Probabilities and Provenance on Trees and Treelike Instances

Antoine Amarilli ${ }^{1}$, Pierre Bourhis ${ }^{2}$, Pierre Senellart ${ }^{1,3}$

${ }^{1}$ Télécom ParisTech
${ }^{2}$ CNRS CRIStAL
${ }^{3}$ National University of Singapore

February 8th, 2016

Query evaluation

- Relational signature σ
\rightarrow Example: $R($ arity 1$), S($ arity 2$), T($ arity 1$)$

Query evaluation

- Relational signature σ
\rightarrow Example: $R($ arity 1$), S($ arity 2$), T($ arity 1$)$
- Class \mathcal{I} of instances
\rightarrow Example: all instances; acyclic instances; treelike instances; ...

Query evaluation

- Relational signature σ
\rightarrow Example: $R($ arity 1$), S($ arity 2$), T($ arity 1$)$
- Class \mathcal{I} of instances
\rightarrow Example: all instances; acyclic instances; treelike instances; ...
- Fragment \mathcal{Q} of Boolean constant-free queries
\rightarrow Example: Boolean conjunctive queries (= existentially quantified conjunction of atoms)
\rightarrow Example of CQ: $q: \exists x y R(x) \wedge S(x, y) \wedge T(y)$

Query evaluation

- Relational signature σ
\rightarrow Example: $R($ arity 1$), S($ arity 2$), T($ arity 1$)$
- Class \mathcal{I} of instances
\rightarrow Example: all instances; acyclic instances; treelike instances; ...
- Fragment \mathcal{Q} of Boolean constant-free queries
\rightarrow Example: Boolean conjunctive queries (= existentially quantified conjunction of atoms)
\rightarrow Example of CQ: $q: \exists x y R(x) \wedge S(x, y) \wedge T(y)$
\rightarrow Query evaluation problem for \mathcal{Q} and \mathcal{I} :
- Fix a query $q \in \mathcal{Q}$
- Given an input instance $I \in \mathcal{I}$
- Determine whether / satisfies q (written $/ \models q$)
- Complexity as a function of I, not q (= data complexity)

Query evaluation example

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

Query evaluation example

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

Query evaluation example

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.
$q: \exists x y R(x) \wedge S(x, y) \wedge T(y)$

$\overline{\mathbf{R}}$
a
b
c

Query evaluation example

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
\begin{array}{ll}
q: \exists x y & R(x) \wedge S(x, y) \wedge T(y) \\
\overline{\mathbf{R}} & \frac{\mathbf{S}}{a} \\
\frac{a}{} & \begin{array}{l}
b \\
b \\
c
\end{array} \\
\bar{b} \quad w \\
\hline
\end{array}
$$

Query evaluation example

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
\begin{array}{ccc}
q: \exists x y & R(x) \wedge S(x, y) \wedge T(y) \\
\overline{\mathbf{R}} & \overline{\mathbf{S}} & \overline{\mathbf{T}} \\
\frac{a}{b} & \begin{array}{c}
a \\
b
\end{array} & \frac{v}{w} \\
\bar{c} & b \quad w & b \\
\hline
\end{array}
$$

Query evaluation example

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
\begin{array}{ccc}
q: \exists x y & R(x) \wedge S(x, y) \wedge T(y) \\
\overline{\mathbf{R}} & \overline{\mathbf{S}} & \overline{\mathbf{T}} \\
\frac{a}{b} & \begin{array}{c}
a \\
b
\end{array} & \frac{v}{w} \\
\bar{c} & b \quad w & b \\
\hline
\end{array}
$$

Probabilistic query evaluation

Signature σ, class \mathcal{Q} of queries, class \mathcal{I} of instances.
\rightarrow Probabilistic query evaluation problem for \mathcal{Q} and \mathcal{I} :

- Fix a query $q \in \mathcal{Q}$
- Given an input instance $I \in \mathcal{I}$

Probabilistic query evaluation

Signature σ, class \mathcal{Q} of queries, class \mathcal{I} of instances.
\rightarrow Probabilistic query evaluation problem for \mathcal{Q} and \mathcal{I} :

- Fix a query $q \in \mathcal{Q}$
- Given an input instance $I \in \mathcal{I}$
- And given a probability valuation π mapping facts of $/$ to probabilities in $[0,1]$

Probabilistic query evaluation

Signature σ, class \mathcal{Q} of queries, class \mathcal{I} of instances.
\rightarrow Probabilistic query evaluation problem for \mathcal{Q} and \mathcal{I} :

- Fix a query $q \in \mathcal{Q}$
- Given an input instance $I \in \mathcal{I}$
- And given a probability valuation π mapping facts of $/$ to probabilities in $[0,1]$
- Compute the probability that $I \models q$

Probabilistic query evaluation

Signature σ, class \mathcal{Q} of queries, class \mathcal{I} of instances.
\rightarrow Probabilistic query evaluation problem for \mathcal{Q} and \mathcal{I} :

- Fix a query $q \in \mathcal{Q}$
- Given an input instance $I \in \mathcal{I}$
- And given a probability valuation π mapping facts of $/$ to probabilities in $[0,1]$
- Compute the probability that $I \models q$
- Data complexity: measured as a function of I and π

Probabilistic query evaluation

Signature σ, class \mathcal{Q} of queries, class \mathcal{I} of instances.
\rightarrow Probabilistic query evaluation problem for \mathcal{Q} and \mathcal{I} :

- Fix a query $q \in \mathcal{Q}$
- Given an input instance $I \in \mathcal{I}$
- And given a probability valuation π mapping facts of $/$ to probabilities in $[0,1]$
- Compute the probability that $I \models q$
- Data complexity: measured as a function of I and π
- Semantics: (I, π) gives a probability distribution on $I^{\prime} \subseteq I$:
- Each fact $F \in I$ is either present or absent with probability $\pi(F)$
- Facts are independent

