Probabilistic Databases: Introduction

EDBT-Intended Summer School

Antoine Amarilli

Paris
E

Uncertain data: Practical motivations

Numerous sources of uncertain data:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automated processes (information extraction, NLP, etc.)
- Imperfect human judgment
- Lies, opinions, rumors

Use case：Web information extraction

Recently－Learned Facts twitter

instance	iteration date learned confidence		
oliguric＿phase is a non－disease physiological condition	1111	06－jul－2018	97.5 ת\％\％
alaska＿airlines is an organization	1114	25－aug－2018	100.0 \％\％\％
heating＿insurance＿policies is a physical action	1111	06－jul－2018	90.4 ת \％\％
n98＿12 is a term used by physicists	1111	06－jul－2018	94.2 ת\％\％\％
dragonball＿z super butoden＿2 is software	1111	06－jul－2018	100.0 多 雨
general motors corp is a company headquartered in the city detroit	1116	12－sep－2018	100.0 令
the companies herald and la compete with eachother	1111	06－jul－2018	99.6 ת\％
stanford hired montgomery	1111	06－jul－2018	98.4 ת \％\％
kimn is a radio station in the city denver	1116	12－sep－2018	100.0 为
radisson＿sas＿portman hotel is a park in the city central london	1116	12－sep－2018	100.0 多

Never－ending Language Learning（NELL，CMU），http：／／rtw．ml．cmu．edu／rtw／kbbrowser／

Use case: Web information extraction

Subject	Predicate	Object	Confidence
Elvis Presley	diedOnDate	1977-08-16	97.91%
Elvis Presley	isMarriedTo	Priscilla Presley	97.29%
Elvis Presley	influences	Carlo Wolff	96.25%

YAGO, https://www. yago-knowledge.org/

Other use case: Information extraction from scientific articles

Other use case: Crowdsourcing

All HITs

1-10 of 2751 Results

```
Sort by: HITs Available (most first) v (\sigma0) Show all details | Hide all details 1\underline{2}\underline{4}\underline{5}>\underline{Next > Last}
```

| Transcribe data | | View a HIT in this group | |
| :--- | :--- | :--- | :--- | :--- |
| Requester: p9r | HIT Expiration Date: | Nov 18, 2015 (23 hours 59 minutes) Reward: $\$ 0.03$ | |
| | | | |
| | Time Allotted: | 45 minutes | |

Description: Please transcribe the data from the following images
Keywords: transcribe, handwriting, data entry
Qualifications Required:
HIT approval rate (\%) is greater than 90

Classify Receipt

View a HIT in this group

| Requester: Jon Brelig | HIT Expiration Date: | Nov 24, 2015 (6 days 23 hours) Reward: $\$ 0.02$ |
| :--- | :--- | :--- | :--- |
| | Time Allotted: | 20 minutes |

Description: Looking at a receipt image, identify the business of the receipt
Keywords: image, receipt, categorize, transcribe, extract, data, entry, transcription, text, easy, qualification, jon, breliq, prod

Other use case: Speech recognition and OCR

Different types of uncertainty

- The uncertainty can be qualitative (e.g., NULL)...
- ... or quantitative (e.g., 95\%)

Further, there are different types:

- Unknown value: NULL in an RDBMS
- Alternative between several possibilities: either A or B or C
- Imprecision on a numeric value: a sensor gives a value that is an approximation of the actual value
- Confidence in a fact as a whole: cf. information extraction
- Structural uncertainty: the schema of the data itself is uncertain
- Missing data: we know that some data is missing (open-world semantics)

What happens to this uncertainty?

Naive solution
Forget about uncertainty, or apply a threshold after each computation step

What happens to this uncertainty?

```
Naive solution
Forget about uncertainty, or apply a threshold after each computation step
```


Ideal solution

Instead of neglecting uncertainty, let's manage it rigorously throughout the whole process of answering a query

What happens to this uncertainty?

```
Naive solution
Forget about uncertainty, or apply a threshold after each computation step
```


Ideal solution

Instead of neglecting uncertainty, let's manage it rigorously throughout the whole process of answering a query

Also: it leads to interesting theoretical questions! :)

Possible worlds semantics

Idea: use a representation system
Possible world: A regular (deterministic) relational database

Possible worlds semantics

Idea: use a representation system
Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds

Possible worlds semantics

Idea: use a representation system
Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over possible worlds,

Possible worlds semantics

Idea: use a representation system
Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:
finite: a set of possible worlds, each with their probability continuous: more complicated

Possible worlds semantics

Idea: use a representation system
Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:
finite: a set of possible worlds, each with their probability continuous: more complicated

date	teacher	
08	Diego	0.9
09	Paolo	0.8
09	Floris	0.7

Contents of this course

- Present the most common models of probabilistic data
\rightarrow Focus on the simplest one, tuple-independent databases (TID)

Contents of this course

- Present the most common models of probabilistic data
\rightarrow Focus on the simplest one, tuple-independent databases (TID)
- Introduce the probabilistic query evaluation problem (PQE):
\rightarrow Central task: evaluating queries over probabilistic databases

Contents of this course

- Present the most common models of probabilistic data
\rightarrow Focus on the simplest one, tuple-independent databases (TID)
- Introduce the probabilistic query evaluation problem (PQE):
\rightarrow Central task: evaluating queries over probabilistic databases
- Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs

Contents of this course

- Present the most common models of probabilistic data
\rightarrow Focus on the simplest one, tuple-independent databases (TID)
- Introduce the probabilistic query evaluation problem (PQE):
\rightarrow Central task: evaluating queries over probabilistic databases
- Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs
- Present the intensional approach to PQE and its connections to knowledge compilation and circuit classes

Contents of this course

- Present the most common models of probabilistic data
\rightarrow Focus on the simplest one, tuple-independent databases (TID)
- Introduce the probabilistic query evaluation problem (PQE):
\rightarrow Central task: evaluating queries over probabilistic databases
- Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs
- Present the intensional approach to PQE and its connections to knowledge compilation and circuit classes
- Present treewidth-based approaches to efficient PQE

Contents of this course

- Present the most common models of probabilistic data
\rightarrow Focus on the simplest one, tuple-independent databases (TID)
- Introduce the probabilistic query evaluation problem (PQE):
\rightarrow Central task: evaluating queries over probabilistic databases
- Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs
- Present the intensional approach to PQE and its connections to knowledge compilation and circuit classes
- Present treewidth-based approaches to efficient PQE
- Give an overview of other topics on probabilistic databases

Probabilistic Databases: Models and PQE

EDBT-Intended Summer School

Antoine Amarilli

Paris

Relational model by example

Guest

		email
id	name	John Smith
1	john.smith@gmail.com	
2	Alice Black	alice@black.name
3	John Smith	john.smith@ens.fr

Reservation

id	guest	room	arrival	nights
1	1	504	$2022-01-01$	5
2	2	107	$2022-01-10$	3
3	3	302	$2022-01-15$	6
4	2	504	$2022-01-15$	2
5	2	107	$2022-01-30$	1

Relations and databases

Formally:

- A database schema \mathcal{D} maps each relation name to an arity (we add attribute names in our examples)

Relations and databases

Formally:

- A database schema \mathcal{D} maps each relation name to an arity (we add attribute names in our examples)
- A database instance over database schema \mathcal{D} maps each relation name R of \mathcal{D} with arity k to a set of k-tuples

Relations and databases

Formally:

- A database schema \mathcal{D} maps each relation name to an arity (we add attribute names in our examples)
- A database instance over database schema \mathcal{D} maps each relation name R of \mathcal{D} with arity k to a set of k-tuples

We can write tuples as table rows or as ground facts:

Guest

		email
id	name	John Smith
john.smith@gmail.com		
2	Alice Black	alice@black.name
3	John Smith	john.smith@ens.fr

Guest(1, John Smith, john.smith@gmail.com), Guest(2, Alice Black, alice@black.name),
Guest(3, John Smith, john.smith@ens.fr)

Queries

- A query is an arbitrary function over database instances over a fixed schema \mathcal{D}
- We only study Boolean queries, i.e., queries returning only true or false

Queries

- A query is an arbitrary function over database instances over a fixed schema \mathcal{D}
- We only study Boolean queries, i.e., queries returning only true or false
- Example of query languages:
- Conjunctive queries (CQ)
- $\exists \wedge \cdots$ existentially quantified conjunctions of atoms
- Q : $\exists x y z x^{\prime} y^{\prime}$ Guest $(x, y, z) \wedge G u e s t\left(x^{\prime}, y^{\prime}, z\right)$

Queries

- A query is an arbitrary function over database instances over a fixed schema \mathcal{D}
- We only study Boolean queries, i.e., queries returning only true or false
- Example of query languages:
- Conjunctive queries (CQ)
- $\exists \wedge \cdots$ existentially quantified conjunctions of atoms
- Q : $\exists x y z x^{\prime} y^{\prime}$ Guest $(x, y, z) \wedge G u e s t\left(x^{\prime}, y^{\prime}, z\right)$
- Unions of conjunctive queries (UCQ)
- $\cup \exists \bigwedge \cdots$ unions of CQs

Queries

- A query is an arbitrary function over database instances over a fixed schema \mathcal{D}
- We only study Boolean queries, i.e., queries returning only true or false
- Example of query languages:
- Conjunctive queries (CQ)
- $\exists \wedge \cdots$: existentially quantified conjunctions of atoms
- Q : $\exists x y z x^{\prime} y^{\prime}$ Guest $(x, y, z) \wedge G u e s t\left(x^{\prime}, y^{\prime}, z\right)$
- Unions of conjunctive queries (UCQ)
- $\cup \exists \wedge \cdots$: unions of CQs
- First-Order logic (FO)
- Monadic-Second Order logic (MSO)

TID

Tuple-independent databases (TID)

- The simplest model: tuple-independent databases
- Annotate each instance fact with a probability

Tuple-independent databases (TID)

- The simplest model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher
08	Diego
09	Paolo
09	Floris

Tuple-independent databases (TID)

- The simplest model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

Tuple-independent databases (TID)

- The simplest model: tuple-independent databases
- Annotate each instance fact with a probability

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

\rightarrow Assume independence between facts

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date teacher

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher				
	date	teacher			
08	Diego	90%		08	Diego
09	Paolo	80%			
09	Floris	70%			

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher					
	date	teacher				
08	Diego	90%		08	Diego	
09	Paolo	80%		09	Paolo	
09	Floris	70%		09	Floris	

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?
90\%

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?

$$
90 \% \times
$$

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?

$$
90 \% \times(100 \%-80 \%)
$$

Semantics of TID

- Each fact is kept or discarded with the indicated probability
- Probabilistic choices are independent across facts

date	teacher	
08	Diego	90%
09	Paolo	80%
09	Floris	70%

date	teacher
08	Diego
09	Paolo
09	Floris

What's the probability of this possible world?

