Q**, the problem PQE(**Q**) is in **linear time** up to the cost of arithmetic operations

Other results for the intensional approach

- For UCQs, results in [Jha and Suciu, 2013]:
 - · Characterization of the queries for which we can compute read-once provenance

- For UCQs, results in [Jha and Suciu, 2013]:
 - Characterization of the queries for which we can compute read-once provenance
 - Characterization of the queries for which we can compute **OBDD provenance**

- For UCQs, results in [Jha and Suciu, 2013]:
 - Characterization of the queries for which we can compute read-once provenance
 - Characterization of the queries for which we can compute **OBDD provenance**
 - Sufficient conditions to have FBDDs and d-DNNFs

- For UCQs, results in [Jha and Suciu, 2013]:
 - · Characterization of the queries for which we can compute read-once provenance
 - Characterization of the queries for which we can compute OBDD provenance
 - Sufficient conditions to have FBDDs and d-DNNFs
- For some safe UCQs we cannot compute provenance as **DLDDs** [Beame et al., 2017]

- For UCQs, results in [Jha and Suciu, 2013]:
 - Characterization of the queries for which we can compute read-once provenance
 - Characterization of the queries for which we can compute OBDD provenance
 - Sufficient conditions to have FBDDs and d-DNNFs
- For some safe UCQs we cannot compute provenance as **DLDDs** [Beame et al., 2017]
- For some safe UCQs we cannot compute **d-SDNNFs** [Bova and Szeider, 2017]

- For UCQs, results in [Jha and Suciu, 2013]:
 - Characterization of the queries for which we can compute read-once provenance
 - Characterization of the queries for which we can compute OBDD provenance
 - Sufficient conditions to have FBDDs and d-DNNFs
- For some safe UCQs we cannot compute provenance as **DLDDs** [Beame et al., 2017]
- For some safe UCQs we cannot compute **d-SDNNFs** [Bova and Szeider, 2017]
- Good candidate: d-DNNF, or d-D (allows arbitrary negations)
 - \rightarrow Note: it's **open** whether d-DNNFs and d-Ds are indeed different :)

- For UCQs, results in [Jha and Suciu, 2013]:
 - Characterization of the queries for which we can compute read-once provenance
 - Characterization of the queries for which we can compute OBDD provenance
 - Sufficient conditions to have FBDDs and d-DNNFs
- For some safe UCQs we cannot compute provenance as **DLDDs** [Beame et al., 2017]
- For some safe UCQs we cannot compute **d-SDNNFs** [Bova and Szeider, 2017]
- Good candidate: d-DNNF, or d-D (allows arbitrary negations)
 - \rightarrow Note: it's **open** whether d-DNNFs and d-Ds are indeed different :)
- **Crux of the problem:** capture arithmetic operations on probabilities with a d-D circuit, specifically **inclusion-exclusion**; see [Monet, 2020]

- Amarilli, A., Capelli, F., Monet, M., and Senellart, P. (2019).
 Connecting knowledge compilation classes and width parameters. In *ToCS*, number 2019.
- Beame, P., Li, J., Roy, S., and Suciu, D. (2017).
 Exact model counting of query expressions: Limitations of propositional methods. *TODS*, 42(1):1.
- Bova, S. and Szeider, S. (2017).
 Circuit treewidth, sentential decision, and query compilation.
 In PODS. ACM.

References ii

Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014). Circuits for Datalog provenance. In *ICDT*.

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
 Provenance semirings.

In PODS.

📄 Jha, A. and Suciu, D. (2013).

Knowledge compilation meets database theory: Compiling queries to decision diagrams.

Theory of Computing Systems, 52(3).

📄 Monet, M. (2020).

Solving a special case of the intensional vs extensional conjecture in probabilistic databases.

In PODS.

📄 Olteanu, D. and Huang, J. (2008).

Using OBDDs for efficient query evaluation on probabilistic databases. In *SUM*. Springer.

OBDD for a Boolean query **Q** on database **I**: ordered decision diagram on the facts of **I** to decide whether **Q** holds

 $\boldsymbol{Q}:\pi_{\emptyset}(\boldsymbol{R}\bowtie\boldsymbol{S}\bowtie\boldsymbol{T})$

R		S			-	Г	
а	r ₁		а	а	S 1	v	t ₁
b	r ₂		b	V	S ₂	W	t ₂
С	<i>r</i> ₃		b	w	S 3	b	t ₃

$$Q:\pi_{\emptyset}(R\bowtie S\bowtie T)$$

R		S			т		
а	<i>r</i> ₁		а	а	S ₁	v	<i>t</i> ₁
b	r ₂		b	V	S ₂	W	t ₂
С	r ₃		b	w	S 3	b	t ₃

$$Q:\pi_{\emptyset}(R\bowtie S\bowtie T)$$

R		-	S			т	
а	<i>r</i> ₁	-	а	а	S ₁	v	<i>t</i> ₁
b	r ₂		b	V	S ₂	W	t ₂
С	r ₃		b	w	S 3	b	t ₃

$$Q:\pi_{\emptyset}(R\bowtie S\bowtie T)$$

	R		S			-	Г
а	<i>r</i> ₁		а	а	S ₁	v	<i>t</i> ₁
b	r ₂		b	V	S ₂	W	t ₂
С	r ₃		b	w	S 3	b	t ₃

$$Q:\pi_{\emptyset}(R\bowtie S\bowtie T)$$

R		S			-	Г	
а	<i>r</i> ₁		а	а	S ₁	v	t ₁
b	r ₂		b	v	S ₂	W	t ₂
С	r ₃		b	w	S ₃	b	t ₃

$$Q:\pi_{\emptyset}(R\bowtie S\bowtie T)$$

R		S			-	Г	
а	<i>r</i> ₁		а	а	S ₁	v	t ₁
b	r ₂		b	v	S ₂	W	t ₂
С	r ₃		b	w	S ₃	b	t ₃

OBDD for a Boolean query **Q** on database **I**: ordered decision diagram on the facts of **I** to decide whether **Q** holds

 $Q: \pi_{\emptyset}(R \bowtie S \bowtie T)$ R S 0 t₁ r_1 S₁ а а а V b $b v s_2$ r_2 W ta b b 0 r_3 W S₃

ightarrow We can compute the probability of an OBDD **bottom-up**

Probabilistic Databases: Width-Based Approaches

EDBT-Intended Summer School

Antoine Amarilli

OK, PQE is *intractable* for essentially all queries. What now?

OK, PQE is **intractable** for essentially all queries. What now?

- We could restrict the **structure** of instances: instead of arbitrary graphs, focus on:
 - probabilistic words
 - probabilistic trees
 - probabilistic graphs with **bounded treewidth**

OK, PQE is **intractable** for essentially all queries. What now?

