Top-k Querying of Incomplete Data under Order Constraints

Antoine Amarilli ${ }^{1} \quad$ Yael Amsterdamer ${ }^{2}$
Tova Milo ${ }^{2}$ Pierre Senellart ${ }^{1,3}$
${ }^{1}$ Télécom ParisTech, Paris, France
${ }^{2}$ Tel Aviv University, Tel Aviv, Israel
${ }^{3}$ National University of Singapore
April 20th, 2015

Introduction

Taxonomy of items for a store

Introduction
Taxonomy of items for a store with categories.

Introduction
Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction
Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction
Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction
Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction

Taxonomy of items for a store with categories.
Ask the crowd to classify items

Introduction

Monotonicity: compatibility increases as we go up.

Introduction

Monotonicity: compatibility increases as we go up.
Best categories?

Introduction

Monotonicity: compatibility increases as we go up. Best categories? Naive answer...

Introduction

Monotonicity: compatibility increases as we go up.
Best categories? Naive answer...

Introduction

Monotonicity: compatibility increases as we go up. Best categories? Naive answer... Clever answer...

Introduction

Monotonicity: compatibility increases as we go up. Best categories? Naive answer... Clever answer...

Introduction

Monotonicity: compatibility increases as we go up. Best categories? Naive answer... Clever answer...

Introduction

Monotonicity: compatibility increases as we go up. Best categories? Naive answer... Clever answer...

Introduction

Monotonicity: compatibility increases as we go up. Best categories? Naive answer... Clever answer...

Problem statement

- Taxonomy:
- Partial order, i.e., directed acyclic graph
- Some end categories distinguished
- Compatibility values:
- To simplify, assume $0 \leq \bullet \leq 1$
- Monotonicity with respect to the taxonomy
- Some values known, other unknown

Problem statement

- Taxonomy:
- Partial order, i.e., directed acyclic graph
- Some end categories distinguished
- Compatibility values:
- To simplify, assume $0 \leq \bullet \leq 1$
- Monotonicity with respect to the taxonomy
- Some values known, other unknown
\rightarrow How to complete the missing values?
\rightarrow What are the top- k and their expected values?
\rightarrow What is our confidence in the answer?

Table of contents

(1) Introduction

(2) Approach
(3) Complexity results
4. Conclusion

Admissible polytope

- Each unknown value has one variable
- Consider the space of all possible assignments
- It is a polytope (linear constraints)

Admissible polytope

- Each unknown value has one variable
- Consider the space of all possible assignments
- It is a polytope (linear constraints)

Example:

- $0 \leq x \leq .8, .2 \leq y \leq 1$

Admissible polytope

- Each unknown value has one variable
- Consider the space of all possible assignments
- It is a polytope (linear constraints)

Example:

- $0 \leq x \leq .8, .2 \leq y \leq 1$
- $y \leq x$

Probabilistic formalization

- Consider the admissible polytope
- Take the uniform distribution on it (Intuitively, all possible assignments are equiprobable)

Probabilistic formalization

- Consider the admissible polytope
- Take the uniform distribution on it (Intuitively, all possible assignments are equiprobable)
\rightarrow What is the average value of each variable?

Probabilistic formalization

- Consider the admissible polytope
- Take the uniform distribution on it (Intuitively, all possible assignments are equiprobable)
\rightarrow What is the average value of each variable? (Possible extensions: variance, marginal distribution...)

Easy case: total order

$0 \leq \bullet \leq \bullet \leq .3 \leq \bullet \leq 1$

Easy case: total order

$0 \leq \bullet \leq \bullet \leq .3 \leq \bullet \leq 1$

- How to complete this? Any ideas?

Easy case: total order

$0 \leq \bullet \leq \bullet \leq .3 \leq \bullet \leq 1$

- How to complete this? Any ideas?
\rightarrow Linear interpolation!

Easy case: total order

$0 \leq .1 \leq .2 \leq .3 \leq .65 \leq 1$

- How to complete this? Any ideas? ...
\rightarrow Linear interpolation!