$$
90 \% \times(100 \%-80 \%) \times 70 \%
$$

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...
\rightarrow the possible worlds are the subsets of facts of I

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...
\rightarrow the possible worlds are the subsets of facts of I
\rightarrow always keeping facts with probability 1

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...
\rightarrow the possible worlds are the subsets of facts of I
\rightarrow always keeping facts with probability 1
Formally, for a TID I, the probability of $J \subseteq I$ is:

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...
\rightarrow the possible worlds are the subsets of facts of I
\rightarrow always keeping facts with probability 1
Formally, for a TID I, the probability of $J \subseteq I$ is:

- product of $\operatorname{Pr}(F)$ for each fact F kept in J
- product of $1-\operatorname{Pr}(F)$ for each fact F not kept in J

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

- Let N be the number of facts
- There are 2^{N} possible worlds

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

- Let N be the number of facts
- There are 2^{N} possible worlds
- The probability of a possible world is a product which involves a factor $\operatorname{Pr}\left(F_{i}\right)$ or $1-\operatorname{Pr}\left(F_{i}\right)$ for each fact F_{1}, \ldots, F_{N}

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

- Let N be the number of facts
- There are 2^{N} possible worlds
- The probability of a possible world is a product which involves a factor $\operatorname{Pr}\left(F_{i}\right)$ or $1-\operatorname{Pr}\left(F_{i}\right)$ for each fact F_{1}, \ldots, F_{N}
\rightarrow The sum of these probabilities is the result of expanding the expression:

$$
\left(\operatorname{Pr}\left(\mathrm{F}_{1}\right)+\left(1-\operatorname{Pr}\left(\mathrm{F}_{1}\right)\right)\right) \times \cdots \times\left(\operatorname{Pr}\left(\mathrm{F}_{\mathrm{N}}\right)+\left(1-\operatorname{Pr}\left(\mathrm{F}_{\mathrm{N}}\right)\right)\right)
$$

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1 ?

- Let N be the number of facts
- There are 2^{N} possible worlds
- The probability of a possible world is a product which involves a factor $\operatorname{Pr}\left(F_{i}\right)$ or $1-\operatorname{Pr}\left(F_{i}\right)$ for each fact F_{1}, \ldots, F_{N}
\rightarrow The sum of these probabilities is the result of expanding the expression:

$$
\left(\operatorname{Pr}\left(\mathrm{F}_{1}\right)+\left(1-\operatorname{Pr}\left(\mathrm{F}_{1}\right)\right)\right) \times \cdots \times\left(\operatorname{Pr}\left(\mathrm{F}_{\mathrm{N}}\right)+\left(1-\operatorname{Pr}\left(\mathrm{F}_{\mathrm{N}}\right)\right)\right)
$$

- All factors are equal to 1 , so the probabilities sum to 1

Expressiveness of TID

Can we represent all probabilistic instances with TID?

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

$$
\begin{aligned}
& \frac{U_{1}}{\text { teacher }} \\
& \hline \text { Jane } \\
& \hline \pi\left(U_{1}\right)=80 \%
\end{aligned}
$$

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

$\frac{U_{1}}{\text { teacher }}$		U_{2}
		teacher
		Joe
$\pi\left(U_{1}\right)=80 \%$		$\pi\left(U_{2}\right)=10 \%$

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

$\frac{U_{1}}{\text { teacher }}$
Jane
$\pi\left(U_{1}\right)=80 \%$

$\frac{U_{2}}{\text { teacher }}$
Joe
$\pi\left(U_{2}\right)=10 \%$

$\frac{U_{3}}{\text { teacher }}$
$\pi\left(U_{3}\right)=10 \%$

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Jane	Joe	
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$
		teacher
		Jane
		Joe

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Jane	Joe	
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$
		teacher
		Jane 10\%
		Joe

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

U_{1}	U_{2}	U_{3}	
teacher	teacher	teacher	
Jane	Joe		
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$	
		teacher	
		Jane	10\%
		Joe	80\%

Expressiveness of TID

Can we represent all probabilistic instances with TID?
"The class is taught by Jane or Joe or no one but not both"

$\frac{U_{1}}{\text { teacher }}$
Jane
$\pi\left(U_{1}\right)=80 \%$

$\frac{U_{2}}{\text { teacher }}$		$\frac{U_{3}}{\text { teacher }}$
Joe $\pi\left(U_{2}\right)=10 \%$ teacher Jane 10% Joe $\quad 80 \%$		

\rightarrow We cannot forbid that both teach the class!

BID

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

		U
day	time	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

		U
day	time	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

- The blocks are the sets of tuples with the same key

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

		U
$\underline{\text { day }}$	time	teacher
09	AM	Paolo
09	AM	Floris
09	PM	Floris
09	PM	Paolo

- The blocks are the sets of tuples with the same key
- Each tuple has a probability

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

	U		
day	time	teacher	
O9	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- The blocks are the sets of tuples with the same key
- Each tuple has a probability

Block-independent disjoint instances

- A more expressive framework than TID
- Call some attributes the key (underlined)

	U		
day	time	teacher	
O9	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- The blocks are the sets of tuples with the same key
- Each tuple has a probability
- Probabilities must sum up to ≤ 1 in each block

BID semantics

	U		
day	time	teacher	
O9	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

BID semantics

	U		
day	time	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each block:

BID semantics

	U		
day	time	teacher	
O9	AM	Paolo	80%
O9	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each block:
- Pick one fact according to probabilities

BID semantics

U			
day	time	teacher	
O9	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1

BID semantics

	U		
day	time	teacher	
09	AM	Paolo	80%
09	AM	Floris	10%
09	PM	Floris	70%
09	PM	Paolo	1%

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1
\rightarrow Do choices independently in each block

BID semantics

u				u
day	time	teacher		day time teacher
09	AM	Paolo	80\%	
09	AM	Floris	10\%	
09	PM	Floris	70\%	
09	PM	Paolo	1\%	

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1
\rightarrow Do choices independently in each block

BID semantics

u				U		
day	time	teacher		day	time	teacher
09	AM	Paolo	80\%	09	AM	Paolo
09	AM	Floris	10\%	09	AM	Floris
09	PM	Floris	70\%			
09	PM	Paolo	1\%			

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1
\rightarrow Do choices independently in each block

BID semantics

U				U		
day	time	teache		day	time	teacher
09	AM	Paolo	80\%	09	AM	Paolo
09	AM	Floris	10\%	09	AM	Floris
09	PM	Floris	70\%	09	PM	Floris
09	PM	Paolo	1\%	09	PM	Paolo

- For each block:
- Pick one fact according to probabilities
- Possibly no fact if probabilities sum up to <1
\rightarrow Do choices independently in each block

BID captures TID

- Each TID can be expressed as a BID...

BID captures TID

- Each TID can be expressed as a BID...
\rightarrow Take all attributes as key
\rightarrow Each block contains a single fact

BID captures TID

- Each TID can be expressed as a BID...
\rightarrow Take all attributes as key
\rightarrow Each block contains a single fact

U		
date	teacher	
09	Diego	90%
09	Paolo	80%
09	Floris	70%

Expressiveness of BID

Can we represent all probabilistic instances with BID?

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}
teacher
Diego
Paolo
$\pi\left(U_{1}\right)=80 \%$

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

$\frac{U_{1}}{\text { teacher }}$		U_{2}
		teacher Diego Paolo
$\pi\left(U_{1}\right)=80 \%$ Floris $\pi\left(U_{2}\right)=10 \%$		

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$

\rightarrow If teacher is a key teacher, then TID

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$

\rightarrow If teacher is a key teacher, then TID
\rightarrow If teacher is not a key, then only one fact

Expressiveness of BID

Can we represent all probabilistic instances with BID?
"The class is taught by exactly two among Diego, Paolo, Floris."

U_{1}	U_{2}	U_{3}
teacher	teacher	teacher
Diego	Diego	Paolo
Paolo	Floris	Floris
$\pi\left(U_{1}\right)=80 \%$	$\pi\left(U_{2}\right)=10 \%$	$\pi\left(U_{3}\right)=10 \%$

\rightarrow If teacher is a key teacher, then TID
\rightarrow If teacher is not a key, then only one fact
\rightarrow We cannot represent this probabilistic instance as a BID
pc-tables

Boolean c-tables

- Set of Boolean variables x_{1}, x_{2}, \ldots
- Each fact has a condition: Variables, Boolean operators

Boolean c-tables

- Set of Boolean variables x_{1}, x_{2}, \ldots
- Each fact has a condition: Variables, Boolean operators

date	teacher	room	
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

x_{1} Jane is sick
x_{2} Amphi B is available

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence)

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:
- Product of the p_{i} for the x_{i} with $\nu\left(x_{i}\right)=1$

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence) Formally:
- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:
- Product of the p_{i} for the x_{i} with $\nu\left(x_{i}\right)=1$
- Product of the $1-p_{i}$ for the x_{i} with $\nu\left(x_{i}\right)=0$

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence)

Formally:

- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:
- Product of the p_{i} for the x_{i} with $\nu\left(x_{i}\right)=1$
- Product of the $1-p_{i}$ for the x_{i} with $\nu\left(x_{i}\right)=0$
\rightarrow This is like TIDs

pc-tables

A (Boolean) pc-table is:

- a database I where each tuple is annotated by a Boolean function on variables x_{i}
- a probability p_{i} that each variable x_{i} is true (assuming independence)

Formally:

- A Boolean valuation ν of the variables maps each variable x_{i} to o or 1
- The valuation ν defines a possible world I_{ν} of I containing the tuples whose Boolean function evaluates to true under ν
- The probability of a valuation ν is:
- Product of the p_{i} for the x_{i} with $\nu\left(x_{i}\right)=1$
- Product of the $1-p_{i}$ for the x_{i} with $\nu\left(x_{i}\right)=0$
\rightarrow This is like TIDs
- The probability of a possible world $J \subseteq I$ is the total probability of the valuations ν such that $I_{\nu}=J$

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

x_{1} Jane is sick
x_{2} Amphi B is available

pc-table example

date	teacher	room	
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

x_{1} Jane is sick
\rightarrow Probability 10%
x_{2} Amphi B is available
\rightarrow Probability 20\%

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

- Take ν mapping x_{1} to 0 and x_{2} to 1

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν :

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$
- Evaluate the conditions

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

date	teacher	room
04	Jane	Amphi A
04	Joe	Amphi A
$\mathbf{1 1}$	Jane	Amphi B
$\mathbf{1 1}$	Joe	Amphi B
$\mathbf{1 1}$	Jane	Amphi C
$\mathbf{1 1}$	Joe	Amphi C

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$
- Evaluate the conditions

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

date	teacher	room
04	Jane	Amphi A
04	Joe	Amphi A
$\mathbf{1 1}$	Jane	Amphi B
11	Joe	Amphi B
11	Jane	Amphi C
11	Joe	Amphi C