- We could restrict the **structure** of instances: instead of arbitrary graphs, focus on:
 - $\cdot \ \text{probabilistic} \ \textbf{words}$
 - probabilistic trees
 - probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
- \rightarrow Could the same be true in the **probabilistic case**?

OK, PQE is *intractable* for essentially all queries. What now?

- We could restrict the **structure** of instances: instead of arbitrary graphs, focus on:
 - probabilistic words
 - probabilistic trees
 - probabilistic graphs with **bounded treewidth**
- In the non-probabilistic case, this ensures tractability for complex queries
- \rightarrow Could the same be true in the **probabilistic case**?

Theorem (A., Bourhis, Senellart, 2015, 2016)

Fix a bound $k \in \mathbb{N}$ and fix a Boolean monadic second-order query Q. Then PQE(Q) is in PTIME on input TID instances of treewidth $\leq k$

OK, PQE is *intractable* for essentially all queries. What now?

- We could restrict the **structure** of instances: instead of arbitrary graphs, focus on:
 - $\cdot \ \text{probabilistic} \ \textbf{words}$
 - probabilistic trees
 - probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
- \rightarrow Could the same be true in the **probabilistic case**?

Theorem (A., Bourhis, Senellart, 2015, 2016)

Fix a bound $k \in \mathbb{N}$ and fix a Boolean monadic second-order query Q. Then PQE(Q) is in PTIME on input TID instances of treewidth $\leq k$

Conversely, there is a query **Q** for which PQE(**Q**) is intractable on **any** input instance family of unbounded treewidth (under some technical assumptions)

"Is there both a pink and a blue node?"

"Is there both a pink and a blue node?"

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

"Is there both a pink and a blue node?"

Result: TRUE/FALSE indicating if the word **w** satisfies the query **Q**

Computational complexity as a function of **w** (the query **Q** is **fixed**)

- $P_{\odot}(x)$ means "x is blue"; also $P_{\odot}(x)$, $P_{\bigcirc}(x)$
- $x \rightarrow y$ means "x is the predecessor of y"

$\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc$

- $P_{\odot}(x)$ means "x is blue"; also $P_{\odot}(x)$, $P_{\bigcirc}(x)$
- $x \rightarrow y$ means "x is the predecessor of y"
- Propositional logic: formulas with AND $\wedge,$ OR $\vee,$ NOT \neg
 - $P_{\bigcirc}(x) \land P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"

$\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc$

- $P_{\odot}(x)$ means "x is blue"; also $P_{\odot}(x)$, $P_{\odot}(x)$
- $x \rightarrow y$ means "x is the predecessor of y"
- Propositional logic: formulas with AND $\wedge,$ OR $\vee,$ NOT \neg
 - $P_{\odot}(x) \wedge P_{\odot}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier ∃ and universal quantifier ∀
 - $\exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$ means "There is both a pink and a blue node"

$\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc$

- $P_{\odot}(x)$ means "x is blue"; also $P_{\odot}(x)$, $P_{\bigcirc}(x)$
- $x \rightarrow y$ means "x is the predecessor of y"
- Propositional logic: formulas with AND $\wedge,$ OR $\vee,$ NOT \neg
 - $P_{\odot}(x) \wedge P_{\odot}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier ∃ and universal quantifier ∀
 - $\cdot \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$ means "There is both a pink and a blue node"
- Monadic second-order logic (MSO): adds quantifiers over sets
 - · ∃S $\forall x \ S(x)$ means "there is a set S containing every element x"
 - Can express transitive closure $x \rightarrow^* y$, i.e., "x is before y"
 - $\forall x P_{\bigcirc}(x) \Rightarrow \exists y P_{\bigcirc}(y) \land x \rightarrow^{*} y$ means "There is a blue node after every pink node"

Translate the query **Q** to a **deterministic word automaton** Alphabet: $\bigcirc \bigcirc \bigcirc \qquad w: \bigcirc -\bigcirc -\bigcirc \bigcirc \qquad Q: \exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Translate the query Q to a deterministic word automatonAlphabet: \bigcirc w: \bigcirc \bigcirc Q: $\exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

• States: $\{\perp, B, P, \top\}$

Translate the query Q to a deterministic word automatonAlphabet: \bigcirc w: \bigcirc \bigcirc Q: $\exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$

Translate the query Q to a deterministic word automatonAlphabet: \bigcirc w: \bigcirc \bigcirc Q: $\exists x y P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

1

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

w: <u>○</u>_____

Q: $\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$N: \bigcirc_{\perp} P \bigcirc_{-} O_{-} \bigcirc_{-} O_{-} O_{-}$$

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$N: \bigcirc_{\perp} P P$$

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: OOO

$$N: \bigcirc_{\perp} P P \top$$

$$Q: \exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Translate the query **Q** to a **deterministic word automaton**

Alphabet: OOO

$$\mathsf{Q:} \exists x \ y \ \mathsf{P}_{\mathsf{O}}(x) \land \mathsf{P}_{\mathsf{O}}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Word automata

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$w: \bigcirc_{\perp} P P \overset{\frown}{} - \overset{\bullet}{} - \overset{\bullet}{}$$

Q:
$$\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

(

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Theorem (Büchi, 1960)

MSO and word automata have the same expressive power on words

Word automata

Translate the query **Q** to a **deterministic word automaton**

Alphabet: 🔿 🔵 🔵

$$w: \bigcirc_{\perp} P P \overset{\frown}{} - \overset{\bullet}{} - \overset{\bullet}{}$$

Q:
$$\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples): $\perp \bigcirc_{P} P \bigcirc_{\top} \top \bigcirc_{\top}$

Theorem (Büchi, 1960)

MSO and word automata have the same expressive power on words

Corollary

Query evaluation of MSO on words is in linear time (in data complexity)

Database: a **tree** *T* where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Database: a **tree** *T* where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x
 ightarrow y$ means "x is the parent of y"

"Is there both a pink and a blue node?" ∃x y P_☉(x) ∧ P_☉(y)

Database: a **tree** *T* where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

- **Query Q**: in monadic second-order logic (MSO)
- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x
 ightarrow y$ means "x is the parent of y"

"Is there both a pink and a blue node?" ∃x y P_⊙(x) ∧ P_⊙(y)

Result: YES/NO indicating if the tree **T** satisfies the query **Q**

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples):

$$\begin{array}{c} \bigwedge^{P} & \bigwedge^{\top} & \bigwedge^{\perp} \\ P & \bot & P & B & \bot & \bot \end{array}$$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples):

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples):

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\bot, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \bot \quad \bigcirc P \quad \bigcirc B$
- Transitions (examples):

Theorem ([Thatcher and Wright, 1968])

MSO and tree automata have the same expressive power on trees

Let's now define the **PQE problem** for MSO queries on trees:

Let's now define the **PQE problem** for MSO queries on trees:

Database: a **tree** *T* where each node has a probability of **keeping its color** (vs taking the **default color** ()

Let's now define the **PQE problem** for MSO queries on trees:

Database: a **tree** *T* where each node has a probability of **keeping its color** (vs taking the **default color** \bigcirc)

Query Q: in monadic second-order logic (MSO)

 $\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Let's now define the **PQE problem** for MSO queries on trees:

Database: a **tree** *T* where each node has a probability of **keeping its color** (vs taking the **default color** \bigcirc)

Query *Q*: in monadic second-order logic (MSO)

 $\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Result: **probability** that the probabilistic tree T satisfies the query Q

Let's now define the **PQE problem** for MSO queries on trees:

Database: a **tree** *T* where each node has a probability of **keeping its color** (vs taking the **default color** \bigcirc)

Query Q: in monadic second-order logic (MSO)

 $\exists x \ y \ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Result: **probability** that the probabilistic tree T satisfies the query Q

Theorem

For any fixed **MSO query Q**, the problem PQE(**Q**) on trees is in **linear time** assuming constant-time arithmetics

A valuation of a tree decides whether to keep (1) or discard (0) node labels

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2, 3, 7 \mapsto 1, \ast \mapsto 0\}$

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2, 7 \mapsto 1, * \mapsto 0\}$

Valuation: $\{2, 7 \mapsto 1, * \mapsto 0\}$

Q: "Is there both a pink and a blue node?"

Valuation: $\{2, 3, 7 \mapsto 1, \ast \mapsto 0\}$

Q: "Is there both a pink and a blue node?"

The query **Q** returns **YES**

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$

Q: "Is there both a pink and a blue node?"

The query **Q** returns **NO**

Valuation: $\{2, 7 \mapsto 1, * \mapsto 0\}$

Q: "Is there both a pink and a blue node?"

The query **Q** returns **YES**

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Q: "Is there both a pink and a blue node?"

 \rightarrow This is just a **Boolean provenance circuit** on the "color facts" of the tree nodes!

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Formal definition of provenance circuits:

- Boolean query **Q**, uncertain tree **T**, circuit **C**
- Variable gates of C: nodes of T
- Condition: Let ν be a valuation of T, then $\nu(C)$ iff $\nu(T)$ satisfies Q

Provenance circuits on trees

Theorem

For any bottom-uptree automaton A and input tree T,we can build a BooleanSDNNF provenance circuit of A on T in O(|A| × |T|)

Provenance circuits on trees

Theorem

For any bottom-up we can build a Boolean

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

 States: {⊥, B, P, ⊤}

tree automaton A and input tree T.

SDNNF provenance circuit of A on T in $O(|A| \times |T|)$

• Final: $\{\top\}$

Provenance circuits on trees

Theorem

For any bottom-up we can build a Boolean

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"
- SDNNF provenance circuit of A on T in $O(|A| \times |T|)$ States:• Transitions:oth a pink $\{\bot, B, P, \top\}$ $Q \top$ Final: $\{\top\}$ $P \perp P$

tree automaton A and input tree T.

Theorem

For any bottom-up we can build a Boolean

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"
- SDNNF provenance circuit of A on T in $O(|A| \times |T|)$ States:• Transitions:oth a pink $\{\bot, B, P, \top\}$ $Q \top$ Final: $\{\top\}$ $P \perp P$

tree automaton A and input tree T.

Theorem

For any bottom-up we can build a Boolean

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"
- SDNNF provenance circuit of A on T in $O(|A| \times |T|)$ States:• Transitionoth a pink $\{\bot, B, P, T\}$ Transition

• Final: $\{\top\}$

tree automaton A and input tree T.

• Transitions: $Q^{\top} \qquad Q^{P}$ $P \perp P \perp$

Theorem

For any bottom-up we can build a Boolean

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"
- SDNNF provenance circuit of A on T in $O(|A| \times |T|)$ States:• Transitionoth a pink $\{\bot, B, P, T\}$ Q T

• Final: $\{\top\}$

tree automaton A and input tree T.

• Transitions: $Q^{\top} \qquad Q^{P}$ $P \perp P \perp$

Theorem

For any bottom-up we can build a Boolean

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"

• States: {⊥, *B*, *P*, ⊤}

• Final: $\{\top\}$

tree automaton A and input tree T.

SDNNF provenance circuit of A on T in $O(|A| \times |T|)$

• Transitions: Q^{\top} Q^{P} $P \perp P \perp$

Theorem

For any bottom-up we can build a Boolean

• Alphabet: 🔿 🔵 🔵

В

Ρ

• Automaton: "Is there both a pink and a blue node?"

n

 States: {⊥, B, P, ⊤}

tree automaton A and input tree T.

SDNNF provenance circuit of A on T in $O(|A| \times |T|)$

• **Final:** {⊤}

Theorem

For any bottom-up **unambiguous tree automaton A** and input **tree T**, we can build a Boolean **d-SDNNF provenance circuit** of **A** on **T** in $O(|A| \times |T|)$

- Alphabet: 🔿 🔵 🔵
- Automaton: "Is there both a pink and a blue node?"
- States:
 {⊥, B, P, ⊤}
 Final: {⊤}
- Transitions: $Q^{\top} \qquad Q^{P}$ $P \perp P \perp$

- **DNNF** circuits:
 - $\rightarrow\,$ Negations only at the leaves
 - \rightarrow Conjunctions are between **disjoint** subtrees

- **DNNF** circuits:
 - $\rightarrow\,$ Negations only at the leaves
 - \rightarrow Conjunctions are between **disjoint** subtrees
- Structured circuits
 - $\rightarrow~$ The v-tree follows the ${\color{black}{shape}}$ of the input tree

- **DNNF** circuits:
 - ightarrow Negations only at the **leaves**
 - \rightarrow Conjunctions are between **disjoint** subtrees
- Structured circuits
 - ightarrow The v-tree follows the shape of the input tree
- d-SDNNFs when the input automaton is unambiguous

- **DNNF** circuits:
 - ightarrow Negations only at the **leaves**
 - \rightarrow Conjunctions are between **disjoint** subtrees
- Structured circuits
 - ightarrow The v-tree follows the shape of the input tree
- d-SDNNFs when the input automaton is unambiguous
- Of width bounded by the number of states of the automaton [Capelli and Mengel, 2019]

- **DNNF** circuits:
 - ightarrow Negations only at the **leaves**
 - \rightarrow Conjunctions are between **disjoint** subtrees
- Structured circuits
 - ightarrow The v-tree follows the shape of the input tree
- d-SDNNFs when the input automaton is unambiguous
- Of width bounded by the number of states of the automaton [Capelli and Mengel, 2019]
- \rightarrow Remark: for **words**, we obtain **diagrams** (OBDDs, etc.)

