
Enumerating Pattern Matches in Words and Trees

Antoine Amarilli1, Pierre Bourhis2, Stefan Mengel3, Matthias Niewerth4

October 4th, 2018
1Télécom ParisTech

2CNRS CRIStAL

3CNRS CRIL

4Universität Bayreuth

1/18

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to find a pattern P in the text T:
→ Example: find email addresses

• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to find the pattern P e�ciently in the text T?

2/18

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to find a pattern P in the text T:
→ Example: find email addresses

• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to find the pattern P e�ciently in the text T?

2/18

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to find a pattern P in the text T:
→ Example: find email addresses

• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to find the pattern P e�ciently in the text T?

2/18

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to find a pattern P in the text T:
→ Example: find email addresses

• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to find the pattern P e�ciently in the text T?

2/18

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?
• Data complexity in the text T: linear, i.e., O(|T|)
• Combined complexity in T and P: polynomial

3/18

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?
• Data complexity in the text T: linear, i.e., O(|T|)
• Combined complexity in T and P: polynomial

3/18

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?
• Data complexity in the text T: linear, i.e., O(|T|)
• Combined complexity in T and P: polynomial

3/18

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?
• Data complexity in the text T: linear, i.e., O(|T|)
• Combined complexity in T and P: polynomial

3/18

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?

• Data complexity in the text T: linear, i.e., O(|T|)
• Combined complexity in T and P: polynomial

3/18

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?
• Data complexity in the text T: linear, i.e., O(|T|)

• Combined complexity in T and P: polynomial

3/18

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?
• Data complexity in the text T: linear, i.e., O(|T|)
• Combined complexity in T and P: polynomial

3/18

Actual problem: Extracting all patterns

• Problem: This only tells us if the pattern is in the text!
→ “YES”

• We want to actually find all pattern matches!

• Write the pattern P as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation

Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

4/18

Actual problem: Extracting all patterns

• Problem: This only tells us if the pattern is in the text!
→ “YES”

• We want to actually find all pattern matches!

• Write the pattern P as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation

Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

4/18

Actual problem: Extracting all patterns

• Problem: This only tells us if the pattern is in the text!
→ “YES”

• We want to actually find all pattern matches!

• Write the pattern P as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation

Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

4/18

Actual problem: Extracting all patterns

• Problem: This only tells us if the pattern is in the text!
→ “YES”

• We want to actually find all pattern matches!

• Write the pattern P as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Semantics: a match of P maps α and β to positions of T

... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

4/18

Actual problem: Extracting all patterns

• Problem: This only tells us if the pattern is in the text!
→ “YES”

• We want to actually find all pattern matches!

• Write the pattern P as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation

Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

4/18

Actual problem: Extracting all patterns

• Problem: This only tells us if the pattern is in the text!
→ “YES”

• We want to actually find all pattern matches!

• Write the pattern P as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation

Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

4/18

Formal problem statement

• Problem description:

• Input:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

5/18

Formal problem statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

5/18

Formal problem statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

5/18

Formal problem statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

5/18

Formal problem statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

5/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern
αβ l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern
α

β

l

α

β o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern
α

β

l

αβ

o

α

β l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern
α

β

l

αβ

o

αβ

l

α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

α

β l α

β

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l αβ o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l α

β

o

α

β l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l α

β

o

αβ

l

α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

α

β l

αβ

o α

β

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

α

β o α

β

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o αβ l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o α

β

l

α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

α

β l

αβ

o

αβ

l α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

α

β o

αβ

l α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

α

β l α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity...

O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

6/18

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satisfies the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := α a∗ β

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity
6/18

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

7/18

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

7/18

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

7/18

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

7/18

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

7/18

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

7/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

8/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

8/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

8/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

8/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

8/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

0011

8/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

0011

8/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

⊥

8/18

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

␣+ α [a-z0-9.]∗ @

[a-z0-9.]∗ β ␣+

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

⊥

Two ways to measure performance:

• Total time for phase 1

• Delay between two results in phase 2
... in combined and data complexity

8/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is...

polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A

• Data complexity is... constant: nothing to do on T
• In terms of delay...

• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is...

constant: nothing to do on T
• In terms of delay...

• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...

• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is...

polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T

• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is...

polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to find the next match

→ Can we do better?