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$
- Evaluate the conditions
\rightarrow Probability of possible world: sum over the valuations

pc-table semantics example

date	teacher	room	$x_{1}: 10 \%, x_{2}: 20 \%$
04	Jane	Amphi A	$\neg x_{1}$
04	Joe	Amphi A	x_{1}
11	Jane	Amphi B	$x_{2} \wedge \neg x_{1}$
11	Joe	Amphi B	$x_{2} \wedge x_{1}$
11	Jane	Amphi C	$\neg x_{2} \wedge \neg x_{1}$
11	Joe	Amphi C	$\neg x_{2} \wedge x_{1}$

date	teacher	room
04	Jane	Amphi A
04	Joe	Amphi A
$\mathbf{1 1}$	Jane	Amphi B
$\mathbf{1 1}$	Joe	Amphi B
$\mathbf{1 1}$	Jane	Amphi C
$\mathbf{1 1}$	Joe	Amphi C

- Take ν mapping x_{1} to 0 and x_{2} to 1
- Probability of ν : $(100 \%-10 \%) \times 20 \%=18 \%$
- Evaluate the conditions
\rightarrow Probability of possible world: sum over the valuations
\rightarrow Here: only this valuation, 18\%

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value
- pc-tables capture BIDs:
\rightarrow Make a decision tree for every block

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value
- pc-tables capture BIDs:
\rightarrow Make a decision tree for every block
- In fact pc-tables can express arbitrary probability distributions

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value
- pc-tables capture BIDs:
\rightarrow Make a decision tree for every block
- In fact pc-tables can express arbitrary probability distributions
- Further, they are a strong representation system: the union, product, etc., of two pc-tables, can be easily represented as a pc-table

Expressiveness of pc-tables

- pc-tables capture TIDs:
\rightarrow Simply give each fact its own probability value
- pc-tables capture BIDs:
\rightarrow Make a decision tree for every block
- In fact pc-tables can express arbitrary probability distributions
- Further, they are a strong representation system: the union, product, etc., of two pc-tables, can be easily represented as a pc-table

Yet, in the rest of the talk, we focus on TIDs \rightarrow easier to characterize tractable queries

PQE

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D ?

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D ?

- Probability that Q holds over D:

$$
\operatorname{Pr}(D \models Q)=\sum_{\substack{D^{\prime} \subseteq D \\ D^{\prime} \models Q}} \operatorname{Pr}\left(D^{\prime}\right)
$$

- Intuitively: the probability that Q holds is the probability of drawing a possible world $D^{\prime} \subseteq D$ which satisfies Q

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D ?

- Probability that Q holds over D :

$$
\operatorname{Pr}(D \models Q)=\sum_{\substack{D^{\prime} \subseteq D \\ D^{\prime} \models Q}} \operatorname{Pr}\left(D^{\prime}\right)
$$

- Intuitively: the probability that Q holds is the probability of drawing a possible world $D^{\prime} \subseteq D$ which satisfies Q

Probabilistic query evaluation (PQE) problem for a query Q over TIDs: given a TID, compute the probability that Q holds

Example of PQE on TID

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

Example of PQE on TID

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is one minus the probability of not having such a tuple

Example of PQE on TID

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is one minus the probability of not having such a tuple
- Not having such a tuple is the independent AND of not having each tuple

Example of PQE on TID

name	position	city	classification	prob
John	Director	New York	unclassified	0.5
Paul	Janitor	New York	restricted	0.7
Dave	Analyst	Paris	confidential	0.3
Ellen	Field agent	Berlin	secret	0.2
Magdalen	Double agent	Paris	top secret	1.0
Nancy	HR director	Paris	restricted	0.8
Susan	Analyst	Berlin	secret	0.2

What is the probability to have a tuple with value New York?

- It is one minus the probability of not having such a tuple
- Not having such a tuple is the independent AND of not having each tuple
- So the result is $1-(1-0.5) \times(1-0.7)=0.85$

Complexity of PQE

Formal question:

- We fix a Boolean query, e.g., $\exists x y R(x), S(x, y), T(y)$

Complexity of PQE

Formal question:

- We fix a Boolean query, e.g., $\exists x y R(x), S(x, y), T(y)$
- We are given a tuple-independent database D, i.e., a relational database where facts are independent and have probabilities

Complexity of PQE

Formal question:

- We fix a Boolean query, e.g., $\exists x y R(x), S(x, y), T(y)$
- We are given a tuple-independent database D, i.e., a relational database where facts are independent and have probabilities
- Can we compute the total probability of the possible worlds of D that satisfy Q ?

Complexity of PQE

Formal question:

- We fix a Boolean query, e.g., $\exists x y R(x), S(x, y), T(y)$
- We are given a tuple-independent database D, i.e., a relational database where facts are independent and have probabilities
- Can we compute the total probability of the possible worlds of D that satisfy Q ?
- Note that we study data complexity, i.e., Q is fixed and the input is D

Naive probabilistic query evaluation

- Consider all possible worlds of the input

Naive probabilistic query evaluation

- Consider all possible worlds of the input
- Run the query over each possible world

Naive probabilistic query evaluation

- Consider all possible worlds of the input
- Run the query over each possible world
- Sum the probabilities of all worlds that satisfy the query

Naive probabilistic query evaluation example

TID D			Query Q$R(x, y) \wedge R(y, z)$
in	Ou		
A	B	0.8	
B	C	0.2	

Naive probabilistic query evaluation example

	TID D		Query Q in
out			
A	B	0.8	
B	C	0.2	

Possible worlds and probabilities:

Naive probabilistic query evaluation example

	TID		
in out Query Q A B 0.8 B C 0.2			

Possible worlds and probabilities:

Total probability that Q holds: $0.8 \times 0.2=0.16$.

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible
- However, it takes exponential time in general
\rightarrow Even if the query output has few possible worlds!
\rightarrow Feasible if the input has few possible worlds (few tuples)

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible
- However, it takes exponential time in general
\rightarrow Even if the query output has few possible worlds!
\rightarrow Feasible if the input has few possible worlds (few tuples)
- In fact, naive evaluation is in \#P
\rightarrow Can be expressed (up to normalization) as the number of accepting paths of a nondeterministic PTIME Turing machine
\rightarrow To see why: guess a possible world (with the right probabilities) and check the query

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible
- However, it takes exponential time in general
\rightarrow Even if the query output has few possible worlds!
\rightarrow Feasible if the input has few possible worlds (few tuples)
- In fact, naive evaluation is in \#P
\rightarrow Can be expressed (up to normalization) as the number of accepting paths of a nondeterministic PTIME Turing machine
\rightarrow To see why: guess a possible world (with the right probabilities) and check the query
- Probabilistic query evaluation is computationally intractable so it is unlikely that we can beat naive evaluation in general

Naive evaluation advantages and drawbacks

- Naive evaluation is always possible
- However, it takes exponential time in general
\rightarrow Even if the query output has few possible worlds!
\rightarrow Feasible if the input has few possible worlds (few tuples)
- In fact, naive evaluation is in \#P
\rightarrow Can be expressed (up to normalization) as the number of accepting paths of a nondeterministic PTIME Turing machine
\rightarrow To see why: guess a possible world (with the right probabilities) and check the query
- Probabilistic query evaluation is computationally intractable so it is unlikely that we can beat naive evaluation in general
\rightarrow But some queries admit an efficient algorithm!

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is:

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: 1 -

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}$

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get:

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: 1 -

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: 1 - \prod_{a}

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: 1 - \prod_{a} (1-

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}(1-\operatorname{Pr}(R(a)) \times$

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}(1-\operatorname{Pr}(R(a)) \times(1-$

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}\right.\right.$

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\right.\right.$

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$

Some examples of PQE

-What is the probability of the query: $\exists x R(x)$?

- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$
- Make sure you understand why everything is independent in this case!

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$
- Make sure you understand why everything is independent in this case!
-What is the probability of the query: $\exists x y R(x), S(x, y), T(y)$?

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$
- Make sure you understand why everything is independent in this case!
-What is the probability of the query: $\exists x y R(x), S(x, y), T(y)$?
- This one is \#P-hard!

Some examples of PQE

- What is the probability of the query: $\exists x R(x)$?
- It asks: "do we have an R-fact?"
\rightarrow It is: $1-\prod_{R(a)}(1-\operatorname{Pr}(R(a)))$
-What is the probability of the query: $\exists x y R(x), S(x, y)$?
- It asks: "is there an R-fact which also has an S-fact?"
- Idea: case disjunction based on the value of x
- We get: $1-\prod_{a}\left(1-\operatorname{Pr}(R(a)) \times\left(1-\prod_{b}(1-\operatorname{Pr}(S(a, b)))\right)\right)$
- Make sure you understand why everything is independent in this case!
-What is the probability of the query: $\exists x y R(x), S(x, y), T(y)$?
- This one is \#P-hard!

Probabilistic Databases: The Dichotomy of PQE

EDBT-Intended Summer School

Antoine Amarilli

Paris

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two
- Large dichotomy: arbitrary unions of conjunctive queries

Research goal: Understanding the complexity of PQE

What is the complexity of $\operatorname{PQE}(Q)$ depending on the query Q ?
\rightarrow Recall that we study data complexity, i.e., Q is fixed and the input is the data For example:

- For $Q: R(x)$ the problem is easy (PTIME)
- For $Q: R(x), S(x, y), T(y)$ the problem is hard (\#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

- Small dichotomy: conjunctive queries that are self-join-free and arity-two
- Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:
if Q has a certain form then $\operatorname{PQE}(Q)$ is in PTIME, otherwise it is \#P-hard

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
- We represent the queries as graphs: $R(x, y), S(y, z)$ is x $\longrightarrow y$ Z

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
- We represent the queries as graphs: $R(x, y), S(y, z)$ is x
 Z
- Self-join-free CQ: only one edge of each color (no repeated color)

The "small" Dalvi and Suciu dichotomy

- Conjunctive query (CQ): existentially quantified conjunction of atoms
- Arity-two: all relations are binary
- We represent the queries as graphs: $R(x, y), S(y, z)$ is x
 y Z
- Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])

Let Q be an arity-two self-join-free CQ:

- If Q is a conjunction of stars, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Conjunction of stars

- A star is a CQ with a separator variable that occurs in all edges
- A conjunction of stars is a conjunction of one or several stars

The following is not a star: $x \longrightarrow y \longrightarrow z \longrightarrow w$

Proving the small dichotomy (upper bound, 1)

$x \rightleftarrows y \longleftrightarrow_{z}^{w} \quad u \longrightarrow v \quad$ How to solve $\operatorname{PQE}(Q)$ for Q a conjunction of stars?