The provenance circuits of automata on trees are...

- **DNNF** circuits:
 - ightarrow Negations only at the **leaves**
 - \rightarrow Conjunctions are between **disjoint** subtrees
- Structured circuits
 - ightarrow The v-tree follows the shape of the input tree
- d-SDNNFs when the input automaton is unambiguous
- Of width bounded by the number of states of the automaton [Capelli and Mengel, 2019]
- \rightarrow Remark: for **words**, we obtain **diagrams** (OBDDs, etc.)

Corollary

For any MSO query **Q**, the problem PQE(**Q**) on probabilistic trees is in **linear time** assuming constant-time arithmetics

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and (k 1)-grids have treewidth k 1

We have shown tractability of PQE on trees; let us extend to bounded treewidth

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and (k 1)-grids have treewidth k 1
- $\rightarrow~\mbox{Treelike}:$ the $\mbox{treewidth}$ is bounded by a $\mbox{constant}$

Treelike data

MSO query

 $\exists x \ y \\ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Treelike data

Theorem ([Courcelle, 1990])

For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can compute in linear time in D whether D satisfies Q

Probabilistic treelike **data**

MSO query

 $\exists x \ y \\ P_{\bigcirc}(x) \land P_{\bigcirc}(y)$

Theorem (A., Bourhis, Senellart, 2015, 2016)

For any fixed Boolean MSO query **Q** and $\mathbf{k} \in \mathbb{N}$, given a database **D** of treewidth $\leq \mathbf{k}$, we can solve the PQE problem in linear time (assuming constant-time arithmetics)

Theorem (A., Bourhis, Senellart, 2016)

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a **first-order** query **Q** such that for any constructible **unbounded-treewidth** family *I* of probabilistic graphs, the PQE problem for **Q** and *I* is **#P-hard** under RP reductions

• **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_k in PTIME

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_k in PTIME
- Under RP reductions: reduce in PTIME with high probability

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_k in PTIME
- Under RP reductions: reduce in PTIME with high probability
- \rightarrow This result does **not** generalize to higher-arity!

Theorem (A., Bourhis, Senellart, 2016)

- **Family:** an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular **closed under subgraphs**
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_k \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_k in PTIME
- Under RP reductions: reduce in PTIME with high probability
- \rightarrow This result does **not** generalize to higher-arity!
- \rightarrow Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014]) and use them for a lower bound

Amarilli, A., Bourhis, P., and Senellart, P. (2015). Provenance circuits for trees and treelike instances. In ICALP.

Amarilli, A., Bourhis, P., and Senellart, P. (2016).

Tractable lineages on treelike instances: Limits and extensions. In *PODS*.

Capelli, F. and Mengel, S. (2019).

Tractable QBF by knowledge compilation.

In STACS.

References ii

Chekuri, C. and Chuzhoy, J. (2014). Polynomial bounds for the grid-minor theorem. In STOC.

📄 Courcelle, B. (1990).

The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. *Inf. Comput.,* 85(1).

- Thatcher, J. W. and Wright, J. B. (1968).
 Generalized finite automata theory with an application to a decision problem of second-order logic.
 Mathematical protocols (1)
 - Mathematical systems theory, 2(1).

Probabilistic Databases: Other Topics and Conclusion

EDBT-Intended Summer School

Antoine Amarilli

Recursive and homomorphism-closed queries

Uniform probabilities

Approximate evaluation

Repairs

Incompleteness: Open-World Query Answering

Incompleteness: NULLs

Summary and directions

Recursive and homomorphism-closed queries

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

 \rightarrow We restrict to **arity-two signatures** (work in progress...)

$$\rightarrow$$
 \leftarrow \checkmark has a homomorphism to \checkmark

• A **homomorphism** from a graph **G** to a graph **G'** maps the vertices of **G** to those of **G'** while preserving the edges

$$\rightarrow$$
 — \checkmark has a homomorphism to \checkmark

• Homomorphism-closed query *Q*: for any graph *G*, if *G* satisfies *Q* and *G* has a homomorphism to *G'* then *G'* also satisfies *Q*

$$\rightarrow$$
 — \checkmark has a homomorphism to \checkmark

- Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q
- Homomorphism-closed queries include **all CQs**, **all UCQs**, some **recursive queries** like **regular path queries** (RPQs), **Datalog**, etc.

$$\rightarrow$$
 — $<$ has a homomorphism to \checkmark

- Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q
- Homomorphism-closed queries include **all CQs**, **all UCQs**, some **recursive queries** like **regular path queries** (RPQs), **Datalog**, etc.
- Queries with **negations** or **inequalities** are not homomorphism-closed

$$\rightarrow$$
 ← $<$ has a homomorphism to \checkmark

- Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q
- Homomorphism-closed queries include **all CQs**, **all UCQs**, some **recursive queries** like **regular path queries** (RPQs), **Datalog**, etc.
- Queries with **negations** or **inequalities** are not homomorphism-closed
- Homomorphism-closed queries can equivalently be seen as **infinite unions of CQs** (corresponding to their models)

We show:

Theorem (A., Ceylan, 2020)

- Either **Q** is equivalent to a tractable UCQ and PQE(**Q**) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**

We show:

Theorem (A., Ceylan, 2020)

- Either **Q** is equivalent to a tractable UCQ and PQE(**Q**) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- The same holds for RPQs, Datalog queries, etc.

We show:

Theorem (A., Ceylan, 2020)

- Either **Q** is equivalent to a tractable UCQ and PQE(**Q**) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- The same holds for RPQs, Datalog queries, etc.
- Example: the **RPQ Q**: $\longrightarrow (\longrightarrow)^* \longrightarrow$

We show:

Theorem (A., Ceylan, 2020)

- Either **Q** is equivalent to a tractable UCQ and PQE(**Q**) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- The same holds for RPQs, Datalog queries, etc.
- Example: the **RPQ Q**: $\longrightarrow (\longrightarrow)^*$
 - It is **not equivalent to a UCQ**: infinite disjunction $\longrightarrow (\longrightarrow)^i \longrightarrow$ for all $i \in \mathbb{N}$

We show:

Theorem (A., Ceylan, 2020)

- Either **Q** is equivalent to a tractable UCQ and PQE(**Q**) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- The same holds for RPQs, Datalog queries, etc.
- Example: the **RPQ Q**: $\longrightarrow (\longrightarrow)^* \longrightarrow$
 - It is **not equivalent to a UCQ**: infinite disjunction $\longrightarrow (\longrightarrow)^i \longrightarrow$ for all $i \in \mathbb{N}$
 - Hence, PQE(Q) is #P-hard

Uniform probabilities

- The PQE problem becomes the **uniform reliability** (UR) problem:
 - \rightarrow UR(**Q**): given a graph, how many of its subgraphs satisfy **Q**