Example of a probabilistic instance

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

Example of a probabilistic instance

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

This (I, π) represents the following probability distribution:

Example of a probabilistic instance

	\mathbf{S}	
a	a	1
b	v	.5
b	w	.2

This (I, π) represents the following probability distribution:

$.5 \times .2$	
\mathbf{S}	
a	a
b	v
b	w

Example of a probabilistic instance

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

This (I, π) represents the following probability distribution:

Example of a probabilistic instance

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

This (I, π) represents the following probability distribution:

Example of a probabilistic instance

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

This (I, π) represents the following probability distribution:

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

R	S		
a 1	a	a	1
b . 4	b	v	. 5
c . 6	b	w	. 2

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}			\mathbf{S}	
		1		
b	.4			
c				

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

\mathbf{T}	
v	.3
w	.7
b	1

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

\mathbf{T}	
v	.3
w	.7
b	1

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

	\mathbf{S}	
a	a	1
b	v	.5
b	w	.2

- The query is true iff $R(b)$ is here and one of:

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

- The query is true iff $R(b)$ is here and one of:
- $S(b, v)$ and $T(v)$ are here

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

	\mathbf{S}	
a	a	1
b	v	.5
b	w	.2

- The query is true iff $R(b)$ is here and one of:
- $S(b, v)$ and $T(v)$ are here
- $S(b, w)$ and $T(w)$ are here

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

	\mathbf{S}	
a	a	1
b	v	.5
b	w	.2

- The query is true iff $R(b)$ is here and one of:
- $S(b, v)$ and $T(v)$ are here
- $S(b, w)$ and $T(w)$ are here
\rightarrow Probability:

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

	\mathbf{S}	
a	a	1
b	v	.5
b	w	.2

- The query is true iff $R(b)$ is here and one of:
- $S(b, v)$ and $T(v)$ are here
- $S(b, w)$ and $T(w)$ are here
\rightarrow Probability: . $4 \times$

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

	\mathbf{S}	
a	a	1
b	v	.5
b	w	.2

- The query is true iff $R(b)$ is here and one of:
- $S(b, v)$ and $T(v)$ are here
- $S(b, w)$ and $T(w)$ are here
\rightarrow Probability: $.4 \times(1-$

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

- The query is true iff $R(b)$ is here and one of:
- $S(b, v)$ and $T(v)$ are here
- $S(b, w)$ and $T(w)$ are here
\rightarrow Probability: $.4 \times(1-(1-.5 \times .3)$

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

\mathbf{S}		
a	a	1
b	v	.5
b	w	.2

\mathbf{T}	
v	.3
w	.7
b	1

- The query is true iff $R(b)$ is here and one of:
- $S(b, v)$ and $T(v)$ are here
- $S(b, w)$ and $T(w)$ are here
\rightarrow Probability: $.4 \times(1-(1-.5 \times .3) \times(1-.2 \times .7))$

Example of probabilistic query evaluation

Signature σ, class \mathcal{Q} of conjunctive queries, class \mathcal{I} of all instances.

$$
q: \exists x y R(x) \wedge S(x, y) \wedge T(y)
$$

\mathbf{R}	
a	1
b	.4
c	.6

	\mathbf{S}	
a	a	1
b	v	.5
b	w	.2

\mathbf{T}	
v	.3
w	.7
b	1

- The query is true iff $R(b)$ is here and one of:
- $S(b, v)$ and $T(v)$ are here
- $S(b, w)$ and $T(w)$ are here
\rightarrow Probability: $.4 \times(1-(1-.5 \times .3) \times(1-.2 \times .7))=.1076$

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class \mathcal{Q} of queries and class \mathcal{I} of instances?

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class \mathcal{Q} of queries and class \mathcal{I} of instances?

- Existing dichotomy result: [Dalvi and Suciu, 2012]
- \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class \mathcal{Q} of queries and class \mathcal{I} of instances?

- Existing dichotomy result: [Dalvi and Suciu, 2012]
- \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
- PQE is PTIME for any $q \in \mathcal{S}$ on all instances

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class \mathcal{Q} of queries and class \mathcal{I} of instances?

- Existing dichotomy result: [Dalvi and Suciu, 2012]
- \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
- PQE is PTIME for any $q \in \mathcal{S}$ on all instances
- PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$ on all instances

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class \mathcal{Q} of queries and class \mathcal{I} of instances?

- Existing dichotomy result: [Dalvi and Suciu, 2012]
- \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
- PQE is PTIME for any $q \in \mathcal{S}$ on all instances
- PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$ on all instances
- $q: \exists x y R(x) \wedge S(x, y) \wedge T(y)$ is unsafe!

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class \mathcal{Q} of queries and class \mathcal{I} of instances?

- Existing dichotomy result: [Dalvi and Suciu, 2012]
- \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
- PQE is PTIME for any $q \in \mathcal{S}$ on all instances
- PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$ on all instances
- $q: \exists x y R(x) \wedge S(x, y) \wedge T(y)$ is unsafe!

Is there a smaller class \mathcal{I} such that PQE is tractable for a larger \mathcal{Q} ?

Complexity of probabilistic query evaluation (PQE)

Question: what is the complexity of probabilistic query evaluation depending on the class \mathcal{Q} of queries and class \mathcal{I} of instances?

- Existing dichotomy result: [Dalvi and Suciu, 2012]
- \mathcal{Q} are (unions of) conjunctive queries, \mathcal{I} is all instances
- There is a class $\mathcal{S} \subseteq \mathcal{Q}$ of safe queries
- PQE is PTIME for any $q \in \mathcal{S}$ on all instances
- PQE is \#P-hard for any $q \in \mathcal{Q} \backslash \mathcal{S}$ on all instances
- $q: \exists x y R(x) \wedge S(x, y) \wedge T(y)$ is unsafe!

Is there a smaller class \mathcal{I} such that PQE is tractable for a larger \mathcal{Q} ?

