Approach 00000 Complexity results

Conclusion O

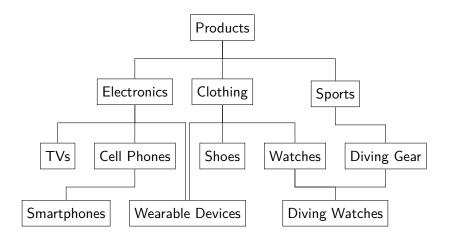
Top-*k* Querying of Incomplete Data under Order Constraints

Antoine Amarilli¹ Yael Amsterdamer² Tova Milo² Pierre Senellart^{1,3} ¹Télécom ParisTech. Paris, France

 $^2 \, {\rm Tel}$ Aviv University, Tel Aviv, Israel

³National University of Singapore

April 20th, 2015

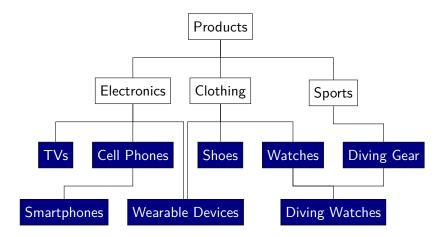

Introduction	
•0	

Approach 00000 Complexity results

Conclusion O

Introduction

Taxonomy of items for a store

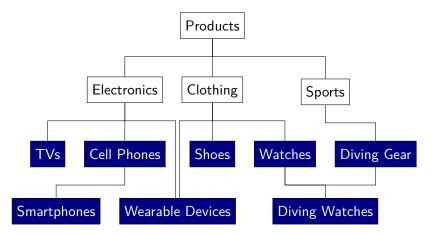

Introduction	
•0	

Approach 00000 Complexity results

Conclusion O

Introduction

Taxonomy of items for a store with categories.


Introduction	
•0	

Approach 00000 Complexity results

Conclusion O

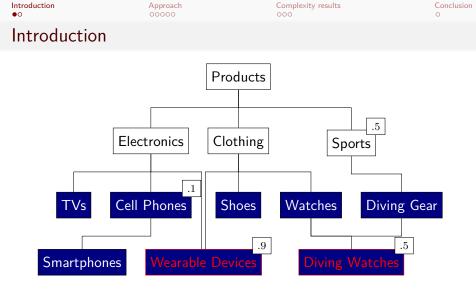
Introduction

Taxonomy of items for a store with categories. Ask the crowd to classify items

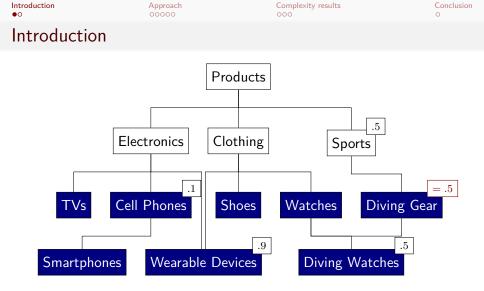


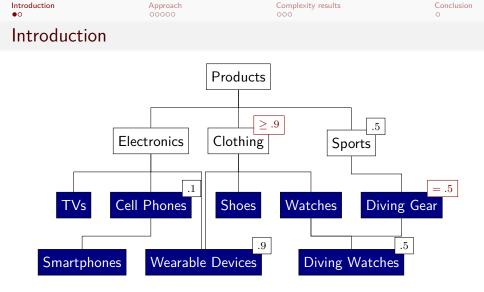


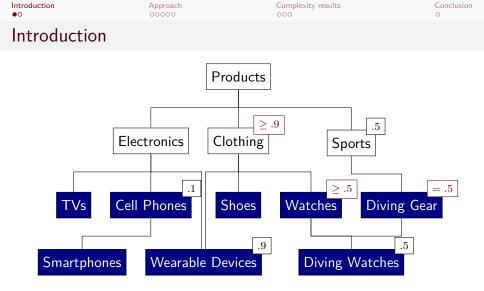


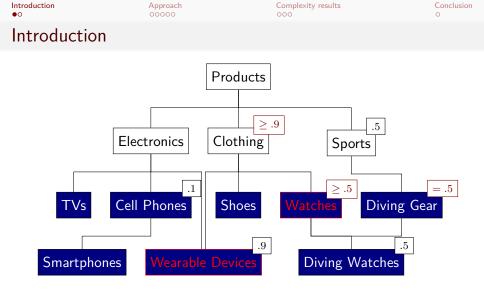



Monotonicity: compatibility increases as we go up.




Monotonicity: compatibility increases as we go up. Best categories?