- The PQE problem becomes the **uniform reliability** (UR) problem:
 - $ightarrow \, {
 m UR}({\it Q})$: given a graph, how many of its subgraphs satisfy ${\it Q}$
- \cdot The UR problem reduces to PQE, but no obvious reduction in the other direction

- The PQE problem becomes the **uniform reliability** (UR) problem:
 - $ightarrow \, {
 m UR}({\it Q})$: given a graph, how many of its subgraphs satisfy ${\it Q}$
- The UR problem **reduces** to PQE, but no obvious reduction in the other direction

We limit to **self-join-free CQs** and extend the "small" Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)

Let **Q** be a self-join-free CQ:

- If **Q** is hierarchical, then PQE(**Q**) is in PTIME
- Otherwise, even UR(**Q**) is **#P-hard**

Approximate evaluation

• When it's too hard to compute the exact probability, we can **approximate** it

- When it's too hard to compute the exact probability, we can **approximate** it
- One possibility is to compute a **lower bound** and **upper bound**:
 - $\cdot \ \max(\Pr(\phi), \Pr(\psi)) \qquad \qquad \leq \Pr(\phi \lor \psi) \leq \min(\Pr(\phi) + \Pr(\psi), \mathbf{1})$
 - $\max(0, \Pr(\phi) + \Pr(\psi) 1) \leq \Pr(\phi \land \psi) \leq \min(\Pr(\phi), \Pr(\psi))$ (by duality)
 - $\Pr(\neg \phi) = 1 \Pr(\phi)$ (reminder)

- Pick a random **possible world** according to the fact probabilities:
 - \rightarrow Keep *F* with probability Pr(F) and discard it otherwise
 - ightarrow Repeat for the other variables

- Pick a random **possible world** according to the fact probabilities:
 - \rightarrow Keep **F** with probability Pr(F) and discard it otherwise
 - ightarrow Repeat for the other variables
- + Evaluate the lineage formula ϕ under this valuation

- Pick a random **possible world** according to the fact probabilities:
 - \rightarrow Keep F with probability Pr(F) and discard it otherwise
 - ightarrow Repeat for the other variables
- + Evaluate the lineage formula ϕ under this valuation
- Approximate the probability of the formula ϕ as the **proportion of times** when it was true

- Pick a random **possible world** according to the fact probabilities:
 - \rightarrow Keep F with probability Pr(F) and discard it otherwise
 - ightarrow Repeat for the other variables
- + Evaluate the lineage formula ϕ under this valuation
- Approximate the probability of the formula ϕ as the **proportion of times** when it was true
- **Theoretical guarantees:** on how many samples suffice so that, with high probability, the estimated probability is almost correct

Other method for a **multiplicative approximation**: Karp-Luby algorithm

- Specialized software to compute the probability of a formula: **weighted model counters**
- Examples (ongoing research):
 - **C2d**: http://reasoning.cs.ucla.edu/c2d/download.php
 - d4: https://www.cril.univ-artois.fr/KC/d4.html
 - dsharp: https://bitbucket.org/haz/dsharp

Repairs

- Another kind of uncertainty: we know that the database must satisfy some **constraints** (e.g., functionality)
- The data that we have does **not** satisfy it
- Reason about the ways to **repair** the data, e.g., removing a minimal subset of tuples
- Can we **evaluate queries** on this representation? E.g., is a query true on **every maximal repair**? See, e.g., [Koutris and Wijsen, 2015].

 \rightarrow Tutorial by Jef Wijsen

Incompleteness: Open-World Query Answering

- Most data sources are **incomplete**, e.g., Wikidata
- Idea: see an incomplete data source as representing all possible completions
- A query result is **certain** if it is true on **every possible completion**
- We also assume **constraints** to restrict the possible completions (e.g., IDs and FDs, see Andreas's talk)

Definition of the **open-world query answering** problem (OWQA):

- Given:
 - An incomplete database D
 - + Logical constraints $\boldsymbol{\Sigma}$ on the true state of the world
 - · A query Q
- Determine if **Q** is true in every completion of **D** that satisfies Σ

Definition of the **open-world query answering** problem (OWQA):

- Given:
 - An incomplete database D
 - + Logical constraints $\boldsymbol{\Sigma}$ on the true state of the world
 - · A query Q
- Determine if Q is true in every completion of D that satisfies Σ
- + Equivalently: satisfiability of $D \wedge \Sigma \wedge \neg Q$

Definition of the **open-world query answering** problem (OWQA):

- Given:
 - An incomplete database D
 - + Logical constraints $\boldsymbol{\Sigma}$ on the true state of the world
 - · A query Q
- Determine if Q is true in every completion of D that satisfies Σ
- Equivalently: satisfiability of $D \wedge \Sigma \wedge \neg Q$

Note: We assume that the incomplete database *D* satisfies the constraints. (Otherwise we need to **repair** it.)

- \cdot The OWQA problem can be **undecidable** if we allow **arbitrary first-order logic** for Σ
- It is also undecidable for **common database constraint languages**, e.g., tuple-generating dependencies
- It is **decidable** for **better-behaved** logical fragments, e.g., the **guarded fragment**

- \cdot The OWQA problem can be **undecidable** if we allow **arbitrary first-order logic** for Σ
- It is also undecidable for **common database constraint languages**, e.g., tuple-generating dependencies
- It is **decidable** for **better-behaved** logical fragments, e.g., the **guarded fragment**
- Two main techniques:
 - Forward chaining, aka the "chase": add data to satisfy the constraints:

- \cdot The OWQA problem can be **undecidable** if we allow **arbitrary first-order logic** for Σ
- It is also undecidable for **common database constraint languages**, e.g., tuple-generating dependencies
- It is decidable for better-behaved logical fragments, e.g., the guarded fragment
- Two main techniques:
 - Forward chaining, aka the "chase": add data to satisfy the constraints:
 - If the process **terminates**, use the result to satisfy the query

- \cdot The OWQA problem can be **undecidable** if we allow **arbitrary first-order logic** for Σ
- It is also undecidable for **common database constraint languages**, e.g., tuple-generating dependencies
- It is **decidable** for **better-behaved** logical fragments, e.g., the **guarded fragment**
- Two main techniques:
 - Forward chaining, aka the "chase": add data to satisfy the constraints:
 - If the process **terminates**, use the result to satisfy the query
 - If it is infinite but has bounded treewidth, reason over it, e.g., with automata

- \cdot The OWQA problem can be **undecidable** if we allow **arbitrary first-order logic** for Σ
- It is also undecidable for **common database constraint languages**, e.g., tuple-generating dependencies
- It is **decidable** for **better-behaved** logical fragments, e.g., the **guarded fragment**
- Two main techniques:
 - Forward chaining, aka the "chase": add data to satisfy the constraints:
 - If the process **terminates**, use the result to satisfy the query
 - If it is infinite but has bounded treewidth, reason over it, e.g., with automata
 - Backward chaining, aka "query rewriting": change the query to reflect the constraints

Incompleteness: NULLs

Codd tables, a.k.a. SQL NULLS

Patient	Examin. 1	Examin. 2	Diagnosis
А	23	12	α
В	10	23	\perp_1
С	2	4	γ
D	15	15	\perp_2
Е	\perp_3	17	eta

- Most **simple** form of incomplete database
- Widely used in practice, in DBMS since the mid-1970s!
- $\cdot\,$ All NULLs ($\perp)$ are considered distinct
- Possible world semantics: all possible completions of the table (infinitely many)
- In SQL, three-valued logic, weird semantics:

SELECT * FROM Tel WHERE tel_nr = '333' OR tel_nr <> '333'

Appointment		Illness		
Doctor	Patient		Patient	Diagnosis
D1	А		А	\perp
D2	А			

Let's **join** the two tables...