Proving the small dichotomy (upper bound, 1)

$$
\begin{aligned}
& x \rightleftarrows y \longleftrightarrow w \text { w } \quad u \longrightarrow v \quad \text { How to solve PQE }(Q) \text { for } Q \text { a conjunction of stars? } \\
& x \longleftrightarrow y \longleftrightarrow w \\
& z
\end{aligned}
$$

Proving the small dichotomy (upper bound, 1)

$$
x \rightleftarrows y \longleftrightarrow \rightleftarrows_{z}^{w} \quad u \longrightarrow v
$$

$$
x \rightleftarrows y \longleftrightarrow z
$$

- We consider each connected component separately
\rightarrow Independent conjunction over the connected components
How to solve $\operatorname{PQE}(Q)$ for Q a conjunction of stars?
- We can test all possible values of the separator variable
\rightarrow Independent disjunction over the values of the separator

$$
\begin{aligned}
& x \longleftrightarrow a_{1} \longrightarrow{ }_{z} \\
& x \longrightarrow a_{2} \longrightarrow Z \\
& x \longleftrightarrow a_{3} \longrightarrow{ }_{z}^{w}
\end{aligned}
$$

Proving the small dichotomy (upper bound, 2)

$$
x \longleftrightarrow \boldsymbol{a} \longrightarrow_{z}^{w}
$$

Proving the small dichotomy (upper bound, 2)

$x \rightleftarrows a ゝ{ }_{z}^{w}$
$x \rightleftarrows a$

- For every match, we consider every other variable separately
\rightarrow Independent conjunction over the variables

Proving the small dichotomy (upper bound, 2)

$x \rightleftarrows a$

- For every match, we consider every other variable separately
\rightarrow Independent conjunction over the variables
$b_{1} \rightleftarrows a$
$b_{2} \rightleftarrows a$
- We consider every value for the other variable
$b_{3} \rightleftarrows a$
\rightarrow Independent disjunction over the possible assignments

Proving the small dichotomy (upper bound, 2)

$x \rightleftarrows a$

- For every match, we consider every other variable separately
\rightarrow Independent conjunction over the variables
$b_{1} \rightleftarrows a$
$b_{2} \rightleftarrows a$
- We consider every value for the other variable
$b_{3} \rightleftarrows a$
\rightarrow Independent disjunction over the possible assignments
- We consider every fact
$b \longrightarrow a$
\rightarrow Independent conjunction over the facts
\rightarrow Just read the probability of the ground fact $R(b, a)$.

Proving the small dichotomy (lower bound, 1)

Every arity-two self-join-free CQ which is not a conjunction of stars contains a pattern essentially like:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

Proving the small dichotomy (lower bound, 1)

Every arity-two self-join-free CQ which is not a conjunction of stars contains a pattern essentially like:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

We can add facts with probability 1 to instances so the other facts are always satisfied, and focus on only these three facts
\rightarrow Let us show \#P-hardness of this query

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$

Proving the small dichotomy (lower bound, 2)

Let us show that $\operatorname{PQE}(Q)$ is \#P-hard for the CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE(Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$ Build an instance I_{ϕ} from ϕ :

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

$$
\begin{aligned}
& a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} \\
& a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} \\
& a_{3}^{\prime} \xrightarrow{1 / 2} a_{3}
\end{aligned}
$$

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

$$
\begin{array}{ll}
a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} & b_{1} \xrightarrow{1 / 2} b_{1}^{\prime} \\
a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} & \\
a_{3}^{\prime} \xrightarrow{1 / 2} a_{3} & b_{2} \xrightarrow{1 / 2} b_{2}^{\prime}
\end{array}
$$

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}
- A valuation satisfies ϕ iff the corresponding possible world satisfies Q

Proving the small dichotomy (lower bound, 3)

Reduce from \#PP2DNF to PQE (Q) for CQ $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$
Build an instance I_{ϕ} from ϕ :

Idea:

- Valuations of ϕ correspond to possible worlds of I_{ϕ}
- A valuation satisfies ϕ iff the corresponding possible world satisfies Q
\rightarrow The probability of Q on I_{ϕ} is the number of accepting valuations of ϕ, divided by the number of valuations ($2^{-\mid \text {Vars } \mid}$)

Extending beyond arity-two (1)

How can we extend beyond arity-two queries?
Theorem ([Dalvi and Suciu, 2007])
Let Q be a arity-two self-join-free CQ:

- If Q is a conjunction of stars hierarchical, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

- A query with no variables is hierarchical

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

- A query with no variables is hierarchical
- A conjunction of hierarchical connected components is hierarchical

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

- A query with no variables is hierarchical
- A conjunction of hierarchical connected components is hierarchical
- Induction case: for a connected CQ:
- It must have a separator variable occurring in all atoms
- If we remove this separator variable, the query must be hierarchical

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

- A query with no variables is hierarchical
- A conjunction of hierarchical connected components is hierarchical
- Induction case: for a connected CQ:
- It must have a separator variable occurring in all atoms
- If we remove this separator variable, the query must be hierarchical
$\exists x\left(\exists y\left(\exists z R_{1}(x, y, z)\right) \wedge\left(\exists z^{\prime} R_{2}\left(x, y, z^{\prime}\right)\right)\right) \wedge\left(\exists y^{\prime} \exists z^{\prime \prime} R_{3}\left(x, y^{\prime}, z^{\prime \prime}\right)\right)$

$$
\wedge\left(\exists u\left(\exists v R_{4}(u, v)\right) \wedge\left(\exists w R_{5}(u, v, w)\right)\right)
$$

Extending beyond arity-two (3)

How does the proof change?

Extending beyond arity-two (3)

How does the proof change?

- Upper bound: we can generalize the algorithm
- Independent AND of connected components
- Independent OR of possible choices for the separator variable
- Both cases use self-join-freeness!

Extending beyond arity-two (3)

How does the proof change?

- Upper bound: we can generalize the algorithm
- Independent AND of connected components
- Independent OR of possible choices for the separator variable
- Both cases use self-join-freeness!
- Lower bound: a non-hierarchical expression contains a pattern like $x \longrightarrow y \longrightarrow z \longrightarrow w$

Extending beyond arity-two (3)

How does the proof change?

- Upper bound: we can generalize the algorithm
- Independent AND of connected components
- Independent OR of possible choices for the separator variable
- Both cases use self-join-freeness!
- Lower bound: a non-hierarchical expression contains a pattern like

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

Via equivalent characterization: a non-hierarchical query has two variables x and y and:

- One atom containing x and y
- One atom containing x but not y
- One atom containing y but not x

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):
Theorem ([Dalvi and Suciu, 2012])
Let Q be a UCQ:

- If Q is handled by a complicated algorithm then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let Q be a UCQ:

- If Q is handled by a complicated algorithm then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

This result is far more challenging:

- Upper bound:
- an algorithm generalizing the previous case with inclusion-exclusion
- many unpleasant details (e.g., a ranking transformation)

The "big" Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):

Theorem ([Dalvi and Suciu, 2012])

Let Q be a UCQ:

- If Q is handled by a complicated algorithm then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

This result is far more challenging:

- Upper bound:
- an algorithm generalizing the previous case with inclusion-exclusion
- many unpleasant details (e.g., a ranking transformation)
- Lower bound: hardness proof on minimal cases where the algorithm does not work (very challenging)

References i

(in Dalvi, N. and Suciu, D. (2007).
The dichotomy of conjunctive queries on probabilistic structures.
In Proc. PODS.
图 Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries. J. $A C M, 59(6)$.

Probabilistic Databases: Provenance Circuits and Knowledge

 CompilationEDBT-Intended Summer School

Antoine Amarilli

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no
- Boolean provenance of Q on I: a Boolean circuit over the facts of I accepting exactly the subsets of I where Q is true

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Recall: Boolean Provenance

- Relational database instance I: set of facts
- Boolean query Q: take an instance and answer yes/no
- Boolean provenance of Q on $I:$ a Boolean circuit over the facts of I accepting exactly the subsets of I where Q is true

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational algebra query with a semiring expression

(a)

(b)

A C	
$a c$	$2 p^{2}$
$a e$	$p r$
$d c$	$p r$
$d e$	$2 r^{2}+r s$
$f e$	$2 s^{2}+r s$

(c)

Figure 5: Why-prov. and provenance polynomials

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational algebra query with a semiring expression

(a)

(b)

A C	
$a c$	$2 p^{2}$
$a e$	$p r$
$d c$	$p r$
$d e$	$2 r^{2}+r s$
$f e$	$2 s^{2}+r s$

(c)

Figure 5: Why-prov. and provenance polynomials

What is the difference?

- We only care about Boolean provenance

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational algebra query with a semiring expression

(a)

A C	
$a c$	$\{p\}$
$a e$	$\{p, r\}$
$d c$	$\{p, r\}$
$d e$	$\{r, s\}$
$f e$	$\{r, s\}$

(b)

A C	
$a c$	$2 p^{2}$
$a e$	$p r$
$d c$	$p r$
$d e$	$2 r^{2}+r s$
$f e$	$2 s^{2}+r s$

(c)

Figure 5: Why-prov. and provenance polynomials

What is the difference?

- We only care about Boolean provenance
\rightarrow No multiplicity of facts or derivations
- Circuit representation: more concise

The intensional approach to PQE

- Previously, for a tractable query Q : we can solve $\operatorname{PQE}(Q)$
- Now, let's see the intensional approach
- Compute a circuit representing the Boolean provenance of Q
- For tractable Q the circuit falls in a tractable class and we can compute the probability

The intensional approach to PQE

- Previously, for a tractable query Q : we can solve $\operatorname{PQE}(Q)$
- Now, let's see the intensional approach
- Compute a circuit representing the Boolean provenance of Q
- For tractable Q the circuit falls in a tractable class and we can compute the probability
-Why do that?
- More modular, no numerical computations, connect to known circuit classes
- Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

The intensional approach to PQE

- Previously, for a tractable query Q : we can solve PQE(Q)
- Now, let's see the intensional approach
- Compute a circuit representing the Boolean provenance of Q
- For tractable Q the circuit falls in a tractable class and we can compute the probability
- Why do that?
- More modular, no numerical computations, connect to known circuit classes
- Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation:
$O\left(n^{2}\right)$ algorithms

The intensional approach to PQE

- Previously, for a tractable query Q : we can solve PQE(Q)
- Now, let's see the intensional approach
- Compute a circuit representing the Boolean provenance of Q
- For tractable Q the circuit falls in a tractable class and we can compute the probability
- Why do that?
- More modular, no numerical computations, connect to known circuit classes
- Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation: $O\left(n^{2}\right)$ algorithms

Setting $A \longrightarrow$ Task 1
Setting $B \longrightarrow$ Task 1

With knowledge compilation:
$O(n)$ algorithms
Setting A \longrightarrow Circuit
Setting B Circuit

The intensional approach to PQE

- Previously, for a tractable query Q : we can solve PQE(Q)
- Now, let's see the intensional approach
- Compute a circuit representing the Boolean provenance of Q
- For tractable Q the circuit falls in a tractable class and we can compute the probability
- Why do that?
- More modular, no numerical computations, connect to known circuit classes
- Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation: $O\left(n^{2}\right)$ algorithms