- Probabilistic XML: [Cohen et al., 2009]
- \mathcal{Q} are tree automata, \mathcal{I} are trees
- PQE is PTIME

Trees and treelike instances

- Goal: find an instance class \mathcal{I} where PQE is tractable

Trees and treelike instances

- Goal: find an instance class \mathcal{I} where PQE is tractable
- Idea: take \mathcal{I} to be treelike instances
- Treelike: the treewidth is bounded by a constant

Trees and treelike instances

- Goal: find an instance class \mathcal{I} where PQE is tractable
- Idea: take \mathcal{I} to be treelike instances
- Treelike: the treewidth is bounded by a constant
- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and $(k-1)$-grids have treewidth $k-1$

Trees and treelike instances

- Goal: find an instance class \mathcal{I} where PQE is tractable
- Idea: take \mathcal{I} to be treelike instances
- Treelike: the treewidth is bounded by a constant
- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and $(k-1)$-grids have treewidth $k-1$
\rightarrow For non-probabilistic query evaluation [Courcelle, 1990]:
- I: treelike instances; \mathcal{Q} : monadic second-order (MSO) queries
\rightarrow non-probabilistic QE is in linear time

Trees and treelike instances

- Goal: find an instance class \mathcal{I} where PQE is tractable
- Idea: take \mathcal{I} to be treelike instances
- Treelike: the treewidth is bounded by a constant
- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and $(k-1)$-grids have treewidth $k-1$
\rightarrow For non-probabilistic query evaluation [Courcelle, 1990]:
- I: treelike instances; \mathcal{Q} : monadic second-order (MSO) queries
\rightarrow non-probabilistic QE is in linear time
\rightarrow Does this extend to probabilistic QE?

Our results

An instance-based dichotomy result:
Upper bound. For \mathcal{I} the treelike instances and \mathcal{Q} the MSO queries $\rightarrow \mathrm{PQE}$ is in linear time modulo arithmetic costs

Our results

An instance-based dichotomy result:
Upper bound. For \mathcal{I} the treelike instances and \mathcal{Q} the MSO queries \rightarrow PQE is in linear time modulo arithmetic costs

- Also for expressive provenance representations
- Also with bounded-treewidth correlations

Our results

An instance-based dichotomy result:
Upper bound. For \mathcal{I} the treelike instances and \mathcal{Q} the MSO queries
\rightarrow PQE is in linear time modulo arithmetic costs

- Also for expressive provenance representations
- Also with bounded-treewidth correlations

Lower bound. For any unbounded-tw family \mathcal{I} and \mathcal{Q} FO queries $\rightarrow \mathrm{PQE}$ is \#P-hard under RP reductions assuming

- Signature arity is 2 (graphs)
- High-tw instances in \mathcal{I} are easily constructible

Table of contents

(1) Introduction

(2) Upper bounds

3 Semiring provenance
4 Correlations
(5) Lower bounds

6 Conclusion

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
\rightarrow For all $\nu: I \rightarrow\{0,1\}$ we have $\nu(\phi)=1$ iff $\{F \in I \mid \nu(F)=1\} \models q$

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
\rightarrow For all $\nu: I \rightarrow\{0,1\}$ we have $\nu(\phi)=1$ iff $\{F \in I \mid \nu(F)=1\} \models q$
Example query: $\exists x y z R(x, y) \wedge R(y, z)$

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
\rightarrow For all $\nu: I \rightarrow\{0,1\}$ we have $\nu(\phi)=1$ iff $\{F \in I \mid \nu(F)=1\} \models q$
Example query: $\exists x y z R(x, y) \wedge R(y, z)$

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
\rightarrow For all $\nu: I \rightarrow\{0,1\}$ we have $\nu(\phi)=1$ iff $\{F \in I \mid \nu(F)=1\} \models q$
Example query: $\exists x y z R(x, y) \wedge R(y, z)$

\rightarrow Provenance: $\left(f_{1} \wedge f_{2}\right)$

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
\rightarrow For all $\nu: I \rightarrow\{0,1\}$ we have $\nu(\phi)=1$ iff $\{F \in I \mid \nu(F)=1\} \models q$
Example query: $\exists x y z R(x, y) \wedge R(y, z)$

\rightarrow Provenance: $\left(f_{1} \wedge f_{2}\right) \vee\left(f_{3} \wedge f_{4}\right)$

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
\rightarrow For all $\nu: I \rightarrow\{0,1\}$ we have $\nu(\phi)=1$ iff $\{F \in I \mid \nu(F)=1\} \models q$
Example query: $\exists x y z R(x, y) \wedge R(y, z)$

\rightarrow Provenance: $\left(f_{1} \wedge f_{2}\right) \vee\left(f_{3} \wedge f_{4}\right)$

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
\rightarrow For all $\nu: I \rightarrow\{0,1\}$ we have $\nu(\phi)=1$ iff $\{F \in I \mid \nu(F)=1\} \models q$
Example query: $\exists x y z R(x, y) \wedge R(y, z)$

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Provenance: $\left(f_{1} \wedge f_{2}\right) \vee\left(f_{3} \wedge f_{4}\right) \vee f_{5}$

Technical tool: provenance

The provenance of a query q on an instance l :

- Boolean function ϕ whose variables are the facts of I
- A subinstance of I satisfies q iff ϕ is true for that valuation
\rightarrow For all $\nu: I \rightarrow\{0,1\}$ we have $\nu(\phi)=1$ iff $\{F \in I \mid \nu(F)=1\} \models q$
Example query: $\exists x y z R(x, y) \wedge R(y, z)$

	R	
a	b	f_{1}
b	c	f_{2}
d	e	f_{3}
e	d	f_{4}
f	f	f_{5}

\rightarrow Provenance: $\left(f_{1} \wedge f_{2}\right) \vee\left(f_{3} \wedge f_{4}\right) \vee f_{5}$

General roadmap

- Use provenance for probabilistic query evaluation:
- Compute a provenance representation efficiently
\rightarrow Probability of the provenance $=$ probability of the query