Appointment		Illness		
Doctor	Patient		Patient	Diagnosis
D1	А		А	\perp
D2	А			

Let's **join** the two tables...

Appointment ⋈ IllnessDoctorPatientDiagnosis

Appointment		Illness		
Doctor	Patient		Patient	Diagnosis
D1	А		А	\perp
D2	А			

Let's **join** the two tables...

Appointment 🖂 Illness				
Doctor Patient		Diagnosis		
D1	А	⊥₁		
D2	А	\perp_2		

_

Appointment		II	Illness	
Doctor	Patient	Patient	Diagnosis	
D1	А	A	1	
D2	А			

Let's **join** the two tables...

Appointment 🖂 Illness				
Doctor	Patient	Diagnosis		
D1	А	⊥1		
D2	А	\perp_2		

- We know that $\perp_1 = \perp_2$, but we cannot represent it
- Simple solution: named nulls aka v-tables
- More expressive solution: c-tables

Summary and directions

- Probabilistic database model: TIDs, facts have independent probabilities
 - $\rightarrow\,$ Also more expressive models: BIDs, pc-tables

- Probabilistic database model: **TIDs**, facts have independent probabilities
 - ightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
 - \rightarrow Research question: for which queries is PQE tractable?

- Probabilistic database model: TIDs, facts have independent probabilities \rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
 → Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
 - ightarrow Extends to a more complex dichotomy on UCQs

- Probabilistic database model: TIDs, facts have independent probabilities \rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases

 A Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs
- We can solve PQE for hierarchical self-join-free CQs with **d-DNNF circuits**
 - $\rightarrow\,$ This is open for UCQs: intensional-extensional conjecture

- Probabilistic database model: TIDs, facts have independent probabilities \rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases

 A Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs
- We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits \rightarrow This is open for UCQs: intensional-extensional conjecture
- We can make all queries in MSO tractable by bounding the instance treewidth \rightarrow And MSO is intractable if you do not bound treewidth (under some conditions)

- Probabilistic database model: TIDs, facts have independent probabilities \rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases

 A Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs
- We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits \rightarrow This is open for UCQs: intensional-extensional conjecture
- We can make all queries in MSO tractable by bounding the instance treewidth \rightarrow And MSO is intractable if you do not bound treewidth (under some conditions)
- Extensions: homomorphism-closed queries, uniform reliability...

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

- Infinite domains [Carmeli et al., 2021]
- PQE under updates [Berkholz and Merz, 2021]
- Open-world probabilistic databases [Ceylan et al., 2021]
- Active probabilistic databases [Drien et al., 2022]

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

- Infinite domains [Carmeli et al., 2021]
- PQE under updates [Berkholz and Merz, 2021]
- Open-world probabilistic databases [Ceylan et al., 2021]
- Active probabilistic databases [Drien et al., 2022]
- \cdot (Others? talk to me :))

• **Reusability** of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...

- **Reusability** of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
 - → Conjecture: for any homomorphism-closed query **Q**, given an instance, the **uniform reliability problem** for **Q** is either #P-hard or PTIME
 - \rightarrow Working on **unbounded queries**, UCQ case also **open** [Kenig and Suciu, 2021]

- **Reusability** of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
 - → Conjecture: for any homomorphism-closed query **Q**, given an instance, the **uniform reliability problem** for **Q** is either #P-hard or PTIME
 - \rightarrow Working on **unbounded queries**, UCQ case also **open** [Kenig and Suciu, 2021]
- Practical implementation: **ProvSQL**, but what about aggregates? numerical imprecision? approximations?
 - \rightarrow Can we compute **multiplicative approximations** for **recursive queries**?

- **Reusability** of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
 - → Conjecture: for any homomorphism-closed query **Q**, given an instance, the **uniform reliability problem** for **Q** is either #P-hard or PTIME
 - \rightarrow Working on **unbounded queries**, UCQ case also **open** [Kenig and Suciu, 2021]
- Practical implementation: **ProvSQL**, but what about aggregates? numerical imprecision? approximations?
 - \rightarrow Can we compute **multiplicative approximations** for **recursive queries**?
- Connections to knowledge compilation and intensional-extensional conjecture
 - \rightarrow Can we compute the **provenance** of tractable UCQs in a tractable formalism, e.g., **d-Ds**?

- **Reusability** of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
 - → Conjecture: for any homomorphism-closed query **Q**, given an instance, the **uniform reliability problem** for **Q** is either #P-hard or PTIME
 - \rightarrow Working on **unbounded queries**, UCQ case also **open** [Kenig and Suciu, 2021]
- Practical implementation: **ProvSQL**, but what about aggregates? numerical imprecision? approximations?
 - \rightarrow Can we compute **multiplicative approximations** for **recursive queries**?
- Connections to knowledge compilation and intensional extensional conjecture
 → Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?
- Combining the **query-based** and **structure-based** approaches

- **Reusability** of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
 - → Conjecture: for any homomorphism-closed query **Q**, given an instance, the **uniform reliability problem** for **Q** is either #P-hard or PTIME
 - \rightarrow Working on **unbounded queries**, UCQ case also **open** [Kenig and Suciu, 2021]
- Practical implementation: **ProvSQL**, but what about aggregates? numerical imprecision? approximations?
 - \rightarrow Can we compute **multiplicative approximations** for **recursive queries**?
- Connections to knowledge compilation and intensional extensional conjecture
 → Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?
- Combining the **query-based** and **structure-based** approaches

Thanks for your attention! 18/18

- Abiteboul, S., Kimelfeld, B., Sagiv, Y., and Senellart, P. (2009).
 On the expressiveness of probabilistic XML models.
 VLDB Journal, 18(5).
- Amarilli, A., Bourhis, P., and Senellart, P. (2015).
 Provenance circuits for trees and treelike instances.
 In ICALP.
- Amarilli, A., Bourhis, P., and Senellart, P. (2016).
 Tractable lineages on treelike instances: Limits and extensions.
 In PODS.