Approach 00000 Complexity results

Conclusion O

Problem statement

• Taxonomy:

- Partial order, i.e., directed acyclic graph
- Some end categories distinguished
- Compatibility values:
 - To simplify, assume $0 \le \bullet \le 1$
 - Monotonicity with respect to the taxonomy
 - Some values known, other unknown

Approach 00000 Complexity results

Conclusion O

Problem statement

• Taxonomy:

- Partial order, i.e., directed acyclic graph
- Some end categories distinguished
- Compatibility values:
 - To simplify, assume $0 \le \bullet \le 1$
 - Monotonicity with respect to the taxonomy
 - Some values known, other unknown
- \rightarrow How to complete the missing values?
- \rightarrow What are the top-k and their expected values?
- \rightarrow What is our confidence in the answer?

Approach

Complexity results

Conclusion O

Table of contents

Introduction	
00	

Complexity results

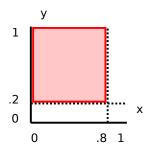
Conclusion O

Admissible polytope

- Each unknown value has one variable
- Consider the space of all possible assignments
- It is a polytope (linear constraints)

Introduction	
00	

Complexity results


Conclusion O

Admissible polytope

- Each unknown value has one variable
- Consider the space of all possible assignments
- It is a polytope (linear constraints)

Example:

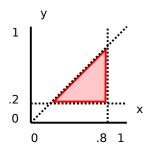
• $0 \le x \le .8$, $.2 \le y \le 1$

Introduction	
00	

Approach •0000

Complexity results

Conclusion O


Admissible polytope

- Each unknown value has one variable
- Consider the space of all possible assignments
- It is a polytope (linear constraints)

Example:

•
$$0 \le x \le .8$$
, $.2 \le y \le 1$

• $y \le x$

Approach

Complexity results

Conclusion O

Probabilistic formalization

- Consider the admissible polytope
- Take the uniform distribution on it (Intuitively, all possible assignments are equiprobable)

Approach 00000 Complexity results

Conclusion O

Probabilistic formalization

- Consider the admissible polytope
- Take the uniform distribution on it (Intuitively, all possible assignments are equiprobable)
- $\rightarrow\,$ What is the average value of each variable?

Approach 00000 Complexity results

Conclusion O

Probabilistic formalization

- Consider the admissible polytope
- Take the uniform distribution on it (Intuitively, all possible assignments are equiprobable)
- → What is the average value of each variable? (Possible extensions: variance, marginal distribution...)

Approach 00●00 Complexity results

Conclusion O

Easy case: total order

Approach

Complexity results

Conclusion O

Easy case: total order

$0 \quad \leq \quad \bullet \quad \leq \quad \bullet \quad \leq \quad .3 \quad \leq \quad \bullet \quad \leq \quad 1$

• How to complete this? Any ideas? ...

Approach

Complexity results

Conclusion O

Easy case: total order

$0 \leq \bullet \leq \bullet \leq .3 \leq \bullet \leq 1$

- How to complete this? Any ideas? ...
- \rightarrow Linear interpolation!

Approach

Complexity results

Conclusion O

Easy case: total order

$0 \quad \leq \quad .1 \quad \leq \quad .2 \quad \leq \quad .3 \quad \leq \quad .65 \quad \leq \quad 1$

- How to complete this? Any ideas? ...
- \rightarrow Linear interpolation!

Approach

Complexity results

Conclusion O

Easy case: total order

$0 \quad \leq \quad .1 \quad \leq \quad .2 \quad \leq \quad .3 \quad \leq \quad .65 \quad \leq \quad 1$

- How to complete this? Any ideas? ...
- \rightarrow Linear interpolation!
 - (For marginal distribution: order statistics, Beta distribution)

Approach

Complexity results

Conclusion O

General case

• Consider the taxonomy: partial order

Approach

Complexity results

Conclusion O

- Consider the taxonomy: partial order
- Consider all possible total orders

Approach

Complexity results

Conclusion O

- Consider the taxonomy: partial order
- Consider all possible total orders (Ties can be made negligible)

Approach

Complexity results

Conclusion O

- Consider the taxonomy: partial order
- Consider all possible total orders (Ties can be made negligible)
- Solve each total order as before

Approach

Complexity results

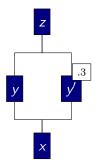
Conclusion O

- Consider the taxonomy: partial order
- Consider all possible total orders (Ties can be made negligible)
- Solve each total order as before
- Take the weighted average of the orders

Approach

Complexity results

Conclusion O

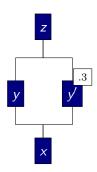

- Consider the taxonomy: partial order
- Consider all possible total orders (Ties can be made negligible)
- Solve each total order as before
- Take the weighted average of the orders
- Total order weight: probability of this order

Complexity results

Conclusion O

- Consider the taxonomy: partial order
- Consider all possible total orders (Ties can be made negligible)
- Solve each total order as before
- Take the weighted average of the orders
- Total order weight: probability of this order
- \rightarrow Gives the average for the actual taxonomy!