General roadmap

- Use provenance for probabilistic query evaluation:
- Compute a provenance representation efficiently
\rightarrow Probability of the provenance $=$ probability of the query
- Compute the provenance probability efficiently (show it is not \#P-hard as in the general case)

General roadmap

- Use provenance for probabilistic query evaluation:
- Compute a provenance representation efficiently
\rightarrow Probability of the provenance $=$ probability of the query
- Compute the provenance probability efficiently (show it is not \#P-hard as in the general case)
- To solve the PQE problem on treelike instances for MSO
- First solve the problem on trees with tree automata
- Then use the results of [Courcelle, 1990]

Uncertain trees

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example tree automaton:
"Is there both a red and a green node?"
Valuation: $\{2,3,7\}$
The tree automaton accepts

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example tree automaton:
"Is there both a red and a green node?"
Valuation: $\{2\}$
The tree automaton rejects

Uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example tree automaton:
"Is there both a red and a green node?"
Valuation: $\{2,7\}$
The tree automaton accepts

Provenance formulae and circuits on trees

- Which valuations satisfy the query?

Provenance formulae and circuits on trees

- Which valuations satisfy the query?
\rightarrow Provenance of a tree automaton A on an uncertain tree T :
- Boolean formula ϕ
- on variables x_{2}, x_{3}, x_{7}
$\rightarrow A$ accepts $\nu(T)$ iff $\nu(\phi)$ is true

Provenance formulae and circuits on trees

- Which valuations satisfy the query?
\rightarrow Provenance of a tree automaton A on an uncertain tree T :
- Boolean formula ϕ
- on variables x_{2}, x_{3}, x_{7}
$\rightarrow A$ accepts $\nu(T)$ iff $\nu(\phi)$ is true
- Provenance circuit of A on T
[Deutch et al., 2014]
- Boolean circuit C
- with input gates g_{2}, g_{3}, g_{7}
$\rightarrow A$ accepts $\nu(T)$ iff $\nu(C)$ is true

Example

Is there both a red and a green node?

Example

Is there both a red and a green node?

- Provenance formula: $\left(x_{2} \vee x_{3}\right) \wedge x_{7}$

Example

Is there both a red and a green node?

- Provenance formula: $\left(x_{2} \vee x_{3}\right) \wedge x_{7}$
- Provenance circuit:

Our main result on trees

Theorem
For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Our main result on trees

Theorem

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Construct the Boolean provenance circuit bottom-up

Our main result on trees

Theorem

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Construct the Boolean provenance circuit bottom-up

Our main result on trees

Theorem

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Construct the Boolean provenance circuit bottom-up

whenever

Our main result on trees

Theorem

For any bottom-up (nondet) tree automaton A and input tree T, we can build a provenance circuit of A on T in linear time in A and T.

Construct the Boolean provenance circuit bottom-up

whenever

Treelike instances

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents /
- MSO query on I translates to
\rightarrow MSO query on E by [Courcelle, 1990]
\rightarrow tree automaton on E by [Thatcher and Wright, 1968]

Treelike instances

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents /
- MSO query on I translates to
\rightarrow MSO query on E by [Courcelle, 1990]
\rightarrow tree automaton on E by [Thatcher and Wright, 1968]
- Uncertain instance: each fact can be present or absent
\rightarrow Possible subinstances are possible valuations of the encoding

Treelike instances

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents /
- MSO query on I translates to
\rightarrow MSO query on E by [Courcelle, 1990]
\rightarrow tree automaton on E by [Thatcher and Wright, 1968]
- Uncertain instance: each fact can be present or absent
\rightarrow Possible subinstances are possible valuations of the encoding

Treelike instances

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents /
- MSO query on I translates to
\rightarrow MSO query on E by [Courcelle, 1990]
\rightarrow tree automaton on E by [Thatcher and Wright, 1968]
- Uncertain instance: each fact can be present or absent
\rightarrow Possible subinstances are possible valuations of the encoding

Treelike instances

- Treelike instance I
- Tree encoding: tree E on fixed alphabet, represents /
- MSO query on I translates to
\rightarrow MSO query on E by [Courcelle, 1990]
\rightarrow tree automaton on E by [Thatcher and Wright, 1968]
- Uncertain instance: each fact can be present or absent
\rightarrow Possible subinstances are possible valuations of the encoding

Our main result on treelike instances

Theorem

For any fixed MSO query q and $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can build in linear time in I a provenance circuit of q on I.

Probability evaluation

Two alternate ways to see why probability evaluation is tractable on our provenance circuits:

Probability evaluation

Two alternate ways to see why probability evaluation is tractable on our provenance circuits:

- They have bounded treewidth themselves
- Follows the structure of the tree encoding
- Width only depends on number of automaton states
\rightarrow Apply message passing [Lauritzen and Spiegelhalter, 1988]

Probability evaluation

Two alternate ways to see why probability evaluation is tractable on our provenance circuits:

- They have bounded treewidth themselves
- Follows the structure of the tree encoding
- Width only depends on number of automaton states
\rightarrow Apply message passing [Lauritzen and Spiegelhalter, 1988]
- If the tree automaton is deterministic
- All conjunctions depend on disjoint sets of input gates
- All disjunctions are on mutually exclusive outcomes
\rightarrow Circuit is a d-DNNF [Darwiche, 2001]

Probability evaluation

Two alternate ways to see why probability evaluation is tractable on our provenance circuits:

- They have bounded treewidth themselves
- Follows the structure of the tree encoding
- Width only depends on number of automaton states
\rightarrow Apply message passing [Lauritzen and Spiegelhalter, 1988]
- If the tree automaton is deterministic
- All conjunctions depend on disjoint sets of input gates
- All disjunctions are on mutually exclusive outcomes
\rightarrow Circuit is a d-DNNF [Darwiche, 2001]

Corollary

Probabilistic query evaluation of MSO queries on treelike instances is in linear time up to arithmetic operations.