References ii

🔋 Amarilli, A. and Ceylan, I. I. (2020).

A dichotomy for homomorphism-closed queries on probabilistic graphs. In *ICDT*.

- Amarilli, A. and Kimelfeld, B. (2022).
 Uniform Reliability of Self-Join-Free Conjunctive Queries.
 Under review.
- Beame, P., Van den Broeck, G., Gribkoff, E., and Suciu, D. (2015).
 Symmetric weighted first-order model counting.
 In PODS.
- Benedikt, M., Kharlamov, E., Olteanu, D., and Senellart, P. (2010).
 Probabilistic XML via Markov chains.
 PVLDB, 3(1).

Berkholz, C. and Merz, M. (2021).

Probabilistic databases under updates: Boolean query evaluation and ranked enumeration.

In PODS.

- Carmeli, N., Grohe, M., Lindner, P., and Standke, C. (2021).
 Tuple-independent representations of infinite probabilistic databases.
 In PODS.
- Ceylan, I. I., Darwiche, A., and Van den Broeck, G. (2021).
 Open-world probabilistic databases: Semantics, algorithms, complexity.
 Artificial Intelligence, 295.

References iv

- Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
 Running tree automata on probabilistic xml. In PODS.
- Dalvi, N., Ré, C., and Suciu, D. (2009).
 Probabilistic databases: Diamonds in the dirt. Communications of the ACM, 52(7).
- Dalvi, N. N. and Suciu, D. (2004).
 Efficient query evaluation on probabilistic databases.
 In VLDB.
- Drien, O., Freiman, M., and Amsterdamer, Y. (2022).
 ActivePDB: Active probabilistic databases.
 Working draft.

Fink, R. and Olteanu, D. (2016).

Dichotomies for queries with negation in probabilistic databases.

ACM Transactions on Database Systems, 41(1).

Imielinski, T. and Lipski, W. (1984).
 Incomplete information in relational databases.
 Journal of the ACM, 31(4).

Jung, J. C. and Lutz, C. (2012). Ontology-based access to probabilistic data with OWL QL. In ISWC.

References vi

Kenig, B. and Suciu, D. (2021).

A dichotomy for the generalized model counting problem for unions of conjunctive queries.

In PODS.

- Koutris, P. and Wijsen, J. (2015).
 The data complexity of consistent query answering for self-join-free conjunctive queries under primary key constraints.
 In SIGMOD.
 -] Olteanu, D. and Huang, J. (2009).

Secondary-storage confidence computation for conjunctive queries with inequalities.

In SIGMOD.

Suciu, D. (2020). Probabilistic databases for all. In PODS. Widom, J. (2005).

Trio: A system for integrated management of data, accuracy, and lineage. In *Proc. CIDR.*

Theorem

For any query **Q** closed under homomorphisms and **unbounded**, PQE(**Q**) is **#P-hard**

Theorem

For any query **Q** closed under homomorphisms and **unbounded**, PQE(**Q**) is **#P-hard**

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Theorem

For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Theorem

For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Theorem

For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Theorem

Any unbounded query closed under homomorphisms has a tight pattern

• We reduce from PQE for the **intractable** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$

• We reduce from PQE for the **intractable** CQ: $Q_0 : x \longrightarrow y \longrightarrow z \longrightarrow w$

• We reduce from PQE for the **intractable** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$

Idea: possible worlds at the left have a path that matches Q_0 iff the corresponding possible world of the TID at the right satisfies the query $Q_{...}$

• We reduce from PQE for the **intractable** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$

Idea: possible worlds at the **left** have a path that matches **Q**_o iff the corresponding possible world of the TID at the **right** satisfies the query **Q**...

• We reduce from PQE for the **intractable** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$

Idea: possible worlds at the left have a path that matches Q_0 iff the corresponding possible world of the TID at the right satisfies the query $Q_{...}$

• We reduce from PQE for the **intractable** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$

Idea: possible worlds at the **left** have a path that matches **Q**_o iff the corresponding possible world of the TID at the **right** satisfies the query **Q**... ... except we need **more** from the tight pattern!

• We reduce from PQE for the **intractable** CQ: $Q_0 : x \longrightarrow y \longrightarrow z \longrightarrow w$

Idea: possible worlds at the **left** have a path that matches **Q**_o iff the corresponding possible world of the TID at the **right** satisfies the query **Q**... ... except we need **more** from the tight pattern!

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

• If **Q** becomes false at one step, then we have found a tight pattern

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process **terminates**

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process terminates
 - $\cdot\,$ At the end of the process, we obtain a star $D'\,$

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process terminates
 - $\cdot\,$ At the end of the process, we obtain a star D'
 - It is **homomorphically equivalent** to a constant-sized **D**" satisfying **Q**

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process terminates
 - $\cdot\,$ At the end of the process, we obtain a star D'
 - It is **homomorphically equivalent** to a constant-sized **D**" satisfying **Q**
 - *D*" has a **homomorphism** back to *D*

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process terminates
 - $\cdot\,$ At the end of the process, we obtain a star D'
 - It is homomorphically equivalent to a constant-sized D" satisfying Q
 - *D*" has a **homomorphism** back to *D*
 - This contradicts the **minimality** of the large **D**

We know that we have a **tight pattern**:

We know that we have a **tight pattern**:

Consider its **iterates**

satisfies **Q**

We know that we have a **tight pattern**:

violates **Q**

Consider its **iterates** for each $n \in \mathbb{N}$:

Consider its **iterates** for each $n \in \mathbb{N}$:

Consider its **iterates** for each $n \in \mathbb{N}$:

Case 1: some iterate **violates** the query:

We know that we have a **tight pattern**:

Consider its **iterates** for each $n \in \mathbb{N}$:

Case 1: some iterate **violates** the query:

ightarrow Reduce from $\mathrm{PQE}(\mathit{Q}_{\mathsf{o}})$ as we explained

We know that we have a **tight pattern**:

Consider its **iterates** for each $n \in \mathbb{N}$:

Case 1: some iterate **violates** the query:

 $ightarrow \, {
m Reduce} \, {
m from} \, {
m PQE}({\it Q}_{o}) \, {
m as} \, {
m we} \, {
m explained}$

Case 2: all iterates satisfy the query:

We know that we have a **tight pattern**:

Consider its **iterates** for each $n \in \mathbb{N}$:

Case 1: some iterate **violates** the query:

 $ightarrow \, {
m Reduce} \, {
m from} \, {
m PQE}({\it Q}_{o}) \, {
m as} \, {
m we} \, {
m explained}$

Case 2: all iterates satisfy the query:

We have an **iterable pattern**:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the **probability** that the source and target are **connected**?