Setting $A \longrightarrow$ Task 1
Setting $B \longrightarrow$ Task 1

With knowledge compilation:
$O(n)$ algorithms
Setting A \longrightarrow Circuit
Setting B Circuit
Circuit \longrightarrow Task 1
Circuit \longrightarrow Task 2

Boolean circuit representations

Circuits are just a way to represent Boolean formulas while factoring common subexpressions (more concise)

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:

Boolean circuit representations

Circuits are just a way to represent Boolean formulas while factoring common subexpressions (more concise)

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit representations

Circuits are just a way to represent Boolean formulas while factoring common subexpressions (more concise)

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:

x

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit representations

Circuits are just a way to represent Boolean formulas while factoring common subexpressions (more concise)

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:

x

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit representations

Circuits are just a way to represent Boolean formulas while factoring common subexpressions (more concise)

- Directed acyclic graph of gates
- Output gate:
- Variable gates:
- Internal gates:

x

- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{\boldsymbol{x} \mapsto \mathrm{O}, \mathrm{y} \mapsto 1\} \ldots$ mapped to 1

Computing Boolean provenance: theory

- Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME

Computing Boolean provenance: theory

- Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME (disjunction of all matches)

Computing Boolean provenance: theory

- Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME (disjunction of all matches)

- Acyclic Conjunctive Queries (ACQ)

Theorem

For any $A C Q$, given an instance, we can construct its Boolean provenance in linear time

Computing Boolean provenance: theory

- Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME (disjunction of all matches)

- Acyclic Conjunctive Queries (ACQ)

Theorem

For any $A C Q$, given an instance, we can construct its Boolean provenance in linear time (following a join tree)

Computing Boolean provenance: theory

- Unions of Conjunctive Queries (UCQ)

Theorem

For any UCQ, given an instance, we can construct its Boolean provenance in PTIME (disjunction of all matches)

- Acyclic Conjunctive Queries (ACQ)

Theorem

For any ACQ, given an instance, we can construct its Boolean provenance in linear time (following a join tree)

- Regular path queries (RPQ), Datalog, etc.

Theorem [Deutch et al., 2014]
For any Datalog query, given an instance, we can get its Boolean provenance in PTIME

Computing Boolean provenance: practice

- ProvSQL: PostgreSQL extension to compute provenance
- Keeps track of the provenance of query results as a circuit

Computing Boolean provenance: practice

- ProvSQL: PostgreSQL extension to compute provenance
- Keeps track of the provenance of query results as a circuit

```
a3nm=# SELECT id, name, city FROM personnel;
id I name | city
    1 | John | New York
    2 I Paul I New York
    3 | Dave | Paris
    4 Ellen | Berlin
    5 | Magdalen | Paris
    | Nancy | Paris
    7 S Susan | Berlin
(7 rows)
a3nm=# SELECT *,formula(provenance(), 'personnel_id') FROM
(SELECT DISTINCT city FROM personnel) t;
    city | formula
    Paris | (3 \oplus5 ¢ 6)
    Berlin | (4 @ 7)
    New York I (1 \oplus 2)
(3 rous)
```


Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

R		
a	b	80%
a^{\prime}	b	90%

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I
- Each variable of the circuit (fact of the database) has an independent probability

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

R		
a	b	80%
a^{\prime}	b	90%

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I
- Each variable of the circuit (fact of the database) has an independent probability

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

R		
a	b	80%
a^{\prime}	b	90%

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I
- Each variable of the circuit (fact of the database) has an independent probability
- Each Boolean valuation of the circuit corresponds to a possible world J of I and the circuit evaluates to true iff...

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

R		
a	b	80%
a^{\prime}	b	90%

Summary: Boolean provenance for PQE

- We have fixed the Boolean query Q
- We are given an input TID I with a probability P of each fact
- We have computed a Boolean provenance circuit of Q on I
- Each variable of the circuit (fact of the database) has an independent probability
- Each Boolean valuation of the circuit corresponds to a possible world J of I and the circuit evaluates to true iff... J satisfies Q

Example: query Q :
$\exists x y z R(x, y) \wedge S(y, z)$

R		
a	b	80%
a^{\prime}	b	90%

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of the circuit

- We now have a Boolean provenance circuit over the database facts
- Each variable x is true independently with probability $P(x)$ (probability of the fact)
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
\rightarrow The circuit that we constructed falls in a restricted class satisfying such conditions

A tractable circuit class: d-DNNFs

d-DNNF requirements

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs

A tractable circuit class: d-DNNFs

d-DNNF requirements
... make probability computation easy!

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- Λ gates are all on independent inputs

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- Λ gates are all on independent inputs
... make probability computation easy!

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- (gates are all on independent inputs
... make probability computation easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- Λ gates are all on independent inputs
... make probability computation easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- Λ gates are all on independent inputs
... make probability computation easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

$$
P(g):=P\left(g_{1}^{\prime}\right)+P\left(g_{2}^{\prime}\right)
$$

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs
... make probability computation easy!

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs
... make probability computation easy!
($\quad P(g):=1-P\left(g^{\prime}\right)$

A tractable circuit class: d-DNNFs

d-DNNF requirements

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs
... make probability computation easy!
($\quad P(g):=1-P\left(g^{\prime}\right)$
$\rightarrow d$-DNNFs are one of many tractable circuit classes in knowledge compilation

Other tractable circuit classes

- Read-once formula: Boolean formula where each variable occurs at most once
\rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation

Other tractable circuit classes

- Read-once formula: Boolean formula where each variable occurs at most once
\rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs

Other tractable circuit classes

- Read-once formula: Boolean formula where each variable occurs at most once
\rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs
- Restricted classes of d-DNNF:
- dec-DNNF: disjunction gates are of the form $x \wedge \alpha \vee \neg x \wedge \beta$
- d-SDNNF: the circuit uses variables in a structured way

Other tractable circuit classes

- Read-once formula: Boolean formula where each variable occurs at most once
\rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs
- Restricted classes of d-DNNF:
- dec-DNNF: disjunction gates are of the form $x \wedge \alpha \vee \neg x \wedge \beta$
- d-SDNNF: the circuit uses variables in a structured way

The intensional approach for self-join-free CQs

Theorem [Olteanu and Huang, 2008]

For any hierarchical self-join-free CQ Q, given a TID I,

The intensional approach for self-join-free CQs

Theorem [Olteanu and Huang, 2008]

For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a read-once formula representing the Boolean provenance of Q on I

The intensional approach for self-join-free CQs

Theorem [Olteanu and Huang, 2008]

For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a read-once formula representing the Boolean provenance of Q on I

Proof: just follow the previous algorithm and its independent ANDs and ORs

The intensional approach for self-join-free CQs

Theorem [Olteanu and Huang, 2008]

For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a read-once formula representing the Boolean provenance of Q on I

Proof: just follow the previous algorithm and its independent ANDs and ORs

Corollary

For any hierarchical self-join-free $C Q Q$, the problem $\operatorname{PQE}(Q)$ is in linear time up to the cost of arithmetic operations

Other results for the intensional approach

- For UCQs, results in [Jha and Suciu, 2013]:
- Characterization of the queries for which we can compute read-once provenance

Other results for the intensional approach

- For UCQs, results in [Jha and Suciu, 2013]:
- Characterization of the queries for which we can compute read-once provenance
- Characterization of the queries for which we can compute OBDD provenance

Other results for the intensional approach

- For UCQs, results in [Jha and Suciu, 2013]:
- Characterization of the queries for which we can compute read-once provenance
- Characterization of the queries for which we can compute OBDD provenance
- Sufficient conditions to have FBDDs and d-DNNFs

Other results for the intensional approach

- For UCQs, results in [Jha and Suciu, 2013]:
- Characterization of the queries for which we can compute read-once provenance
- Characterization of the queries for which we can compute OBDD provenance
- Sufficient conditions to have FBDDs and d-DNNFs
- For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]

Other results for the intensional approach

- For UCQs, results in [Jha and Suciu, 2013]:
- Characterization of the queries for which we can compute read-once provenance
- Characterization of the queries for which we can compute OBDD provenance
- Sufficient conditions to have FBDDs and d-DNNFs
- For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]
- For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]

Other results for the intensional approach

- For UCQs, results in [Jha and Suciu, 2013]:
- Characterization of the queries for which we can compute read-once provenance
- Characterization of the queries for which we can compute OBDD provenance
- Sufficient conditions to have FBDDs and d-DNNFs
- For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]
- For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]
- Good candidate: d-DNNF, or d-D (allows arbitrary negations)
\rightarrow Note: it's open whether d-DNNFs and d-Ds are indeed different :)

Other results for the intensional approach

- For UCQs, results in [Jha and Suciu, 2013]:
- Characterization of the queries for which we can compute read-once provenance
- Characterization of the queries for which we can compute OBDD provenance
- Sufficient conditions to have FBDDs and d-DNNFs
- For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]
- For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]
- Good candidate: d-DNNF, or d-D (allows arbitrary negations)
\rightarrow Note: it's open whether d-DNNFs and d-Ds are indeed different :)
- Crux of the problem: capture arithmetic operations on probabilities with a d-D circuit, specifically inclusion-exclusion; see [Monet, 2020]

围 Amarilli, A., Capelli, F., Monet, M., and Senellart, P. (2019).
Connecting knowledge compilation classes and width parameters.
In ToCS, number 2019.
E- Beame, P., Li, J., Roy, S., and Suciu, D. (2017).
Exact model counting of query expressions: Limitations of propositional methods.
TODS, 42(1):1.
國 Bova, S. and Szeider, S. (2017).
Circuit treewidth, sentential decision, and query compilation.
In PODS. ACM.

References ii

固 Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014).
Circuits for Datalog provenance.
In ICDT.
: Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In PODS.
目 Jha, A. and Suciu, D. (2013).
Knowledge compilation meets database theory: Compiling queries to decision diagrams.
Theory of Computing Systems, 52(3).

睩 Monet, M. (2020).
Solving a special case of the intensional vs extensional conjecture in probabilistic databases.
In PODS.
Elteanu, D. and Huang, J. (2008).
Using OBDDs for efficient query evaluation on probabilistic databases.
In SUM. Springer.