Table of contents

(1) Introduction

(2) Upper bounds
(3) Semiring provenance
4. Correlations
(5) Lower bounds

6 Conclusion

Provenance semirings

- Semiring of positive Boolean functions $(\operatorname{PosBool}[X], \vee, \wedge, \mathfrak{f}, \mathfrak{t})$

Provenance semirings

- Semiring of positive Boolean functions $(\operatorname{PosBool}[X], \vee, \wedge, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: [Green et al., 2007]
- Provenance generalized to arbitrary (commutative) semirings
- For queries in the positive relational algebra and Datalog

Provenance semirings

- Semiring of positive Boolean functions $(\operatorname{PosBool}[X], \vee, \wedge, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: [Green et al., 2007]
- Provenance generalized to arbitrary (commutative) semirings
- For queries in the positive relational algebra and Datalog
\rightarrow Our circuits capture $\operatorname{PosBool}[X]$-provenance in this sense

Provenance semirings

- Semiring of positive Boolean functions $(\operatorname{PosBool}[X], \vee, \wedge, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: [Green et al., 2007]
- Provenance generalized to arbitrary (commutative) semirings
- For queries in the positive relational algebra and Datalog
\rightarrow Our circuits capture $\operatorname{PosBool}[X]$-provenance in this sense
- The definitions match: all subinstances that satisfy the query

Provenance semirings

- Semiring of positive Boolean functions $(\operatorname{PosBool}[X], \vee, \wedge, \mathfrak{f}, \mathfrak{t})$
- Provenance semirings: [Green et al., 2007]
- Provenance generalized to arbitrary (commutative) semirings
- For queries in the positive relational algebra and Datalog
\rightarrow Our circuits capture $\operatorname{PosBool}[X]$-provenance in this sense
- The definitions match: all subinstances that satisfy the query
- For monotone queries, we can construct positive circuits

Universal provenance

- Universal semiring of polynomials $(\mathbb{N}[X],+, \times, 0,1)$
\rightarrow The provenance for $\mathbb{N}[X]$ can be specialized to any $K[X]$

Universal provenance

- Universal semiring of polynomials $(\mathbb{N}[X],+, \times, 0,1)$
\rightarrow The provenance for $\mathbb{N}[X]$ can be specialized to any $K[X]$
- Captures many useful semirings:
- counting the number of matches of a query
- computing the security level of a query result
- computing the cost of a query result

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

\rightarrow PosBool $[X]$-provenance:
$\rightarrow \mathbb{N}[X]$-provenance:

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

\rightarrow PosBool $[X]$-provenance:
$\rightarrow \mathbb{N}[X]$-provenance:

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

\rightarrow PosBool $[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right)
$$

$\rightarrow \mathbb{N}[X]$-provenance:

$$
\left(x_{1} \times x_{2}\right)
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

\rightarrow PosBool $[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right)
$$

$\rightarrow \mathbb{N}[X]$-provenance:

$$
\left(x_{1} \times x_{2}\right)
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

$\rightarrow \operatorname{PosBool}[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)
$$

$$
\rightarrow \mathbb{N}[X] \text {-provenance: }
$$

$$
\left(x_{1} \times x_{2}\right)+\left(x_{3} \times x_{4}\right)
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

\rightarrow PosBool $[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)
$$

$$
\rightarrow \mathbb{N}[X] \text {-provenance: }
$$

$$
\left(x_{1} \times x_{2}\right)+\left(x_{3} \times x_{4}\right)
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

$\rightarrow \operatorname{PosBool}[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)
$$

$$
\rightarrow \mathbb{N}[X] \text {-provenance: }
$$

$$
\left(x_{1} \times x_{2}\right)+\left(x_{3} \times x_{4}\right)+\left(x_{4} \times x_{3}\right)
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

\mathbf{R}		
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

\rightarrow PosBool $[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)
$$

$$
\rightarrow \mathbb{N}[X] \text {-provenance: }
$$

$$
\left(x_{1} \times x_{2}\right)+\left(x_{3} \times x_{4}\right)+\left(x_{4} \times x_{3}\right)
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

\rightarrow PosBool $[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \quad \vee x_{5}
$$

$$
\rightarrow \mathbb{N}[X] \text {-provenance: }
$$

$$
\left(x_{1} \times x_{2}\right)+\left(x_{3} \times x_{4}\right)+\left(x_{4} \times x_{3}\right)+\left(x_{5} \times x_{5}\right)
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

$\rightarrow \operatorname{PosBool}[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \quad \vee x_{5}
$$

$$
\rightarrow \mathbb{N}[X] \text {-provenance: }
$$

$$
\left(x_{1} \times x_{2}\right)+\left(x_{3} \times x_{4}\right)+\left(x_{4} \times x_{3}\right)+\left(x_{5} \times x_{5}\right)
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

$\rightarrow \operatorname{PosBool}[X]$-provenance:

$$
\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \quad \vee x_{5}
$$

$\rightarrow \mathbb{N}[X]$-provenance:

$$
\begin{aligned}
& \left(x_{1} \times x_{2}\right)+\left(x_{3} \times x_{4}\right)+\left(x_{4} \times x_{3}\right)+\left(x_{5} \times x_{5}\right) \\
& \quad=x_{1} x_{2}+2 x_{3} x_{4}+x_{5}^{2}
\end{aligned}
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

$\mathbb{N}[X]$-provenance example

	\mathbf{R}	
a	b	x_{1}
b	c	x_{2}
d	e	x_{3}
e	d	x_{4}
f	f	x_{5}

$$
\exists x y z R(x, y) \wedge R(y, z)
$$

$\rightarrow \operatorname{PosBool}[X]$-provenance:

$$
\begin{aligned}
& \quad\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \quad \vee x_{5} \\
& \rightarrow \\
& \left(x_{1} \times X\right] \text {-provenance: } \\
& \left.\quad=x_{2}\right)+\left(x_{3} \times x_{4}\right)+\left(x_{4} \times x_{3}\right)+\left(x_{5} \times x_{5}\right) \\
& \quad=x_{1} x_{2}+2 x_{3} x_{4}+x_{5}^{2}
\end{aligned}
$$