Easy case: total order

$0 \leq .1 \leq .2 \leq .3 \leq .65 \leq 1$

- How to complete this? Any ideas? ...
\rightarrow Linear interpolation!
- (For marginal distribution: order statistics, Beta distribution)

General case

- Consider the taxonomy: partial order

General case

- Consider the taxonomy: partial order
- Consider all possible total orders

General case

- Consider the taxonomy: partial order
- Consider all possible total orders
(Ties can be made negligible)

General case

- Consider the taxonomy: partial order
- Consider all possible total orders
(Ties can be made negligible)
- Solve each total order as before

General case

- Consider the taxonomy: partial order
- Consider all possible total orders
(Ties can be made negligible)
- Solve each total order as before
- Take the weighted average of the orders

General case

- Consider the taxonomy: partial order
- Consider all possible total orders
(Ties can be made negligible)
- Solve each total order as before
- Take the weighted average of the orders
- Total order weight: probability of this order

General case

- Consider the taxonomy: partial order
- Consider all possible total orders
(Ties can be made negligible)
- Solve each total order as before
- Take the weighted average of the orders
- Total order weight: probability of this order
\rightarrow Gives the average for the actual taxonomy!

Example

Example

- Possibility 1: $0 \leq x \leq y \leq y^{\prime} \leq z \leq 1$

Example

- Possibility 1: $0 \leq x \leq y \leq y \leq z \leq 1$
\rightarrow Expected values: $x=.1, y=.2, z=.65$

Example

- Possibility 1: $0 \leq x \leq y \leq y \leq z \leq 1$
\rightarrow Expected values: $x=.1, y=.2, z=.65$
- Probability:

Example

- Possibility 1: $0 \leq x \leq y \leq y \leq z \leq 1$
\rightarrow Expected values: $x=.1, y=.2, z=.65$
- Probability:
\rightarrow Volume of $0 \leq x \leq y \leq .3$ times volume of $.3 \leq z \leq 1$

Example

- Possibility 1: $0 \leq x \leq y \leq y \leq z \leq 1$
\rightarrow Expected values: $x=.1, y=.2, z=.65$
- Probability:
\rightarrow Volume of $0 \leq x \leq y \leq .3$ times volume of $.3 \leq z \leq 1$
$\rightarrow \frac{.3^{2}}{2!}$ and $\frac{1-.3}{1!}$

Example

- Possibility 1: $0 \leq x \leq y \leq y^{\prime} \leq z \leq 1$
\rightarrow Expected values: $x=.1, y=.2, z=.65$
- Probability:
\rightarrow Volume of $0 \leq x \leq y \leq .3$ times volume of $.3 \leq z \leq 1$ $\rightarrow \frac{.3^{2}}{2!}$ and $\frac{1-.3}{1!}$
- Possibility 2: $0 \leq x \leq y^{\prime} \leq y \leq z \leq 1$

Example

- Possibility 1: $0 \leq x \leq y \leq y \leq z \leq 1$
\rightarrow Expected values: $x=.1, y=.2, z=.65$
- Probability:
\rightarrow Volume of $0 \leq x \leq y \leq .3$ times volume of $.3 \leq z \leq 1$ $\rightarrow \frac{.3^{2}}{2!}$ and $\frac{1-.3}{1!}$
- Possibility 2: $0 \leq x \leq y^{\prime} \leq y \leq z \leq 1$
\rightarrow Expected values of y : . 2 and .533

Example

- Possibility 1: $0 \leq x \leq y \leq y \leq z \leq 1$
\rightarrow Expected values: $x=.1, y=.2, z=.65$
- Probability:
\rightarrow Volume of $0 \leq x \leq y \leq .3$ times volume of $.3 \leq z \leq 1$ $\rightarrow \frac{.3^{2}}{2!}$ and $\frac{1-.3}{1!}$
- Possibility 2: $0 \leq x \leq y^{\prime} \leq y \leq z \leq 1$
\rightarrow Expected values of y : . 2 and .533
\rightarrow Normalized probabilities: . 3 and .7

Example

- Possibility 1: $0 \leq x \leq y \leq y \leq z \leq 1$
\rightarrow Expected values: $x=.1, y=.2, z=.65$
- Probability:
\rightarrow Volume of $0 \leq x \leq y \leq .3$ times volume of $.3 \leq z \leq 1$ $\rightarrow \frac{.3^{2}}{2!}$ and $\frac{1-.3}{1!}$
- Possibility 2: $0 \leq x \leq y^{\prime} \leq y \leq z \leq 1$
\rightarrow Expected values of y : . 2 and .533
\rightarrow Normalized probabilities: . 3 and .7
\rightarrow Final result: y has expected value . 43