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the **probability** that the source and target are **connected**?

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the **probability** that the source and target are **connected**?

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the **probability** that the source and target are **connected**?

Idea: reduce from the **#P-hard** problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the **probability** that the source and target are **connected**?

Idea: There is a **path connecting s and t** in a possible world of the graph at the left iff the query **Q** is **satisfied** in the corresponding possible world of the TID at the right

Idea: reduce from the **#P-hard** problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the **probability** that the source and target are **connected**?

Idea: There is a **path connecting s and t** in a possible world of the graph at the left iff the query **Q** is **satisfied** in the corresponding possible world of the TID at the right

Idea: reduce from the **#P-hard** problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the **probability** that the source and target are **connected**?

Idea: There is a **path connecting s and t** in a possible world of the graph at the left iff the query **Q** is **satisfied** in the corresponding possible world of the TID at the right

Hard part: show hardness for (variants of) the query $Q: X \longrightarrow Y \longrightarrow Z \longrightarrow W$ We reduce from PQE(Q), on probabilistic graphs Gof the following form:

Task: count the number X of red-blue edge subsets that violate Q

Hard part: show hardness for (variants of) the query $Q: X \longrightarrow Y \longrightarrow Z \longrightarrow W$ We reduce from PQE(Q), on probabilistic graphs Gof the following form:

Task: count the number X of red-blue edge subsets that violate Q

• Split the **subsets** on some **parameter** e.g., the number of nodes: $X = X_1 + \cdots + X_k$

Hard part: show hardness for (variants of) the query $Q: X \longrightarrow Y \longrightarrow Z \longrightarrow W$ We reduce from PQE(Q), on probabilistic graphs Gof the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the **subsets** on some **parameter** e.g., the number of nodes: $X = X_1 + \cdots + X_k$
- Create unweighted copies of G modified with some parameterized gadgets
 - \rightarrow Call the **oracle** for SC(Q) on each to get answers N_1, \ldots, N_k

Hard part: show hardness for (variants of) the query $Q: X \longrightarrow Y \longrightarrow Z \longrightarrow W$ We reduce from PQE(Q), on probabilistic graphs Gof the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X = X_1 + \cdots + X_k$
- Create unweighted copies of *G* modified with some parameterized gadgets \rightarrow Call the oracle for SC(Q) on each to get answers N_1, \ldots, N_k
- Show that each N_i is a linear function of X_1, \ldots, X_k , so:

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

Hard part: show hardness for (variants of) the query $Q: X \longrightarrow Y \longrightarrow Z \longrightarrow W$ We reduce from PQE(Q), on probabilistic graphs Gof the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X = X_1 + \cdots + X_k$
- Create unweighted copies of *G* modified with some parameterized gadgets \rightarrow Call the oracle for SC(Q) on each to get answers N_1, \ldots, N_k
- Show that each N_i is a linear function of X_1, \ldots, X_k , so:

$$\begin{pmatrix} N_{1} \\ \vdots \\ N_{k} \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_{1} \\ \vdots \\ X_{k} \end{pmatrix}$$

• Show invertibility of this matrix to recover the X_i from the N_i

We have obtained the system:

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

We have obtained the system:

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

• The oracle for MC has given us N_1, \ldots, N_k

We have obtained the system:

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

- The oracle for MC has given us N_1, \ldots, N_k
- We **need** $X = X_1 + \cdots + X_k$ to solve **PQE** and finish the reduction

We have obtained the system:

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

- The oracle for MC has given us N_1, \ldots, N_k
- We need $X = X_1 + \cdots + X_k$ to solve PQE and finish the reduction
- \rightarrow If the matrix is **invertible**, then we have succeeded

We have obtained the system:

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

- The oracle for MC has given us N_1, \ldots, N_k
- We need $X = X_1 + \cdots + X_k$ to solve PQE and finish the reduction
- \rightarrow If the matrix is **invertible**, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix, and show invertibility via several arithmetical tricks

The semistructured model and XML

<a> ... <c> <d>...</d> </c>

- Tree-like structuring of data
- No (or less) schema constraints
- Allow mixing tags (structured data) and text (unstructured content)
- Particularly adapted to tagged or heterogeneous content

Simple probabilistic annotations

- Probabilities associated to tree nodes
- Express parent/child dependencies
- Impossible to express more complex dependencies
- → some sets of possible worlds are not expressible this way!

Annotations with event variables

- Expresses arbitrarily complex dependencies

• Query evaluation for probabilistic XML: what is the probability that a (fixed) **tree automaton** accepts?

- Query evaluation for probabilistic XML: what is the probability that a (fixed) **tree automaton** accepts?
- Can be computed **bottom-up** in the simple model [Cohen et al., 2009]

- Query evaluation for probabilistic XML: what is the probability that a (fixed) **tree automaton** accepts?
- Can be computed **bottom-up** in the simple model [Cohen et al., 2009]
- **#P-hard** in the general model

- Query evaluation for probabilistic XML: what is the probability that a (fixed) **tree automaton** accepts?
- Can be computed **bottom-up** in the simple model [Cohen et al., 2009]
- **#P-hard** in the general model
- This generalizes to PQE for MSO on relational databases (TID) when assuming that the treewidth is bounded [Amarilli et al., 2015]

- Query evaluation for probabilistic XML: what is the probability that a (fixed) **tree automaton** accepts?
- Can be computed **bottom-up** in the simple model [Cohen et al., 2009]
- **#P-hard** in the general model
- This generalizes to PQE for MSO on relational databases (TID) when assuming that the treewidth is bounded [Amarilli et al., 2015]
- Bounding the treewidth is **necessary** for tractability in a certain sense [Amarilli et al., 2016]

A general probabilistic XML model [Abiteboul et al., 2009]

- *e*: event "it did not rain" at time 1
- mux: mutually exclusive options
- N(70,4): normal distribution

- Compact representation of a set of possible worlds
- Two kinds of dependencies: global (*e*) and local (mux)
- Generalizes all previously proposed models of the literature

Recursive Markov chains [Benedikt et al., 2010]

<!ELEMENT directory (person*)> <!ELEMENT person (name,phone*)>

- Probabilistic model that **extends** PXML with local dependencies
- Generate documents of **unbounded** width or depth

C-tables [Imielinski and Lipski, 1984]

Patient	Examin. 1	Examin. 2	Diagnosis	Condition
А	23	12	α	
В	10	23	\perp_1	
С	2	4	γ	
D	\perp_2	15	\perp_1	
Е	\perp_3	17	eta	$18 < \perp_3 < \perp_2$

- NULLs are labeled, and can be **reused** inside and across tuples
- Arbitrary correlations across tuples
- Closed under the relational algebra
- \cdot Every set of possible worlds can be represented as a database with c-tables