- Definition of provenance for conjunctive queries:
- Sum over query matches
- Multiply over matched facts

How is $\mathbb{N}[X]$ more expressive than $\operatorname{PosBool}[X]$?
\rightarrow Coefficients: counting multiple matches
\rightarrow Exponents: using facts multiple times

Capturing $\mathbb{N}[X]$-provenance

Our construction can be extended to $\mathbb{N}[X]$-provenance for conjunctive queries and unions of conjunctive queries (UCQ):

Capturing $\mathbb{N}[X]$-provenance

Our construction can be extended to $\mathbb{N}[X]$-provenance for conjunctive queries and unions of conjunctive queries (UCQ):

```
Theorem
For any fixed UCQ q and k\in\mathbb{N}\mathrm{ ,}
for any input instance I of treewidth }\leqk
we can build in linear time a \mathbb{N}[X]-provenance circuit of q on I.
```


Capturing $\mathbb{N}[X]$-provenance

Our construction can be extended to $\mathbb{N}[X]$-provenance for conjunctive queries and unions of conjunctive queries (UCQ):

```
Theorem
For any fixed UCQ q and \(k \in \mathbb{N}\), for any input instance I of treewidth \(\leq k\), we can build in linear time a \(\mathbb{N}[X]\)-provenance circuit of \(q\) on \(I\).
```

\rightarrow What fails for MSO and Datalog?

- Unbounded maximal multiplicity of fact uses

Table of contents

(1) Introduction
(2) Upper bounds
(3) Semiring provenance
(4) Correlations
(5) Lower bounds
(6) Conclusion

Correlations

- Our probabilistic instances assume independence on all facts
\rightarrow Not very expressive!

Correlations

- Our probabilistic instances assume independence on all facts
\rightarrow Not very expressive!
More expressive formalism: Block-Independent Disjoint instances:

name	city	iso	p
pods	san francisco	us	0.8
pods	los angeles	us	0.2
icalp	rome	it	0.1
icalp	florence	it	0.9

pc-tables

More generally, pc-tables to represent arbitrary correlations

pc-tables

More generally, pc-tables to represent arbitrary correlations

date	teacher	room	
04	John	C42	$\neg x_{1}$
04	Jane	C42	x_{1}
11	John	C017	$x_{2} \wedge \neg x_{1}$
11	Jane	C017	$x_{2} \wedge x_{1}$
11	John	C47	$\neg x_{2} \wedge \neg x_{1}$
11	Jane	C 47	$\neg x_{2} \wedge x_{1}$

pc-tables

More generally, pc-tables to represent arbitrary correlations

date	teacher	room	
04	John	C42	$\neg x_{1}$
04	Jane	C42	x_{1}
11	John	C017	$x_{2} \wedge \neg x_{1}$
11	Jane	C017	$x_{2} \wedge x_{1}$
11	John	C47	$\neg x_{2} \wedge \neg x_{1}$
11	Jane	C 47	$\neg x_{2} \wedge x_{1}$

x_{1} John gets sick
\rightarrow Probability 0.1
x_{2} Room C017 is available
\rightarrow Probability 0.2

Our results

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Our results

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.

Our results

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.
"Tree-like" just means the underlying instance (easy correlations)

Our results

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.
"Tree-like" just means the underlying instance (easy correlations)

Theorem

Probabilistic query evaluation of MSO queries on treelike pc-tables is in linear time up to arithmetic operations.

Probabilistic query evaluation on instances with correlations is tractable if the instance and correlations are bounded-tw:

Theorem

Probabilistic query evaluation of MSO queries on treelike BID is in linear time up to arithmetic operations.
"Tree-like" just means the underlying instance (easy correlations)

Theorem

Probabilistic query evaluation of MSO queries on treelike pc-tables is in linear time up to arithmetic operations.
"Tree-like" refers to the underlying instance, adding facts to represent variable occurrences and co-occurrences

Table of contents

(1) Introduction
(2) Upper bounds
(3) Semiring provenance

4 Correlations
(5) Lower bounds

6 Conclusion

Lower bound goal

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q}.
- Show that probabilistic query evaluation of q on \mathcal{I} is hard

Lower bound goal

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q}.
- Show that probabilistic query evaluation of q on \mathcal{I} is hard
\rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons

Lower bound goal

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q}.
- Show that probabilistic query evaluation of q on \mathcal{I} is hard
\rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons \rightarrow Impose that \mathcal{I} is tw-constructible:

Lower bound goal

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q}.
- Show that probabilistic query evaluation of q on \mathcal{I} is hard
\rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
\rightarrow Impose that \mathcal{I} is tw-constructible:
- Given $k \in \mathbb{N}$, we can construct in time $\operatorname{Poly}(k)$ an instance of \mathcal{I} of treewidth $\geq k$

Lower bound goal

- Class \mathcal{I} of unbounded-treewidth instances, query q in class \mathcal{Q}.
- Show that probabilistic query evaluation of q on \mathcal{I} is hard
\rightarrow Restrict to arity-2 (= labeled graphs) for technical reasons
\rightarrow Impose that \mathcal{I} is tw-constructible:
- Given $k \in \mathbb{N}$, we can construct in time $\operatorname{Poly}(k)$ an instance of \mathcal{I} of treewidth $\geq k$
\rightarrow Otherwise instances of treewidth k in \mathcal{I} could be very large... see [Makowsky and Marino, 2003]

Our lower bound result

Theorem

There is a first-order query q such that
for any unbounded-tw, tw-constructible, arity-2 instance family \mathcal{I}, probabilistic query eval for q on \mathcal{I} is \#P-hard under $R P$ reductions.