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I : ordered decision diagram on the facts of I to decide whether Q holds

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I : ordered decision diagram on the facts of I to decide whether Q holds

$$
Q: \pi_{\emptyset}(R \bowtie S \bowtie T)
$$

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I: ordered decision diagram on the facts of I to decide whether \mathbf{Q} holds

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I: ordered decision diagram on the facts of I to decide whether \mathbf{Q} holds

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I: ordered decision diagram on the facts of I to decide whether \mathbf{Q} holds

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I: ordered decision diagram on the facts of I to decide whether \mathbf{Q} holds

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I: ordered decision diagram on the facts of I to decide whether \mathbf{Q} holds

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I : ordered decision diagram on the facts of I to decide whether Q holds

$$
Q: \pi_{\emptyset}(R \bowtie S \bowtie T)
$$

\mathbf{S}		
a	a	s_{1}
b	v	s_{2}
b	w	s_{3}

\rightarrow We can compute the probability of an OBDD bottom-up

Probabilistic Databases: Width-Based Approaches

EDBT-Intended Summer School

Antoine Amarilli

Paris

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)

Fix a bound $k \in \mathbb{N}$ and fix a Boolean monadic second-order query Q. Then PQE(Q) is in PTIME on input TID instances of treewidth $\leq k$

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

- We could restrict the structure of instances: instead of arbitrary graphs, focus on:
- probabilistic words
- probabilistic trees
- probabilistic graphs with bounded treewidth
- In the non-probabilistic case, this ensures tractability for complex queries
\rightarrow Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)

Fix a bound $k \in \mathbb{N}$ and fix a Boolean monadic second-order query Q. Then PQE(Q) is in PTIME on input TID instances of treewidth $\leq k$

Conversely, there is a query Q for which $\mathrm{PQE}(Q)$ is intractable on any input instance family of unbounded treewidth (under some technical assumptions)

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: a sentence (yes/no question) in monadic second-order logic (MSO)
"Is there both a pink and a blue node?"

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)
"Is there both a pink and a blue node?"

1 Result: TRUE/FALSE indicating if the word w satisfies the query Q

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: a sentence (yes/no question) in monadic second-order logic (MSO)
"Is there both a pink and a blue node?"

1 Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"
- Monadic second-order logic (MSO): adds quantifiers over sets
- $\exists S \forall x S(x)$ means "there is a set S containing every element x "
- Can express transitive closure $x \rightarrow^{*} y$, i.e., " x is before y "
- $\forall x P_{\bigcirc}(x) \Rightarrow \exists y P_{\bigcirc}(y) \wedge x \rightarrow^{*} y$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc \bigcirc$ w: ○-○-○-○
$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$ $w: \underset{\perp}{\bigcirc}-\bigcirc-\bigcirc$

$$
Q: \exists x \text { y } P_{\circ}(x) \wedge P_{O}(y)
$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$ $w: \underset{\perp}{\bigcirc}-\bigcirc-\bigcirc$
$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Word automata

Translate the query Q to a deterministic word automaton

Abstract

Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Word automata

Translate the query Q to a deterministic word automaton

Abstract

Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Word automata

Translate the query Q to a deterministic word automaton

Abstract

Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} T-$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc \bigcirc$

$$
Q: \exists x \text { y } P_{\circ}(x) \wedge P_{\circ}(y)
$$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp \underset{P}{\bigcirc} P-\bigcirc T-\underset{T}{\bigcirc}$

Theorem (Büchi, 1960)

MSO and word automata have the same expressive power on words

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc \bigcirc$

$$
Q: \exists x \text { y } P_{\circ}(x) \wedge P_{O}(y)
$$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} \top-$

Theorem (Büchi, 1960)

MSO and word automata have the same expressive power on words

Corollary

Query evaluation of MSO on words is in linear time (in data complexity)

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$
$?$ Query Q: in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

"Is there both a pink and
a blue node?"
$\exists x$ y $P_{\circ}(x) \wedge P_{\circ}(y)$

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

"Is there both a pink and a blue node?"
$\exists x$ y $P_{\circ}(x) \wedge P_{\circ}(y)$
1 Result: YES / NO indicating if the tree T satisfies the query Q

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

Tree automata

Tree alphabet: $\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet: $\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Theorem ([Thatcher and Wright, 1968])

MSO and tree automata have the same expressive power on trees

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:
Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

细
Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
? Query Q: in monadic second-order logic (MSO)

$\exists x$ y $P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

绞
Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
? Query Q: in monadic second-order logic (MSO)

$\exists x y P_{\bigcirc}(x) \wedge P_{\circ}(y)$
(1) Result: probability that the probabilistic tree T satisfies the query Q

Probabilistic query evaluation on trees

Let's now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability of keeping its color (vs taking the default color \bigcirc)
$?$ Query Q: in monadic second-order logic (MSO)

$$
\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
$$

1 Result: probability that the probabilistic tree T satisfies the query Q

Theorem

For any fixed MSO query Q, the problem $\operatorname{PQE}(Q)$ on trees is in linear time assuming constant-time arithmetics

Uncertain trees: capturing how the query result depends on the choices

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{2,3,7 \mapsto 1, * \mapsto 0\}$

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{\mathbf{2} \mapsto 1, * \mapsto 0\}$

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (o) node labels
> Valuation: $\{\mathbf{2}, \mathbf{7} \mapsto 1, * \mapsto 0\}$

Uncertain trees: capturing how the query result depends on the choices

> A valuation of a tree decides whether to keep (1) or discard (0) node labels
> Valuation: $\{2,7 \mapsto 1, * \mapsto 0\}$
> Q: "Is there both a pink and a blue node?"

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"
The query Q returns YES

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"
The query Q returns NO

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
Q: "Is there both a pink and a blue node?"
The query Q returns YES

Uncertain trees: capturing how the query result depends on the choices

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Q: "Is there both a pink and a blue node?"
\rightarrow This is just a Boolean provenance circuit on the "color facts" of the tree nodes!

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Example: Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Formal definition of provenance circuits:

- Boolean query Q, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then $\nu(C)$ iff $\nu(T)$ satisfies Q

Provenance circuits on trees

Theorem	
For any bottom-up	tree automaton A and input tree T,
we can build a Boolean	SDNNF provenance circuit of A on T in $O(\|A\| \times\|T\|)$

Provenance circuits on trees

Theorem

For any bottom-up
tree automaton A and input tree T, we can build a Boolean SDNNF provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up
tree automaton A and input tree T, we can build a Boolean SDNNF provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up
tree automaton A and input tree T, we can build a Boolean SDNNF provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

(n)

Provenance circuits on trees

Theorem

For any bottom-up
tree automaton A and input tree T, we can build a Boolean SDNNF provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up
tree automaton A and input tree T, we can build a Boolean SDNNF provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up
tree automaton A and input tree T, we can build a Boolean SDNNF provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up
tree automaton A and input tree T, we can build a Boolean SDNNF provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{\top\}$
- Transitions:

Provenance circuits on trees

Theorem

For any bottom-up unambiguous tree automaton A and input tree T, we can build a Boolean d-SDNNF provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Connections to knowledge compilation

The provenance circuits of automata on trees are...

Connections to knowledge compilation

The provenance circuits of automata on trees are...

- DNNF circuits:
\rightarrow Negations only at the leaves
\rightarrow Conjunctions are between disjoint subtrees

Connections to knowledge compilation

The provenance circuits of automata on trees are...

- DNNF circuits:
\rightarrow Negations only at the leaves
\rightarrow Conjunctions are between disjoint subtrees
- Structured circuits
\rightarrow The v-tree follows the shape of the input tree

Connections to knowledge compilation

The provenance circuits of automata on trees are...

- DNNF circuits:
\rightarrow Negations only at the leaves
\rightarrow Conjunctions are between disjoint subtrees
- Structured circuits
\rightarrow The v-tree follows the shape of the input tree
- d-SDNNFs when the input automaton is unambiguous

Connections to knowledge compilation

The provenance circuits of automata on trees are...

- DNNF circuits:
\rightarrow Negations only at the leaves
\rightarrow Conjunctions are between disjoint subtrees
- Structured circuits
\rightarrow The v-tree follows the shape of the input tree
- d-SDNNFs when the input automaton is unambiguous
- Of width bounded by the number of states of the automaton [Capelli and Mengel, 2019]

Connections to knowledge compilation

The provenance circuits of automata on trees are...

- DNNF circuits:
\rightarrow Negations only at the leaves
\rightarrow Conjunctions are between disjoint subtrees
- Structured circuits
\rightarrow The v-tree follows the shape of the input tree
- d-SDNNFs when the input automaton is unambiguous
- Of width bounded by the number of states of the automaton [Capelli and Mengel, 2019]
\rightarrow Remark: for words, we obtain diagrams (OBDDs, etc.)

Connections to knowledge compilation

The provenance circuits of automata on trees are...

- DNNF circuits:
\rightarrow Negations only at the leaves
\rightarrow Conjunctions are between disjoint subtrees
- Structured circuits
\rightarrow The v-tree follows the shape of the input tree
- d-SDNNFs when the input automaton is unambiguous
- Of width bounded by the number of states of the automaton
[Capelli and Mengel, 2019]
\rightarrow Remark: for words, we obtain diagrams (OBDDs, etc.)

Corollary

For any MSO query Q, the problem $\mathrm{PQE}(Q)$ on probabilistic trees is in linear time assuming constant-time arithmetics

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and $(k-1)$-grids have treewidth $k-1$

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth
Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and $(k-1)$-grids have treewidth $k-1$
\rightarrow Treelike: the treewidth is bounded by a constant

Courcelle's theorem and extension to PQE

[^0]
Courcelle's theorem and extension to PQE

Treelike data

MSO query

Courcelle's theorem and extension to PQE

Treelike data Tree encoding

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Theorem ([Courcelle, 1990])

For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can compute in linear time in D whether D satisfies Q

Courcelle's theorem and extension to PQE

MSO query

$$
\begin{gathered}
\exists x y \\
P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
\end{gathered}
$$

Courcelle's theorem and extension to PQE

Probabilistic

 treelike data

Courcelle's theorem and extension to PQE

MSO query
Tree automaton
$\underset{P_{O}(x) \wedge P_{O}(y)}{\exists x y} \rightarrow$

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Courcelle's theorem and extension to PQE

Theorem (A., Bourhis, Senellart, 2015, 2016)

For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can solve the PQE problem in linear time (assuming constant-time arithmetics)

Why is this a dichotomy? Where's the lower bound?

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for Q and \mathcal{I} is \#P-hard under RP reductions

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for Q and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for Q and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability
\rightarrow This result does not generalize to higher-arity!

Why is this a dichotomy? Where's the lower bound?

Theorem (A., Bourhis, Senellart, 2016)

For any arity-two signature, there is a first-order query Q such that for any constructible unbounded-treewidth family \mathcal{I} of probabilistic graphs, the PQE problem for \mathbf{Q} and \mathcal{I} is \#P-hard under RP reductions

- Family: an infinite set of graphs allowed as input (with arbitrary probabilities) so in particular closed under subgraphs
- Unbounded-treewidth: for all $k \in \mathbb{N}$, there is $I_{k} \in \mathcal{I}$ of treewidth $\geq k$
- Constructible: given k, we can compute such an instance I_{k} in PTIME
- Under RP reductions: reduce in PTIME with high probability
\rightarrow This result does not generalize to higher-arity!
\rightarrow Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014]) and use them for a lower bound

References i

E- Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
國 Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.
围 Capelli, F. and Mengel, S. (2019).
Tractable QBF by knowledge compilation.
In STACS.

