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Problem: Finding Patterns in Text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team
of Télécom Paris, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to find a pattern P in the text T:
→ Example: find email addresses
• Write the pattern as a regular expression:

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

→ How to find the pattern P e�ciently in the text T?
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Solution: Automata

• Convert the regular expression P to an automaton A

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

1start 2 3 4

• •

␣ ␣

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
E m a i l ␣ a 3 n m @ a 3 n m . n e t ␣ A f f i l i a t i o n

• The complexity is O(|A| × |T|), i.e., linear in T and polynomial in P
→ This is very e�cient in T and reasonably e�cient in P
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Actual Problem: Extracting all Patterns

• This only tests if the pattern occurs in the text!
→ “YES”

• Goal: find all substrings in the text T which match the pattern P
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

E m a i l A f f i l i a t i o n

→ One match: [5, 20〉
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Formal Problem Statement

• Problem description:

• Input:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom Paris,
46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom
ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More
Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• Output: the list of substrings of T that match P:
[186, 200〉, [483, 500〉, . . .

• Goal: be very e�cient in T and reasonably e�cient in P
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Measuring the Complexity

• Naive algorithm: Run the automaton A on each substring of T

[〉

l

[〉

o

[〉

l

[〉
→ Complexity is O(|T|2 × |A| × |T|)
→ Can be optimized to O(|T|2 × |A|)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the text T:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

• Consider the pattern P := a∗

• The number of matches is Ω(|T|2)

→ We need a di�erent way to measure complexity
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Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/20



Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/20



Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/20



Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/20



Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/20



Enumeration Algorithms

Idea: In real life, we do not want to compute all the matches
we just need to be able to enumerate matches quickly

→ Formalization: enumeration algorithms

7/20



Formalizing Enumeration Algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣ [a-z0-9.]∗@
[a-z0-9.]∗ ␣

Pattern P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{
[42, 57〉,[1337, 1351〉

}

Results
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Results

Two ways to measure performance:

• Total time for phase 1

• Delay between two results in phase 2
... as a function of the text and pattern
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Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team
of Télécom Paris, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?

→ it is the maximal time to find the next matching substring
→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?
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• A pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

• What is the delay of the naive algorithm?

→ it is the maximal time to find the next matching substring

→ i.e. O(|T|2 × |A|), e.g., if only the beginning and end match

→ Can we do better?
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Complexity of Enumeration Algorithms

• Recall the inputs to our problem:
• A text T
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Results for Enumerating Pattern Matches

• Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing linear in T

and exponential in P

• Delay constant (independent from T)

and exponential in P

→ Problem: They only measure the complexity as a function of T!

• Our contribution is:

Theorem
We can enumerate all matches of a pattern P on a text T with:

• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T
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Automaton Formalism

• We use automata that read letters and capture variables

→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text
→ Output: tuples 〈α : i, β : j〉 such that

A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!
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Proof Idea: Product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay
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Extension: From Text to Trees



Pattern Matching on Trees

• The data T is no longer text but is now a tree:

<body>1

<section>3

<p>5

<img>7<img>6

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉

13/20
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Definitions and Results on Trees

• Tree patterns P can be written as a kind of tree automaton...

• Existing work has studied this problem and shown:

Theorem [Bagan, 2006]
We can find all matches on a tree T of a tree pattern P
(with constantly many capture variables) with:

• Preprocessing linear in T

and exponential in P

• Delay constant in T

and exponential in P

• Again, this only measures the complexity in T! We show:

Theorem [Amarilli et al., 2019]
• Preprocessing in O(|T| × Poly(P))

• Delay polynomial in P and independent from T
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Proof Idea for Trees: Structure

Similar structure to the previous proof, but with a circuit:

• Preprocessing: Compute a circuit representation of the answers

• Enumeration: Apply a generic algorithm on the circuit

Tree

Phase 1:
Preprocessing Data

structure

Phase 2:
Enumeration

{
〈α : 4, β : 6〉,
〈α : 4, β : 7〉

}
Results

∃s section(s)∧
s α ∧ s β∧
h2(α) ∧ img(β)

Pattern

15/20
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Proof Idea for Trees: Set Circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”

• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g.,

{
〈α :4, β :6〉, 〈α :4, β :7〉

}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

16/20
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Proof Idea for Trees: Results

Tree

Phase 1:
Preprocessing

×

α :4

β :6

∪

β :7

Phase 2:
Enumeration

{
〈α : 4, β : 6〉,
〈α : 4, β : 7〉

}
Results

∃s section(s)∧
s α ∧ s β∧
h2(α) ∧ img(β)

Pattern

Theorem
For any tree automaton A with capture variables α1, . . . , αk,
given a tree T, we can build in O(|T| × |A|) a set circuit capturing
exactly the set of tuples {〈α1 : n1, . . . , αk : nk〉 in the output of A on T
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〈α : 4, β : 7〉

}
Results

∃s section(s)∧
s α ∧ s β∧
h2(α) ∧ img(β)

Pattern

Theorem
Given a set circuit satisfying some conditions, we can enumerate all
tuples that it captures with linear preprocessing and constant delay

E.g., for
{
〈α :4, β :6〉, 〈α :4, β :7〉

}
: enumerate 〈α :4, β :6〉 then 〈α :4, β :7〉
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Updates

Tree T

Phase 1:
Preprocessing

×

α :4

β :6

∪

β :7

Data structure

• The input data can be modified after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?
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Results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

[Amarilli et al., 2019] trees O(T) O(1) O(log T)
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Summary and Future Work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T

• Result: we can do this with reasonable complexity in P
and with linear preprocessing and constant delay in T

Extensions and future work:

• Extending the results from text to trees
• Supporting updates on the input data
• Understanding the connections with circuit classes
• Enumerating results in a relevant order?
• Testing how well our methods perform in practice
→ Implementation: https://github.com/PoDMR/enum-spanner-rs

Thanks for your attention!
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