Idea: extracting topological minors

- Let G be a planar graph of degree ≤ 3

Idea: extracting topological minors

- Let G be a planar graph of degree ≤ 3
- G is a topological minor of H if:

Idea: extracting topological minors

- Let G be a planar graph of degree ≤ 3
- G is a topological minor of H if:

Idea: extracting topological minors

- Let G be a planar graph of degree ≤ 3
- G is a topological minor of H if:

Idea: extracting topological minors

- Let G be a planar graph of degree ≤ 3
- G is a topological minor of H if:

- Map vertices to vertices
- Map edges to vertex-disjoint paths

Topological minor extraction results

Theorem ([Robertson and Seymour, 1986])
For any planar graph G of degree ≤ 3,
for any graph H of sufficiently high treewidth,
G is a topological minor of H.

Topological minor extraction results

Abstract

Theorem ([Robertson and Seymour, 1986]) For any planar graph G of degree ≤ 3, for any graph H of sufficiently high treewidth, G is a topological minor of H.

More recently:

Theorem ([Chekuri and Chuzhoy, 2014])

There is a certain constant $c \in \mathbb{N}$ such that for any planar graph G of degree ≤ 3, for any graph H of treewidth $\geq|G|^{c}$,
G is a topological minor of H and we can embed G in H (with high probability) in PTIME in $|H|$.

Intuition for our result: reduction

- Choose a problem from which to reduce:
- Must be \#P-hard on planar degree-3 graphs
- Must be encodable to an FO query q (more later)
\rightarrow We use the problem of counting matchings

Intuition for our result: reduction

- Choose a problem from which to reduce:
- Must be \#P-hard on planar degree-3 graphs
- Must be encodable to an FO query q (more later)
\rightarrow We use the problem of counting matchings
- Given an input graph G, compute $k:=|G|^{c}$

Intuition for our result: reduction

- Choose a problem from which to reduce:
- Must be \#P-hard on planar degree-3 graphs
- Must be encodable to an FO query q (more later)
\rightarrow We use the problem of counting matchings
- Given an input graph G, compute $k:=|G|^{c}$
- Compute in PTIME an instance / of \mathcal{I} of treewidth $\geq k$

Intuition for our result: reduction

- Choose a problem from which to reduce:
- Must be \#P-hard on planar degree-3 graphs
- Must be encodable to an FO query q (more later)
\rightarrow We use the problem of counting matchings
- Given an input graph G, compute $k:=|G|^{C}$
- Compute in PTIME an instance $/$ of \mathcal{I} of treewidth $\geq k$
- Compute in randomized PTIME an embedding of G in I

Intuition for our result: reduction

- Choose a problem from which to reduce:
- Must be \#P-hard on planar degree-3 graphs
- Must be encodable to an FO query q (more later)
\rightarrow We use the problem of counting matchings
- Given an input graph G, compute $k:=|G|^{C}$
- Compute in PTIME an instance $/$ of \mathcal{I} of treewidth $\geq k$
- Compute in randomized PTIME an embedding of G in I
- Construct a probability valuation π of I such that:
- Unneccessary edges of I are removed
- Probability eval for q gives the answer to the hard problem

Technical issue

- In the embedding, edges of G can become long paths in I
- q must answer the hard problem on G despite subdivisions

Technical issue

- In the embedding, edges of G can become long paths in I
- q must answer the hard problem on G despite subdivisions
\rightarrow Our q restricts to a subset of the worlds of known weight and gives the right answer up to renormalization

Technical issue

- In the embedding, edges of G can become long paths in I
- q must answer the hard problem on G despite subdivisions
\rightarrow Our q restricts to a subset of the worlds of known weight and gives the right answer up to renormalization
\rightarrow For non-probabilistic evaluation, using FO does not work [Frick and Grohe, 2001]
\rightarrow Lower bounds for non-probabilistic evaluation are for MSO [Ganian et al., 2014]

Can we do better?

- We can use a non-monotone FO or a monotone MSO query
- Can we use a weaker query language? (e.g., monotone FO)

Can we do better?

- We can use a non-monotone FO or a monotone MSO query
- Can we use a weaker query language? (e.g., monotone FO)
\rightarrow We cannot use a connected CQ even with inequalities
\rightarrow We cannot use a query closed under homomorphisms

Can we do better?

- We can use a non-monotone FO or a monotone MSO query
- Can we use a weaker query language? (e.g., monotone FO)
\rightarrow We cannot use a connected CQ even with inequalities
\rightarrow We cannot use a query closed under homomorphisms
- A good candidate query:

$$
q:(E(x, y) \vee E(y, x)) \wedge(E(y, z) \wedge E(z, y)) \wedge x \neq z
$$

Can we do better?

- We can use a non-monotone FO or a monotone MSO query
- Can we use a weaker query language? (e.g., monotone FO)
\rightarrow We cannot use a connected CQ even with inequalities
\rightarrow We cannot use a query closed under homomorphisms
- A good candidate query:

$$
q:(E(x, y) \vee E(y, x)) \wedge(E(y, z) \wedge E(z, y)) \wedge x \neq z
$$

\rightarrow This UCQ with inequalities is hard in a weaker sense (no polynomial-size OBDD representations of provenance)
\rightarrow We don't know whether it's \#P-hard (because of subdivisions)

Table of contents

(1) Introduction
(2) Upper bounds
(3) Semiring provenance
4. Correlations
(5) Lower bounds
(6) Conclusion

Summary of our results

Upper. Probabilistic query eval for MSO on treelike instances has linear data complexity up to arithmetic costs

Summary of our results

Upper. Probabilistic query eval for MSO on treelike instances has linear data complexity up to arithmetic costs
\rightarrow Also for bounded-treewidth correlations

Summary of our results

Upper. Probabilistic query eval for MSO on treelike instances has linear data complexity up to arithmetic costs
\rightarrow Also for bounded-treewidth correlations
\rightarrow Can compute a provenance circuit in linear time