9/18

Results for enumerating pattern matches

• Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can find all matches of a regexp with captures P on text T with:

• Preprocessing linear in T

(data)

• Delay constant in T

(data)

→ Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

• Our contribution is:

Theorem
We can find all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data) and polynomial in T and P (combined)
• Delay constant in T (data) and polynomial in T and P (combined)

10/18

Results for enumerating pattern matches

• Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can find all matches of a regexp with captures P on text T with:

• Preprocessing linear in T

(data)

• Delay constant in T

(data)

→ Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

• Our contribution is:

Theorem
We can find all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data) and polynomial in T and P (combined)
• Delay constant in T (data) and polynomial in T and P (combined)

10/18

Results for enumerating pattern matches

• Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can find all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

→ Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

• Our contribution is:

Theorem
We can find all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data) and polynomial in T and P (combined)
• Delay constant in T (data) and polynomial in T and P (combined)

10/18

Results for enumerating pattern matches

• Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can find all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

→ Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

• Our contribution is:

Theorem
We can find all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data) and polynomial in T and P (combined)
• Delay constant in T (data) and polynomial in T and P (combined)

10/18

Key proof idea

Compute a product DAG of the text T and of the pattern P

Example: Text T := aaaba and P := •∗αa∗β•∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

11/18

Key proof idea

Compute a product DAG of the text T and of the pattern P

Example: Text T := aaaba and P := •∗αa∗β•∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

11/18

Key proof idea

Compute a product DAG of the text T and of the pattern P

Example: Text T := aaaba and P := •∗αa∗β•∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

11/18

Key proof idea

Compute a product DAG of the text T and of the pattern P

Example: Text T := aaaba and P := •∗αa∗β•∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

11/18

Key proof idea

Compute a product DAG of the text T and of the pattern P

Example: Text T := aaaba and P := •∗αa∗β•∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

11/18

Key proof idea

Compute a product DAG of the text T and of the pattern P

Example: Text T := aaaba and P := •∗αa∗β•∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

11/18

Key proof idea

Compute a product DAG of the text T and of the pattern P

Example: Text T := aaaba and P := •∗αa∗β•∗, match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

11/18

Key proof idea

Compute a product DAG of the text T and of the pattern P

Example: Text T := aaaba and P := •∗αa∗β•∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay 11/18

Extension: From Text to Trees

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉

12/18

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉

12/18

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results:

〈α : 4, β : 6〉, 〈α : 4, β : 7〉

12/18

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there α: an h2 header and β: an image in the same section?

• Results:

〈α : 4, β : 6〉, 〈α : 4, β : 7〉

12/18

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there α: an h2 header and β: an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉
12/18

Definitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures

• Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can find all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T

(data)

• Delay constant in T

(data)

• Again, this is only in data complexity!

• We conjecture the following bounds for this task (ongoing work):

Conjecture
• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

13/18

Definitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures

• Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can find all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T

(data)

• Delay constant in T

(data)

• Again, this is only in data complexity!

• We conjecture the following bounds for this task (ongoing work):

Conjecture
• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

13/18

Definitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures

• Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can find all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

• Again, this is only in data complexity!

• We conjecture the following bounds for this task (ongoing work):

Conjecture
• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

13/18

Definitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures

• Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can find all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

• Again, this is only in data complexity!

• We conjecture the following bounds for this task (ongoing work):

Conjecture
• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

13/18

Extension: Handling Updates

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

14/18

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

14/18

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

14/18

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

14/18

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modified after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?
14/18

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

15/18

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

15/18

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

15/18

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segoufin, 2018] text O(T) O(1) O(log T)

15/18

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

16/18

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

16/18

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

16/18

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

16/18

New results on dynamic trees

If we allow only relabeling updates, we can show:

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Amarilli et al., 2018] trees O(T) O(1) O(log T)

Remaining open questions:

→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

17/18

New results on dynamic trees

If we allow only relabeling updates, we can show:

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

Remaining open questions:

→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

17/18

New results on dynamic trees

If we allow only relabeling updates, we can show:

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

Remaining open questions:

→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

17/18

New results on dynamic trees

If we allow only relabeling updates, we can show:

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segoufin, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

Remaining open questions:

→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

17/18

Summary and Future Work

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T

• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees

• Supporting updates on the input data

• Testing how well our methods perform in practice

Thanks for your attention!

18/18

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T

• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees

• Supporting updates on the input data

• Testing how well our methods perform in practice

Thanks for your attention!

18/18

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T

• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees

• Supporting updates on the input data

• Testing how well our methods perform in practice

Thanks for your attention!

18/18

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T

• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees

• Supporting updates on the input data

• Testing how well our methods perform in practice

Thanks for your attention!

18/18

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T

• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees

• Supporting updates on the input data

• Testing how well our methods perform in practice

Thanks for your attention!

18/18

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T

• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees

• Supporting updates on the input data

• Testing how well our methods perform in practice

Thanks for your attention!

18/18

References i

Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on trees under relabelings.
In ICDT.
Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc,
D. (2018).
Constant delay algorithms for regular document spanners.
In PODS.

References ii

Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Losemann, K. and Martens, W. (2014).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.
Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
To appear.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

	Extension: From Text to Trees
	Extension: Handling Updates
	Summary and Future Work
	Appendix