References ii

圁 Chekuri，C．and Chuzhoy，J．（2014）．
Polynomial bounds for the grid－minor theorem．
In STOC．
國 Courcelle，B．（1990）．
The monadic second－order logic of graphs．I．Recognizable sets of finite graphs． Inf．Comput．，85（1）．
国 Thatcher，J．W．and Wright，J．B．（1968）．
Generalized finite automata theory with an application to a decision problem of second－order logic．
Mathematical systems theory，2（1）．

Probabilistic Databases: Other Topics and Conclusion

EDBT-Intended Summer School

Antoine Amarilli

Paris

Table of contents

Recursive and homomorphism-closed queries
Uniform probabilities
Approximate evaluation
Repairs
Incompleteness: Open-World Query Answering
Incompleteness: NULLs
Summary and directions

Recursive and
homomorphism-closed queries

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

- Work by [Fink and Olteanu, 2016] about negation
- Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms
\rightarrow We restrict to arity-two signatures (work in progress...)

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges
 has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges
 has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- Queries with negations or inequalities are not homomorphism-closed

Homomorphism-closed queries

- A homomorphism from a graph G to a graph G^{\prime} maps the vertices of G to those of G^{\prime} while preserving the edges

has a homomorphism to

- Homomorphism-closed query Q : for any graph G, if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q
- Homomorphism-closed queries include all CQs, all UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- Queries with negations or inequalities are not homomorphism-closed
- Homomorphism-closed queries can equivalently be seen as infinite unions of CQs (corresponding to their models)

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\operatorname{PQE}(Q)$ is \#P-hard

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\operatorname{PQE}(Q)$ is \#P-hard
- The same holds for RPQs, Datalog queries, etc.

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$

Our result

We show:

Theorem (A., Ceylan, 2020)

For any query Q closed under homomorphisms on an arity-two signature:

- Either Q is equivalent to a tractable UCQ and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

- The same holds for RPQs, Datalog queries, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$
- Hence, $\mathrm{PQE}(Q)$ is \#P-hard

Uniform probabilities

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the uniform reliability (UR) problem:
$\rightarrow \mathrm{UR}(Q)$: given a graph, how many of its subgraphs satisfy Q

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the uniform reliability (UR) problem:
$\rightarrow \mathrm{UR}(Q)$: given a graph, how many of its subgraphs satisfy Q
- The UR problem reduces to PQE, but no obvious reduction in the other direction

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

- The PQE problem becomes the uniform reliability (UR) problem:
$\rightarrow \mathrm{UR}(Q)$: given a graph, how many of its subgraphs satisfy Q
- The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the "small" Dalvi and Suciu dichotomy to UR:
Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

- If Q is hierarchical, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, even UR(Q) is \#P-hard

Approximate evaluation

Approximation

- When it's too hard to compute the exact probability, we can approximate it

Approximation

- When it's too hard to compute the exact probability, we can approximate it
- One possibility is to compute a lower bound and upper bound:
- $\max (\operatorname{Pr}(\phi), \operatorname{Pr}(\psi)) \leq \operatorname{Pr}(\phi \vee \psi) \leq \min (\operatorname{Pr}(\phi)+\operatorname{Pr}(\psi), 1)$
- $\max (0, \operatorname{Pr}(\phi)+\operatorname{Pr}(\psi)-1) \leq \operatorname{Pr}(\phi \wedge \psi) \leq \min (\operatorname{Pr}(\phi), \operatorname{Pr}(\psi))$ (by duality)
- $\operatorname{Pr}(\neg \phi)=1-\operatorname{Pr}(\phi)$ (reminder)

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

- Pick a random possible world according to the fact probabilities:
\rightarrow Keep F with probability $\operatorname{Pr}(F)$ and discard it otherwise
\rightarrow Repeat for the other variables

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

- Pick a random possible world according to the fact probabilities:
\rightarrow Keep F with probability $\operatorname{Pr}(F)$ and discard it otherwise
\rightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

- Pick a random possible world according to the fact probabilities:
\rightarrow Keep F with probability $\operatorname{Pr}(F)$ and discard it otherwise
\rightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation
- Approximate the probability of the formula ϕ as the proportion of times when it was true

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

- Pick a random possible world according to the fact probabilities:
\rightarrow Keep F with probability $\operatorname{Pr}(F)$ and discard it otherwise
\rightarrow Repeat for the other variables
- Evaluate the lineage formula ϕ under this valuation
- Approximate the probability of the formula ϕ as the proportion of times when it was true
- Theoretical guarantees: on how many samples suffice so that, with high probability, the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm

Using external tools

- Specialized software to compute the probability of a formula: weighted model counters
- Examples (ongoing research):
- c2d: http://reasoning.cs.ucla.edu/c2d/download.php
- d4: https://www.cril.univ-artois.fr/KC/d4.html
- dsharp: https://bitbucket.org/haz/dsharp

Repairs

Repairs

- Another kind of uncertainty: we know that the database must satisfy some constraints (e.g., functionality)
- The data that we have does not satisfy it
- Reason about the ways to repair the data, e.g., removing a minimal subset of tuples
- Can we evaluate queries on this representation? E.g., is a query true on every maximal repair? See, e.g., [Koutris and Wijsen, 2015].
\rightarrow Tutorial by Jef Wijsen

Incompleteness: Open-World Query Answering

Open-world query answering

- Most data sources are incomplete, e.g., Wikidata
- Idea: see an incomplete data source as representing all possible completions
- A query result is certain if it is true on every possible completion
- We also assume constraints to restrict the possible completions (e.g., IDs and FDs, see Andreas's talk)

Open-world query answering problem

Definition of the open-world query answering problem (OWQA):

- Given:
- An incomplete database D
- Logical constraints Σ on the true state of the world
- A query Q
- Determine if Q is true in every completion of D that satisfies Σ

Open-world query answering problem

Definition of the open-world query answering problem (OWQA):

- Given:
- An incomplete database D
- Logical constraints Σ on the true state of the world
- A query Q
- Determine if Q is true in every completion of D that satisfies Σ
- Equivalently: satisfiability of $D \wedge \Sigma \wedge \neg Q$

Open-world query answering problem

Definition of the open-world query answering problem (OWQA):

- Given:
- An incomplete database D
- Logical constraints Σ on the true state of the world
- A query Q
- Determine if Q is true in every completion of D that satisfies Σ
- Equivalently: satisfiability of $D \wedge \Sigma \wedge \neg Q$

Note: We assume that the incomplete database D satisfies the constraints. (Otherwise we need to repair it.)

Results on OWQA

- The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
- It is also undecidable for common database constraint languages, e.g., tuple-generating dependencies
- It is decidable for better-behaved logical fragments, e.g., the guarded fragment

Results on OWQA

- The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
- It is also undecidable for common database constraint languages, e.g., tuple-generating dependencies
- It is decidable for better-behaved logical fragments, e.g., the guarded fragment
- Two main techniques:
- Forward chaining, aka the "chase": add data to satisfy the constraints:

Results on OWQA

- The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
- It is also undecidable for common database constraint languages, e.g., tuple-generating dependencies
- It is decidable for better-behaved logical fragments, e.g., the guarded fragment
- Two main techniques:
- Forward chaining, aka the "chase": add data to satisfy the constraints:
- If the process terminates, use the result to satisfy the query

Results on OWQA

- The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
- It is also undecidable for common database constraint languages, e.g., tuple-generating dependencies
- It is decidable for better-behaved logical fragments, e.g., the guarded fragment
- Two main techniques:
- Forward chaining, aka the "chase": add data to satisfy the constraints:
- If the process terminates, use the result to satisfy the query
- If it is infinite but has bounded treewidth, reason over it, e.g., with automata

Results on OWQA

- The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
- It is also undecidable for common database constraint languages, e.g., tuple-generating dependencies
- It is decidable for better-behaved logical fragments, e.g., the guarded fragment
- Two main techniques:
- Forward chaining, aka the "chase": add data to satisfy the constraints:
- If the process terminates, use the result to satisfy the query
- If it is infinite but has bounded treewidth, reason over it, e.g., with automata
- Backward chaining, aka "query rewriting": change the query to reflect the constraints

Incompleteness: NULLs

Codd tables, a.k.a. SQL NULLs

Patient	Examin. 1	Examin. 2	Diagnosis
A	23	12	α
B	10	23	\perp_{1}
C	2	4	γ
D	15	15	\perp_{2}
E	\perp_{3}	17	β

- Most simple form of incomplete database
- Widely used in practice, in DBMS since the mid-1970s!
- All NULLs (\perp) are considered distinct
- Possible world semantics: all possible completions of the table (infinitely many)
- In SQL, three-valued logic, weird semantics:

SELECT * FROM Tel WHERE tel_nr = '333' OR tel_nr <> '333'

Problem: Codd tables and query evaluation

Appointment			Illness	
	Doctor	Patient		
D1	A		Diagnosis	
D2	A			

Let's join the two tables...

Problem: Codd tables and query evaluation

Appointment		Illness	
Doctor	Patient	Patient	Diagnosis
D1	A	A	\perp
D2	A		

Let's join the two tables...
Appointment \bowtie Illness
Doctor Patient Diagnosis

Problem: Codd tables and query evaluation

Appointment			Illness	
Doctor	Patient		Patient	Diagnosis
	D1	A		A
D2	A		\perp	

Let's join the two tables...

Appointment \bowtie Illness		
Doctor	Patient	Diagnosis
D1	A	\perp_{1}
D2	A	\perp_{2}

Problem: Codd tables and query evaluation

Appointment		Illness	
Doctor	Patient	Patient	Diagnosis
D1	A	A	\perp
D2	A		

Let's join the two tables...
Appointment \bowtie Illness

Doctor	Patient	Diagnosis
D1	A	\perp_{1}
D2	A	\perp_{2}

- We know that $\perp_{1}=\perp_{2}$, but we cannot represent it
- Simple solution: named nulls aka v-tables
- More expressive solution: c-tables

Summary and directions

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
\rightarrow Research question: for which queries is PQE tractable?

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
\rightarrow Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
\rightarrow Extends to a more complex dichotomy on UCQs

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities
\rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases
\rightarrow Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs
- We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits \rightarrow This is open for UCQs: intensional-extensional conjecture

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities \rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases \rightarrow Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs
- We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits \rightarrow This is open for UCQs: intensional-extensional conjecture
- We can make all queries in MSO tractable by bounding the instance treewidth \rightarrow And MSO is intractable if you do not bound treewidth (under some conditions)

Summary of what we have seen

- Probabilistic database model: TIDs, facts have independent probabilities \rightarrow Also more expressive models: BIDs, pc-tables
- Probabilistic query evaluation (PQE) for queries on probabilistic databases \rightarrow Research question: for which queries is PQE tractable?
- Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries \rightarrow Extends to a more complex dichotomy on UCQs
- We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits \rightarrow This is open for UCQs: intensional-extensional conjecture
- We can make all queries in MSO tractable by bounding the instance treewidth \rightarrow And MSO is intractable if you do not bound treewidth (under some conditions)
- Extensions: homomorphism-closed queries, uniform reliability...