Table of contents

(1) Introduction

(2) Approach
(3) Complexity results
(4) Conclusion

Complexity of the bruteforce algorithm

- Complexity of the previous algorithm: PTIME in the number of compatible total orders (aka. linear extensions)
- They can be enumerated in PTIME in their number

Complexity of the bruteforce algorithm

- Complexity of the previous algorithm: PTIME in the number of compatible total orders (aka. linear extensions)
- They can be enumerated in PTIME in their number
- However there may be exponentially many

Complexity of the bruteforce algorithm

- Complexity of the previous algorithm: PTIME in the number of compatible total orders (aka. linear extensions)
- They can be enumerated in PTIME in their number
- However there may be exponentially many
\rightarrow Volume computation for convex polytopes is \#P-hard

Complexity of the bruteforce algorithm

- Complexity of the previous algorithm: PTIME in the number of compatible total orders (aka. linear extensions)
- They can be enumerated in PTIME in their number
- However there may be exponentially many
\rightarrow Volume computation for convex polytopes is \#P-hard
\rightarrow Can we show hardness of our problems?

Completeness results

- Existing results [Brightwell and Winkler, 1991]
\rightarrow Counting the number of linear extensions is \#P-hard
\rightarrow Expected rank computation is \#P-hard

Completeness results

- Existing results [Brightwell and Winkler, 1991]
\rightarrow Counting the number of linear extensions is \#P-hard
\rightarrow Expected rank computation is \#P-hard
\rightarrow Computing the expected value in our setting is \#P-hard
\rightarrow Connection between expected rank and value

Completeness results

- Existing results [Brightwell and Winkler, 1991]
\rightarrow Counting the number of linear extensions is \#P-hard
\rightarrow Expected rank computation is \#P-hard
\rightarrow Computing the expected value in our setting is \#P-hard
\rightarrow Connection between expected rank and value
\rightarrow Computing the top- k is \#P-hard even without values!
\rightarrow Binary search against known values to find expected value
\rightarrow Uses scheme for rational search [Papadimitriou, 1979]

Completeness results

- Existing results [Brightwell and Winkler, 1991]
\rightarrow Counting the number of linear extensions is \#P-hard
\rightarrow Expected rank computation is \#P-hard
\rightarrow Computing the expected value in our setting is \#P-hard
\rightarrow Connection between expected rank and value
\rightarrow Computing the top- k is \#P-hard even without values!
\rightarrow Binary search against known values to find expected value
\rightarrow Uses scheme for rational search [Papadimitriou, 1979]
\rightarrow FP\#P-membership of our problems
\rightarrow Non-trivial as polytope volume computation is not in FP \#P !

Tractable cases

- Intractable for arbitrary taxonomies
- Are there tractable subcases?

Tractable cases

- Intractable for arbitrary taxonomies
- Are there tractable subcases?
- Common situation: taxonomy is a tree
\rightarrow PTIME expected value computation (Compute the marginal distributions as piecewise polynomials)

Table of contents

(1) Introduction

(2) Approach
(3) Complexity results

4 Conclusion

Conclusion

- Formal definition of top- k queries on incomplete data
- Also generalizes linear interpolation to partial orders

Conclusion

- Formal definition of top- k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top- k

Conclusion

- Formal definition of top- k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top- k
- Hardness results for these problems

Conclusion

- Formal definition of top- k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top- k
- Hardness results for these problems
- Tractable subcases for tree-shaped taxonomies

Conclusion

- Formal definition of top- k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top- k
- Hardness results for these problems
- Tractable subcases for tree-shaped taxonomies
- Open questions:
\rightarrow Is this the right definition?
\rightarrow Are there other tractable cases?
\rightarrow What about choosing the next queries?

Conclusion

- Formal definition of top- k queries on incomplete data
- Also generalizes linear interpolation to partial orders
- Principled algorithm for top- k
- Hardness results for these problems
- Tractable subcases for tree-shaped taxonomies
- Open questions:
\rightarrow Is this the right definition?
\rightarrow Are there other tractable cases?
\rightarrow What about choosing the next queries?

> Thanks for your attention!

Smartwatch photo on slide 2: Bostwickenator, CC-BY-SA 3.0
https://en.wikipedia.org/wiki/File:WimmOneInBand.jpg

References I

目 Brightwell, G. and Winkler, P. (1991).
Counting linear extensions.
Order, 8(3):225-242.
围 Papadimitriou, C. H. (1979).
Efficient search for rationals.
Information Processing Letters, 8(1):1-4.