Introduction	Approach	Complexity results	Conclusion
00	0000●		O
Example			

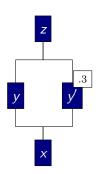


Example

Approach

Complexity results

Conclusion O

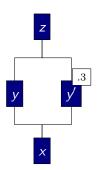

• Possibility 1: $0 \le x \le y \le y' \le z \le 1$

Example

Approach

Complexity results

Conclusion O


Possibility 1: 0 ≤ x ≤ y ≤ y' ≤ z ≤ 1 → Expected values: x = .1, y = .2, z = .65

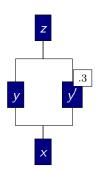
Introduction	
00	

Example

Approach 0000● Complexity results

Conclusion O

• Possibility 1: $0 \le x \le y \le y' \le z \le 1$


- \rightarrow Expected values: x = .1, y = .2, z = .65
 - Probability:

Introduction	
00	

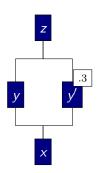
Example

Approach 0000● Complexity results

Conclusion O

- Possibility 1: $0 \le x \le y \le y' \le z \le 1$
 - \rightarrow Expected values: x = .1, y = .2, z = .65

• Probability:


→ Volume of $0 \le x \le y \le .3$ times volume of $.3 \le z \le 1$

Example

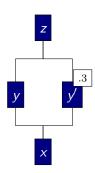
Approach

Complexity results

Conclusion O

Possibility 1: 0 ≤ x ≤ y ≤ y' ≤ z ≤ 1
 → Expected values: x = .1, y = .2, z = .65

• Probability:


→ Volume of
$$0 \le x \le y \le .3$$

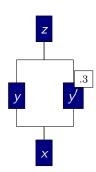
times volume of $.3 \le z \le 1$
→ $\frac{.3^2}{2!}$ and $\frac{1-.3}{1!}$

Example

Approach

Complexity results

Conclusion O

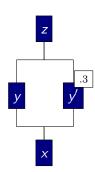

Possibility 1: 0 ≤ x ≤ y ≤ y' ≤ z ≤ 1
→ Expected values: x = .1, y = .2, z = .65
Probability:
→ Volume of 0 ≤ x ≤ y ≤ .3 times volume of .3 ≤ z ≤ 1 → .3²/2! and 1-.3/1!
Possibility 2: 0 < x < y' < y < z < 1

Example

Approach

Complexity results

Conclusion O

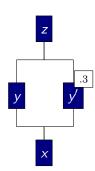

Possibility 1: 0 ≤ x ≤ y ≤ y' ≤ z ≤ 1
→ Expected values: x = .1, y = .2, z = .65
Probability:
→ Volume of 0 ≤ x ≤ y ≤ .3 times volume of .3 ≤ z ≤ 1
→ .3²/2! and 1-.3/1!
Possibility 2: 0 ≤ x ≤ y' ≤ y ≤ z ≤ 1

 \rightarrow Expected values of y: .2 and .533

Example

Approach

Complexity results


- Possibility 1: 0 ≤ x ≤ y ≤ y' ≤ z ≤ 1
 → Expected values: x = .1, y = .2, z = .65
 Probability:
 → Volume of 0 ≤ x ≤ y ≤ .3 times volume of .3 ≤ z ≤ 1
 → .3²/₁ and 1-.3/₁
- Possibility 2: $0 \le x \le y' \le y \le z \le 1$
- \rightarrow Expected values of y: .2 and .533
- \rightarrow Normalized probabilities: .3 and .7

Example

Approach

Complexity results

Conclusion O

Possibility 1: 0 ≤ x ≤ y ≤ y' ≤ z ≤ 1
 → Expected values: x = .1, y = .2, z = .65

• Probability:

- → Volume of $0 \le x \le y \le .3$ times volume of $.3 \le z \le 1$ → $\frac{.3^2}{2!}$ and $\frac{1-.3}{1!}$
- Possibility 2: $0 \le x \le y' \le y \le z \le 1$
- \rightarrow Expected values of y: .2 and .533
- $\rightarrow\,$ Normalized probabilities: .3 and .7
- \rightarrow Final result: y has expected value .43

Approach 00000 Complexity results

Conclusion O

Table of contents

Introduction	Approach	Complexity results	Conc
00	00000		O
		1	

Complexity of the bruteforce algorithm

- Complexity of the previous algorithm: PTIME in the number of compatible total orders (aka. linear extensions)
- They can be enumerated in PTIME in their number

Introducti 00	ion		Approach 00000		Complexity results ●00	Co
6		C 1		c		

Complexity of the bruteforce algorithm

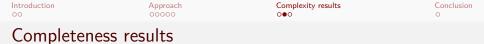
- Complexity of the previous algorithm: PTIME in the number of compatible total orders (aka. linear extensions)
- They can be enumerated in PTIME in their number
- However there may be exponentially many

Introduction	Approach	Complexity results
00	00000	•00
Complexity of th	e bruteforce alg	orithm

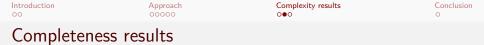
- PTIME in the number of compatible total orders (aka. linear extensions)
- They can be enumerated in PTIME in their number
- However there may be exponentially many

• Complexity of the previous algorithm:

 \rightarrow Volume computation for convex polytopes is #P-hard


Introduction	Approach	Complexity results	
00	00000	•00	

0


Conclusion

Complexity of the bruteforce algorithm

- Complexity of the previous algorithm: PTIME in the number of compatible total orders (aka. linear extensions)
- They can be enumerated in PTIME in their number
- However there may be exponentially many
- \rightarrow Volume computation for convex polytopes is #P-hard
- \rightarrow Can we show hardness of our problems?

- Existing results [Brightwell and Winkler, 1991]
 - $\rightarrow\,$ Counting the number of linear extensions is #P-hard
 - \rightarrow Expected rank computation is #P-hard

- Existing results [Brightwell and Winkler, 1991]
 - $\rightarrow\,$ Counting the number of linear extensions is #P-hard
 - \rightarrow Expected rank computation is #P-hard
- $\rightarrow\,$ Computing the expected value in our setting is # P-hard
 - $\rightarrow\,$ Connection between expected rank and value

Introduction on Approach occord of the second secon

- - Existing results [Brightwell and Winkler, 1991]
 - \rightarrow Counting the number of linear extensions is #P-hard
 - \rightarrow Expected rank computation is #P-hard
 - \rightarrow Computing the expected value in our setting is #P-hard
 - \rightarrow Connection between expected rank and value
 - \rightarrow Computing the top-k is #P-hard even without values!
 - \rightarrow Binary search against known values to find expected value
 - \rightarrow Uses scheme for rational search [Papadimitriou, 1979]

Introduction Approach Complexity results 00 0000 000 Conclusion O

Completeness results

- Existing results [Brightwell and Winkler, 1991]
 - $\rightarrow\,$ Counting the number of linear extensions is #P-hard
 - \rightarrow Expected rank computation is #P-hard
- \rightarrow Computing the expected value in our setting is #P-hard
 - $\rightarrow\,$ Connection between expected rank and value
- \rightarrow Computing the top-k is #P-hard even without values!
 - $\rightarrow\,$ Binary search against known values to find expected value
 - \rightarrow Uses scheme for rational search [Papadimitriou, 1979]
- $\rightarrow~\mathsf{FP}^{\#\mathsf{P}}\text{-membership}$ of our problems
 - \rightarrow Non-trivial as polytope volume computation is not in FP^{#P}!

Approach 00000 Complexity results

Conclusion O

Tractable cases

- Intractable for arbitrary taxonomies
- Are there tractable subcases?

Approach

Complexity results

Conclusion O

Tractable cases

- Intractable for arbitrary taxonomies
- Are there tractable subcases?
- Common situation: taxonomy is a tree
- → PTIME expected value computation (Compute the marginal distributions as piecewise polynomials)

Approach 00000 Complexity results

Conclusion O

Table of contents

Introduction

2 Approach

3 Complexity results

Introduction	
00	

Complexity results

Conclusion

- Formal definition of top-k queries on incomplete data
- Also generalizes linear interpolation to partial orders

Introduction	
00	

Complexity results

Conclusion

- Formal definition of top-k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top-k

Introduction	
00	

Complexity results

Conclusion

- Formal definition of top-k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top-k
- Hardness results for these problems

Introduction	
00	

Complexity results

- Formal definition of top-k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top-k
- Hardness results for these problems
- Tractable subcases for tree-shaped taxonomies

Introduction	
00	

Complexity results

- Formal definition of top-k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top-k
- Hardness results for these problems
- Tractable subcases for tree-shaped taxonomies
- Open questions:
 - \rightarrow Is this the right definition?
 - $\rightarrow\,$ Are there other tractable cases?
 - \rightarrow What about choosing the next queries?

Introduction	
00	

Complexity results

Conclusion

- Formal definition of top-k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top-k
- Hardness results for these problems
- Tractable subcases for tree-shaped taxonomies
- Open questions:
 - \rightarrow Is this the right definition?
 - $\rightarrow\,$ Are there other tractable cases?
 - \rightarrow What about choosing the next queries?

Thanks for your attention!

Smartwatch photo on slide 2: Bostwickenator, CC-BY-SA 3.0

https://en.wikipedia.org/wiki/File:WimmOneInBand.jpg

References I

- Brightwell, G. and Winkler, P. (1991).
 Counting linear extensions.
 Order, 8(3):225–242.
- Papadimitriou, C. H. (1979).
 Efficient search for rationals.
 Information Processing Letters, 8(1):1–4.