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

- Infinite domains [Carmeli et al., 2021]
- PQE under updates [Berkholz and Merz, 2021]
- Open-world probabilistic databases [Ceylan et al., 2021]
- Active probabilistic databases [Drien et al., 2022]

Other topics of research

- Queries with negation [Fink and Olteanu, 2016]
- Queries with inequalities [Olteanu and Huang, 2009]
- Symmetric model counting [Beame et al., 2015]
- A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

- Infinite domains [Carmeli et al., 2021]
- PQE under updates [Berkholz and Merz, 2021]
- Open-world probabilistic databases [Ceylan et al., 2021]
- Active probabilistic databases [Drien et al., 2022]
- (Others? talk to me :))

Future research directions

- Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...

Future research directions

- Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

Future research directions

- Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]
- Practical implementation: ProvSQL, but what about aggregates? numerical imprecision? approximations?
\rightarrow Can we compute multiplicative approximations for recursive queries?

Future research directions

- Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]
- Practical implementation: ProvSQL, but what about aggregates? numerical imprecision? approximations?
\rightarrow Can we compute multiplicative approximations for recursive queries?
- Connections to knowledge compilation and intensional-extensional conjecture
\rightarrow Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

Future research directions

- Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]
- Practical implementation: ProvSQL, but what about aggregates? numerical imprecision? approximations?
\rightarrow Can we compute multiplicative approximations for recursive queries?
- Connections to knowledge compilation and intensional-extensional conjecture
\rightarrow Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?
- Combining the query-based and structure-based approaches

Future research directions

- Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by Benny), graphical models, probabilistic programming, probabilistic constraints...
- Connection to theoretical research, e.g., CSP
\rightarrow Conjecture: for any homomorphism-closed query Q, given an instance, the uniform reliability problem for Q is either \#P-hard or PTIME
\rightarrow Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]
- Practical implementation: ProvSQL, but what about aggregates? numerical imprecision? approximations?
\rightarrow Can we compute multiplicative approximations for recursive queries?
- Connections to knowledge compilation and intensional-extensional conjecture
\rightarrow Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?
- Combining the query-based and structure-based approaches

References i

囯 Abiteboul, S., Kimelfeld, B., Sagiv, Y., and Senellart, P. (2009).
On the expressiveness of probabilistic XML models.
VLDB Journal, 18(5).
國 Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
E- Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.

References ii

嗇 Amarilli, A. and Ceylan, I. I. (2020).
A dichotomy for homomorphism-closed queries on probabilistic graphs. In ICDT.
(Amarilli, A. and Kimelfeld, B. (2022).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
Under review.
围 Beame, P., Van den Broeck, G., Gribkoff, E., and Suciu, D. (2015).
Symmetric weighted first-order model counting.
In PODS.
Renedikt, M., Kharlamov, E., Olteanu, D., and Senellart, P. (2010).
Probabilistic XML via Markov chains.
PVLDB, 3(1).

References iif

© Berkholz, C. and Merz, M. (2021).
Probabilistic databases under updates: Boolean query evaluation and ranked enumeration.
In PODS.
圁 Carmeli, N., Grohe, M., Lindner, P., and Standke, C. (2021).
Tuple-independent representations of infinite probabilistic databases.
In PODS.
回 Ceylan, I. I., Darwiche, A., and Van den Broeck, G. (2021).
Open-world probabilistic databases: Semantics, algorithms, complexity. Artificial Intelligence, 295.

References iv

E- Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic xml.
In PODS.
R Dalvi, N., Ré, C., and Suciu, D. (2009).
Probabilistic databases: Diamonds in the dirt.
Communications of the ACM, 52(7).
圊 Dalvi, N. N. and Suciu, D. (2004).
Efficient query evaluation on probabilistic databases.
In VLDB.
Drien, O., Freiman, M., and Amsterdamer, Y. (2022).
ActivePDB: Active probabilistic databases.
Working draft.

园 Fink，R．and Olteanu，D．（2016）．
Dichotomies for queries with negation in probabilistic databases．
ACM Transactions on Database Systems，41（1）．
园 Imielinski，T．and Lipski，W．（1984）．
Incomplete information in relational databases．
Journal of the ACM， 31 （4）．
回 Jung，J．C．and Lutz，C．（2012）．
Ontology－based access to probabilistic data with OWL QL． In ISWC．

围 Kenig, B. and Suciu, D. (2021).
A dichotomy for the generalized model counting problem for unions of conjunctive queries.
In PODS.
围 Koutris, P. and Wijsen, J. (2015).
The data complexity of consistent query answering for self-join-free conjunctive queries under primary key constraints.
In SIGMOD.
Olteanu, D. and Huang, J. (2009).
Secondary-storage confidence computation for conjunctive queries with inequalities.
In SIGMOD.

References vii

国 Suciu, D. (2020).
Probabilistic databases for all.
In PODS.
: Widom, J. (2005).
Trio: A system for integrated management of data, accuracy, and lineage.
In Proc. CIDR.

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(\mathrm{Q})$ is \#P-hard

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Theorem

Any unbounded query closed under homomorphisms has a tight pattern

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

is coded as

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y$

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: Q_{0} :

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the intractable CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

is coded as

Idea: possible worlds at the left have a path that matches Q_{0} iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

- If Q becomes false at one step, then we have found a tight pattern

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q
- $D^{\prime \prime}$ has a homomorphism back to D

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a star D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q
- $D^{\prime \prime}$ has a homomorphism back to D
- This contradicts the minimality of the large D

Rescuing the proof

We know that we have a tight pattern:

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates for each $n \in \mathbb{N}$:

Rescuing the proof

We know that we have a tight pattern:
 but

Consider its iterates for each $n \in \mathbb{N}$:

Rescuing the proof

Case 1: some iterate violates the query:

Rescuing the proof

Case 1: some iterate violates the query:

Consider its iterates for each $n \in \mathbb{N}$:

Rescuing the proof

We know that we have a tight pattern:

Consider its iterates for each $n \in \mathbb{N}$:

Case 1: some iterate violates the query:

$$
\begin{aligned}
& \rightarrow \text { Reduce from } \operatorname{PQE}\left(Q_{0}\right) \text { as we explained }
\end{aligned}
$$

Case 2: all iterates satisfy the query:

but

Rescuing the proof

We know that we have a tight pattern:

Case 1: some iterate violates the query:

$$
\begin{aligned}
& \rightarrow \text { Reduce from } \operatorname{PQE}\left(Q_{0}\right) \text { as we explained }
\end{aligned}
$$

Case 2: all iterates satisfy the query:

but

\rightarrow Call this an iterable pattern

Using iterable patterns to show hardness of PQE

Using iterable patterns to show hardness of PQE

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

Using iterable patterns to show hardness of PQE

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

Using iterable patterns to show hardness of PQE

We have an iterable pattern:
 but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

is coded as

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$ We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\mathrm{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\operatorname{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}
- Show that each N_{i} is a linear function of X_{1}, \ldots, X_{k}, so:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

Proof technique

Hard part: show hardness for (variants of) the query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$
We reduce from $\operatorname{PQE}(Q)$, on probabilistic graphs G of the following form:

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes: $X=X_{1}+\cdots+X_{k}$
- Create unweighted copies of G modified with some parameterized gadgets
\rightarrow Call the oracle for $\operatorname{SC}(\mathrm{Q})$ on each to get answers N_{1}, \ldots, N_{k}
- Show that each N_{i} is a linear function of X_{1}, \ldots, X_{k}, so:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- Show invertibility of this matrix to recover the X_{i} from the N_{i}

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction
\rightarrow If the matrix is invertible, then we have succeeded

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction
\rightarrow If the matrix is invertible, then we have succeeded
We can choose gadgets and parameters to get a Vandermonde matrix, and show invertibility via several arithmetical tricks

The semistructured model and XML

- Tree-like structuring of data
- No (or less) schema constraints
- Allow mixing tags (structured data) and text (unstructured content)
- Particularly adapted to tagged or heterogeneous content

Simple probabilistic annotations

- Probabilities associated to tree nodes
- Express parent/child dependencies
- Impossible to express more complex dependencies
$\cdot \Rightarrow$ some sets of possible worlds are not expressible this way!

Annotations with event variables

Event	Prob.
w_{1}	0.8
w_{2}	0.7

Annotations with event variables

Event	Prob.
w_{1}	0.8
w_{2}	0.7
	$p_{1}=0.06 \quad p_{2}=0.70 \quad p_{3}=0.24$

- Expresses arbitrarily complex dependencies

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?
- Can be computed bottom-up in the simple model [Cohen et al., 2009]

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?
- Can be computed bottom-up in the simple model [Cohen et al., 2009]
- \#P-hard in the general model

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?
- Can be computed bottom-up in the simple model [Cohen et al., 2009]
- \#P-hard in the general model
- This generalizes to PQE for MSO on relational databases (TID) when assuming that the treewidth is bounded [Amarilli et al., 2015]

Query evaluation on probabilistic XML

- Query evaluation for probabilistic XML: what is the probability that a (fixed) tree automaton accepts?
- Can be computed bottom-up in the simple model [Cohen et al., 2009]
- \#P-hard in the general model
- This generalizes to PQE for MSO on relational databases (TID) when assuming that the treewidth is bounded [Amarilli et al., 2015]
- Bounding the treewidth is necessary for tractability in a certain sense [Amarilli et al., 2016]

A general probabilistic XML model

[Abiteboul et al., 2009]

- e: event "it did not rain" at time 1
- mux: mutually exclusive options
- $N(70,4)$: normal distribution
- Compact representation of a set of possible worlds
- Two kinds of dependencies: global (e) and local (mux)
- Generalizes all previously proposed models of the literature

Recursive Markov chains [Benedikt et al., 2010]

```
<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>
```

D: directory

$$
P: \text { person }
$$

- Probabilistic model that extends PXML with local dependencies
- Generate documents of unbounded width or depth

C-tables [Imielinski and Lipski, 1984]

Patient	Examin. 1	Examin. 2	Diagnosis	Condition
A	23	12	α	
B	10	23	\perp_{1}	
C	2	4	γ	
D	\perp_{2}	15	\perp_{1}	
E	\perp_{3}	17	β	$18<\perp_{3}<\perp_{2}$

- NULLs are labeled, and can be reused inside and across tuples
- Arbitrary correlations across tuples
- Closed under the relational algebra
- Every set of possible worlds can be represented as a database with c-tables

[^0]: Treelike data

 MSO query

 $$
 \begin{gathered}
 \exists x y \\
 P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
 \end{gathered}
 $$