Summary of our results

Upper. Probabilistic query eval for MSO on treelike instances has linear data complexity up to arithmetic costs
\rightarrow Also for bounded-treewidth correlations
\rightarrow Can compute a provenance circuit in linear time
\rightarrow Also $\mathbb{N}[X]$-provenance circuits for UCQ queries

Summary of our results

Upper. Probabilistic query eval for MSO on treelike instances has linear data complexity up to arithmetic costs
\rightarrow Also for bounded-treewidth correlations
\rightarrow Can compute a provenance circuit in linear time
\rightarrow Also $\mathbb{N}[X]$-provenance circuits for UCQ queries
Lower. PQE for FO on any tw-constructible, arity-2, unbounded-tw instance family is \#P-hard under RP reductions

Summary of our results

Upper. Probabilistic query eval for MSO on treelike instances has linear data complexity up to arithmetic costs
\rightarrow Also for bounded-treewidth correlations
\rightarrow Can compute a provenance circuit in linear time
\rightarrow Also $\mathbb{N}[X]$-provenance circuits for UCQ queries
Lower. PQE for FO on any tw-constructible, arity-2, unbounded-tw instance family is \#P-hard under RP reductions
\rightarrow Bounded treewidth is the right notion for tractability of PQE?

Future work (upper bound)

Two promising directions:

- Restricting both instances and queries
- Hard query on unbounded-treewidth instances may be easy!
- Query-specific tree decomposition or instance simplification?
- Tractability criterion based on the instance and query?
- Understand the connection to the query-based dichotomy?

Future work (upper bound)

Two promising directions:

- Restricting both instances and queries
- Hard query on unbounded-treewidth instances may be easy!
- Query-specific tree decomposition or instance simplification?
- Tractability criterion based on the instance and query?
- Understand the connection to the query-based dichotomy?
- Combined complexity: tractability in the query and data
- Cost in the MSO query is nonelementary in general
- Lower for some query languages? (... on some instances?)
- Monadic Datalog approaches? [Gottlob et al., 2010]

Future work (lower bounds)

- Can we show \#P-hardness under usual P reductions?
\rightarrow Depends on [Chekuri and Chuzhoy, 2014]

Future work (lower bounds)

- Can we show \#P-hardness under usual P reductions?
\rightarrow Depends on [Chekuri and Chuzhoy, 2014]
- Can we make this work for arbitrary arity signatures?
\rightarrow Problem: correlations between Gaifman graph edges
\rightarrow Extracting minors with non-overlapping edges from bounded-arity hypergraphs?

Future work (lower bounds)

- Can we show \#P-hardness under usual P reductions?
\rightarrow Depends on [Chekuri and Chuzhoy, 2014]
- Can we make this work for arbitrary arity signatures?
\rightarrow Problem: correlations between Gaifman graph edges
\rightarrow Extracting minors with non-overlapping edges from bounded-arity hypergraphs?
- What about simpler query languages?
\rightarrow Is there a monotone FO query where probability evaluation is hard on any constructible unbounded-treewidth family? (= under arbitrary subdivisions?)

Future work (lower bounds)

- Can we show \#P-hardness under usual P reductions?
\rightarrow Depends on [Chekuri and Chuzhoy, 2014]
- Can we make this work for arbitrary arity signatures?
\rightarrow Problem: correlations between Gaifman graph edges
\rightarrow Extracting minors with non-overlapping edges from bounded-arity hypergraphs?
- What about simpler query languages?
\rightarrow Is there a monotone FO query where probability evaluation is hard on any constructible unbounded-treewidth family? (= under arbitrary subdivisions?)

Thanks for your attention!

References I

围 Chaudhuri, S. and Vardi, M. Y. (1992).
On the equivalence of recursive and nonrecursive Datalog programs.
In PODS.
R Chekuri, C. and Chuzhoy, J. (2014).
Polynomial bounds for the grid-minor theorem.
In STOC.
囯 Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009). Running tree automata on probabilistic XML. In PODS.

References II

國 Courcelle，B．（1990）．
The monadic second－order logic of graphs．I．Recognizable sets of finite graphs． Inf．Comput．，85（1）．

围 Dalvi，N．and Suciu，D．（2012）．
The dichotomy of probabilistic inference for unions of conjunctive queries．
JACM，59（6）：30．
闰 Darwiche，A．（2001）．
On the tractable counting of theory models and its application to truth maintenance and belief revision．
J．Applied Non－Classical Logics，11（1－2）．

References III

R Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014).
Circuits for datalog provenance.
In ICDT.
围 Frick, M. and Grohe, M. (2001).
Deciding first-order properties of locally tree-decomposable structures.
JACM, 48(6).
Re Ganian, R., Hliněnỳ, P., Langer, A., Obdržálek, J., Rossmanith, P., and Sikdar, S. (2014).
Lower bounds on the complexity of MSO1 model-checking. JCSS, 1(80).

References IV

雷 Gottlob，G．，Pichler，R．，and Wei，F．（2010）． Monadic datalog over finite structures of bounded treewidth． TOCL，12（1）：3．

围 Green，T．J．，Karvounarakis，G．，and Tannen，V．（2007）． Provenance semirings．
In PODS．
國 Lauritzen，S．L．and Spiegelhalter，D．J．（1988）．
Local computations with probabilities on graphical structures and their application to expert systems．
J．Royal Statistical Society．Series B．
目 Makowsky，J．A．and Marino，J．（2003）．
Tree－width and the monadic quantifier hierarchy．
Theor．Comput．Sci．，303（1）．

References V

R Robertson, N. and Seymour, P. D. (1986).
Graph minors. V. Excluding a planar graph.
J. Comb. Theory, Ser. B, 41(1).

國 Thatcher, J. W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a decision problem of second-order logic.
Mathematical systems theory, 2(1):57-81.

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance: Gaifman graph:

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

Gaifman graph: Tree decomp.:

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

Gaifman graph: Tree decomp.:

Tree encoding:

