Open-World Query Answering Under Number Restrictions

Antoine Amarilli ${ }^{1,2}$

${ }^{1}$ Télécom ParisTech, Paris, France
${ }^{2}$ University of Oxford, Oxford, United Kingdom

January 17, 2014

Open-World Query Answering

- Instance I
$\{R(a, b), T(b)\}$

Open-World Query Answering

- Instance I
- Constraints Θ of a fragment F
$\{R(a, b), T(b)\}$
$\forall x y R(x, y) \Rightarrow S(y)$ (here: fragments of first-order logic with no constants)

Open-World Query Answering

- Instance I
- Constraints Θ of a fragment F

$$
\{R(a, b), T(b)\}
$$

$$
\forall x y R(x, y) \Rightarrow S(y)
$$ (here: fragments of first-order logic with no constants)

- Query q of a class Q $\exists x S(x) \wedge T(x)$ (here: UCQ or CQ: (union of) Boolean conjunctive queries)

Open-World Query Answering

- Instance I
- Constraints Θ of a fragment F

$$
\begin{array}{r}
\{R(a, b), T(b)\} \\
\forall x y R(x, y) \Rightarrow S(y)
\end{array}
$$ (here: fragments of first-order logic with no constants)

- Query q of a class Q

$$
\exists x S(x) \wedge T(x)
$$

(here: UCQ or CQ: (union of) Boolean conjunctive queries)
$\Rightarrow \mathrm{QA}_{\text {unr }}(\mathrm{F}, \mathrm{Q})$: does q hold in every $J \supseteq I$ satisfying Θ ? (written $I, \Theta \models_{\text {unr }} q$)

Open-World Query Answering

- Instance I

$$
\begin{array}{r}
\{R(a, b), T(b)\} \\
\forall x y R(x, y) \Rightarrow S(y)
\end{array}
$$

- Constraints Θ of a fragment F (here: fragments of first-order logic with no constants)
- Query q of a class Q

$$
\exists x S(x) \wedge T(x)
$$

(here: UCQ or CQ: (union of) Boolean conjunctive queries)
$\Rightarrow \mathrm{QA}_{\text {unr }}(\mathrm{F}, \mathrm{Q})$: does q hold in every $J \supseteq /$ satisfying Θ ? (written $I, \Theta \models_{\text {unr }} q$)
$\Rightarrow \mathrm{QA}_{\text {fin }}(\mathrm{F}, \mathrm{Q})$: does q hold in every finite $J \supseteq I$ satisfying Θ ? (written $I, \Theta \models_{\text {fin }} q$)

Open-World Query Answering

- Instance I

$$
\begin{array}{r}
\{R(a, b), T(b)\} \\
\forall x y R(x, y) \Rightarrow S(y)
\end{array}
$$

- Constraints Θ of a fragment F (here: fragments of first-order logic with no constants)
- Query q of a class Q

$$
\exists x S(x) \wedge T(x)
$$

(here: UCQ or CQ: (union of) Boolean conjunctive queries)
$\Rightarrow \mathrm{QA}_{\text {unr }}(\mathrm{F}, \mathrm{Q})$: does q hold in every $J \supseteq /$ satisfying Θ ? (written $I, \Theta \models_{\text {unr }} q$)
$\Rightarrow Q_{\text {fin }}(F, Q)$: does q hold in every finite $J \supseteq I$ satisfying Θ ? (written $I, \Theta \models_{\text {fin }} q$)
\Rightarrow Equivalently: is there a (finite) model of $I \wedge \Theta \wedge \neg q$?

Dependencies DEP

$$
\tau: \forall \mathbf{x}(\phi(\mathbf{x}) \Rightarrow \exists \mathbf{y} A(\mathbf{x}, \mathbf{y}))
$$

Dependencies DEP

$$
\tau: \forall \mathbf{x}(\phi(\mathbf{x}) \Rightarrow \exists \mathbf{y} A(\mathbf{x}, \mathbf{y}))
$$

- Tuple-Generating Dependencies TGD: A is a regular atom.
- Inclusion Dependencies ID:
$\Rightarrow \phi$ is an atom, no repeated variables.
- Unary Inclusion Dependencies UID:
\Rightarrow Only one exported variable (occurring in ϕ and A).
\Rightarrow Example: $\forall e b, \operatorname{Boss}(e, b) \Rightarrow \exists b^{\prime} \operatorname{Boss}\left(b, b^{\prime}\right)$.
\Rightarrow Written Boss ${ }^{2} \subseteq$ Boss 1.

Dependencies DEP

$$
\tau: \forall \mathbf{x}(\phi(\mathbf{x}) \Rightarrow \exists \mathbf{y} A(\mathbf{x}, \mathbf{y}))
$$

- Tuple-Generating Dependencies TGD: A is a regular atom.
- Inclusion Dependencies ID:
$\Rightarrow \phi$ is an atom, no repeated variables.
- Unary Inclusion Dependencies UID:
\Rightarrow Only one exported variable (occurring in ϕ and A).
\Rightarrow Example: $\forall e b, \operatorname{Boss}(e, b) \Rightarrow \exists b^{\prime} \operatorname{Boss}\left(b, b^{\prime}\right)$.
\Rightarrow Written Boss ${ }^{2} \subseteq$ Boss 1.
- Equality-Generating Dependencies EGD: A is an equality.
- Functional Dependencies FD:

$$
\Rightarrow \forall \mathbf{x y}\left(S(\mathbf{x}) \wedge S(\mathbf{y}) \wedge \bigwedge_{I \in L} x_{l}=y_{l}\right) \Rightarrow x_{r}=y_{r} .
$$

- Unary Functional Dependencies: $|L|=1$.
\Rightarrow Example: $\forall e e^{\prime} b b^{\prime}, \operatorname{Boss}(e, b), \operatorname{Boss}\left(e^{\prime}, b^{\prime}\right), e=e^{\prime} \Rightarrow b=b^{\prime}$.
\Rightarrow Written Boss ${ }^{1} \rightarrow$ Boss 2.
- Key Dependencies: $\bigwedge_{r \in \operatorname{Pos}(R)} R^{K} \rightarrow R^{r}$ for some $K \subseteq \operatorname{Pos}(R)$.
- Unary Key Dependencies: $|K|=1$.

Logics

- Guarded Fragment GF:
\Rightarrow Contains regular atoms and equality atoms.
\Rightarrow Closed under Boolean connectives \wedge, \vee, \neg, etc.
\Rightarrow Quantification: given an atom $A(\mathbf{x}, \mathbf{y})$ and formula $\phi(\mathbf{x}, \mathbf{y})$ with free variables exactly as indicated:
- $\forall \mathbf{x}(A \Rightarrow \phi)$.
- $\exists \mathbf{x}(A \wedge \phi)$.

Logics

- Guarded Fragment GF:
\Rightarrow Contains regular atoms and equality atoms.
\Rightarrow Closed under Boolean connectives \wedge, \vee, \neg, etc.
\Rightarrow Quantification: given an atom $A(\mathbf{x}, \mathbf{y})$ and formula $\phi(\mathbf{x}, \mathbf{y})$ with free variables exactly as indicated:
- $\forall \mathbf{x}(A \Rightarrow \phi)$.
- $\exists \mathbf{x}(A \wedge \phi)$.
- Two-Variable Guarded Fragment GF ${ }^{2}$:
\Rightarrow Only two distinct variables.
\Rightarrow Only unary and binary predicates of the signature ($\sigma_{\leq 2}$).

Logics

- Guarded Fragment GF:
\Rightarrow Contains regular atoms and equality atoms.
\Rightarrow Closed under Boolean connectives \wedge, \vee, \neg, etc.
\Rightarrow Quantification: given an atom $A(\mathbf{x}, \mathbf{y})$ and formula $\phi(\mathbf{x}, \mathbf{y})$ with free variables exactly as indicated:
- $\forall \mathrm{x}(A \Rightarrow \phi)$.
- $\exists \mathbf{x}(A \wedge \phi)$.
- Two-Variable Guarded Fragment GF:
\Rightarrow Only two distinct variables.
\Rightarrow Only unary and binary predicates of the signature ($\sigma_{\leq 2}$).
- Two-Variable Guarded Fragment with Counting GC':
\Rightarrow Quantifiers $\exists \leq c y, A(x, y)$ and $\exists \geq c y, A(x, y)$ with A a binary atom and $c \in \mathbb{N}$.
\Rightarrow Example: $\forall e \exists^{\leq 1} b, \operatorname{Boss}(e, b)$.

General Results

- Negative results:
- QA.(FO, CQ ${ }^{-}$) is undecidable [Trakhtenbrot, 1963].
- QA. (TGD, CQ ${ }^{-}$) is undecidable [Calì et al., 2013].
- QA. (UKD \cup BID,$C Q$) is undecidable [Calì et al., 2003].

General Results

- Negative results:
- QA.(FO, CQ ${ }^{-}$) is undecidable [Trakhtenbrot, 1963].
- QA. (TGD, CQ ${ }^{-}$) is undecidable [Calì et al., 2013].
- QA. (UKD \cup BID,$C Q$) is undecidable [Calì et al., 2003].
- Positive results:
- QA. (GF, UCQ) is in 2EXPTIME [Barany et al., 2010].
- QA. $\left(\mathrm{GC}^{2}, \mathrm{CQ}\right)$ is decidable [Pratt-Hartmann, 2009].

General Results

- Negative results:
- QA.(FO, CQ ${ }^{-}$) is undecidable [Trakhtenbrot, 1963].
- QA. (TGD, CQ ${ }^{-}$) is undecidable [Calì et al., 2013].
- QA. (UKD \cup BID,$C Q$) is undecidable [Calì et al., 2003].
- Positive results:
- QA. (GF, UCQ) is in 2EXPTIME [Barany et al., 2010].
- QA. $\left(\mathrm{GC}^{2}, \mathrm{CQ}\right)$ is decidable [Pratt-Hartmann, 2009].
\Rightarrow Can we have both high-arity constraints and expressive low-arity constraints, including equality constraints?

Table of Contents

(1) Introduction

(2) Extending GC² Query Answering
(3) Unrestricted Query Answering

4 Finite Query Answering
(5) Conclusion

Result Statement

- Frontier-One Dependencies FR1:
\Rightarrow Subset of TGD which includes UID.
\Rightarrow One exported variable.
\Rightarrow No repeated variable in the head.

Result Statement

- Frontier-One Dependencies FR1:
\Rightarrow Subset of TGD which includes UID.
\Rightarrow One exported variable.
\Rightarrow No repeated variable in the head.
- Reification \mathcal{R} of a structure M from σ to (extended) $\sigma_{\leq 2}$:
\Rightarrow Add binary predicates R_{i} for every $i \in \operatorname{Pos}(R)$ and $R \in \sigma_{>2}$.
\Rightarrow Replace facts $R(\mathbf{a})$ of >2-ary predicates by a fresh element f and $R_{i}\left(f, a_{i}\right)$ for all $i \in \operatorname{Pos}(R)$.
\Rightarrow Example: $R(a, a, b)$ becomes $R_{1}(f, a), R_{2}(f, a), R_{3}(f, b)$.

Result Statement

- Frontier-One Dependencies FR1:
\Rightarrow Subset of TGD which includes UID.
\Rightarrow One exported variable.
\Rightarrow No repeated variable in the head.
- Reification \mathcal{R} of a structure M from σ to (extended) $\sigma_{\leq 2}$:
\Rightarrow Add binary predicates R_{i} for every $i \in \operatorname{Pos}(R)$ and $R \in \sigma_{>2}$.
\Rightarrow Replace facts $R(\mathbf{a})$ of >2-ary predicates by a fresh element f and $R_{i}\left(f, a_{i}\right)$ for all $i \in \operatorname{Pos}(R)$.
\Rightarrow Example: $R(a, a, b)$ becomes $R_{1}(f, a), R_{2}(f, a), R_{3}(f, b)$.
- Frontier-One Acyclic Dependencies FR1a:
\Rightarrow The Gaifman graph of the reification of the body is acyclic.

Result Statement

- Frontier-One Dependencies FR1:
\Rightarrow Subset of TGD which includes UID.
\Rightarrow One exported variable.
\Rightarrow No repeated variable in the head.
- Reification \mathcal{R} of a structure M from σ to (extended) $\sigma_{\leq 2}$:
\Rightarrow Add binary predicates R_{i} for every $i \in \operatorname{Pos}(R)$ and $R \in \sigma_{>2}$.
\Rightarrow Replace facts $R(\mathbf{a})$ of >2-ary predicates by a fresh element f and $R_{i}\left(f, a_{i}\right)$ for all $i \in \operatorname{Pos}(R)$.
\Rightarrow Example: $R(a, a, b)$ becomes $R_{1}(f, a), R_{2}(f, a), R_{3}(f, b)$.
- Frontier-One Acyclic Dependencies FR1 ${ }^{\text {a }}$:
\Rightarrow The Gaifman graph of the reification of the body is acyclic.

Theorem
 QA. (UKD $\left.\cup G C^{2} \cup F R 1^{a}, C Q\right)$ is decidable.

Proof Idea

- Encode constraints from UKD $\cup G C^{2} \cup F R 1^{a}$ to $G C^{2}$.
- Show that QA under the original constraints is equivalent to QA for the encoded constraints (and decide it as G^{2} QA):
\Rightarrow The reification of counterexample models should be counterexample models for the encoding (easy).
\Rightarrow Counterexample models should be decodable from counterexample models for the encoded contraints (harder).

Proof Idea

- Encode constraints from UKD $\cup G C^{2} \cup F R 1^{\text {a }}$ to G^{2}.
- Show that QA under the original constraints is equivalent to QA for the encoded constraints (and decide it as GC ${ }^{2}$ QA):
\Rightarrow The reification of counterexample models should be counterexample models for the encoding (easy).
\Rightarrow Counterexample models should be decodable from counterexample models for the encoded contraints (harder).
- Well-formedness constraints $w f(\sigma)$ of GC^{2} for the encoding:
\Rightarrow Elements are regular elements or R-facts for some $R \in \sigma_{>2}$.
\Rightarrow The R_{i} 's connect regular elements and R-fact elements.
\Rightarrow Every fact element for R has exactly one of each R_{i}.
\Rightarrow The $R \in \sigma_{\leq 2}$ connect regular elements.

Encoding

- Encoding a key $\phi \in$ UKD to $\mathcal{R}(\phi)$:
\Rightarrow " R^{i} is a key" encoded to $\forall x \exists \leq 1 y, R_{i}(y, x)$.
$\Rightarrow \mathcal{R}(\Phi)$ is clearly a GC^{2} constraint.

Encoding

- Encoding a key $\phi \in$ UKD to $\mathcal{R}(\phi)$:
\Rightarrow " R^{i} is a key" encoded to $\forall x \exists \leq 1 y, R_{i}(y, x)$.
$\Rightarrow \mathcal{R}(\Phi)$ is clearly a GC^{2} constraint.
- Encoding a high-arity constraint $\delta \in \mathrm{FR}^{\text {a }}$ to $\mathcal{R}(\delta)$:
\Rightarrow Apply reification to the body and modify the head if $\in \sigma_{>2}$.
\Rightarrow Example:
- $\delta: \forall x y z, S(y, x) \wedge R(x, x, z) \Rightarrow \exists w w, R(x, w, w)$
$\Rightarrow \mathcal{R}(\delta): \forall x\left((\exists y, S(y, x)) \wedge\left(\exists f, R_{1}(f, x) \wedge R_{2}(f, x) \wedge\left(\exists z, R_{3}(f, z)\right)\right)\right.$ $\left.\Rightarrow \exists f, R_{1}(f, x)\right)$.
$\Rightarrow \mathcal{R}(\Delta)$ expressible as a GF^{2} constraint.

Encoding

- Encoding a key $\phi \in$ UKD to $\mathcal{R}(\phi)$:
\Rightarrow " R^{i} is a key" encoded to $\forall x \exists \leq 1 y, R_{i}(y, x)$.
$\Rightarrow \mathcal{R}(\Phi)$ is clearly a GC^{2} constraint.
- Encoding a high-arity constraint $\delta \in \mathrm{FR}^{\mathrm{a}}$ to $\mathcal{R}(\delta)$:
\Rightarrow Apply reification to the body and modify the head if $\in \sigma_{>2}$.
\Rightarrow Example:
- $\delta: \forall x y z, S(y, x) \wedge R(x, x, z) \Rightarrow \exists w w, R(x, w, w)$
$\Rightarrow \mathcal{R}(\delta): \forall x\left((\exists y, S(y, x)) \wedge\left(\exists f, R_{1}(f, x) \wedge R_{2}(f, x) \wedge\left(\exists z, R_{3}(f, z)\right)\right)\right.$ $\left.\Rightarrow \exists f, R_{1}(f, x)\right)$.
$\Rightarrow \mathcal{R}(\Delta)$ expressible as a GF^{2} constraint.
- Encode the instance I to $\mathcal{R}(I)$ straightforwardly.
- Encode the query $q \in C Q$ to $\mathcal{R}(q)$ straightforwardly.
- Leave the constraints $\Theta \subseteq \mathrm{GC}^{2}$ unchanged.

Concluding the Proof

- Take an extension J of I satisfying Δ, Θ, Φ and violating q :
$\Rightarrow \mathcal{R}(J)$ is an extension of $\mathcal{R}(I)$ satisfying $\mathcal{R}(\Delta), \Theta, \mathcal{R}(\Phi)$ and wf (σ) and violating $\mathcal{R}(q)$.

Concluding the Proof

- Take an extension J of I satisfying Δ, Θ, Φ and violating q :
$\Rightarrow \mathcal{R}(J)$ is an extension of $\mathcal{R}(I)$ satisfying $\mathcal{R}(\Delta), \Theta, \mathcal{R}(\Phi)$ and $\mathrm{wf}(\sigma)$ and violating $\mathcal{R}(q)$.
- Conversely, take an extension of $\mathcal{R}(I)$ satisfying $\mathcal{R}(\Delta), \Theta$, $\mathcal{R}(\Phi)$ and $\mathrm{wf}(\sigma)$ and violating $\mathcal{R}(q)$.
\Rightarrow Need to argue that, w.l.o.g., there are no duplicate facts (f and f representing $R(a, b, c)$).
\Rightarrow Decode an extension of I satisfying Δ, Θ, Φ and violating q.

Concluding the Proof

- Take an extension J of I satisfying Δ, Θ, Φ and violating q :
$\Rightarrow \mathcal{R}(J)$ is an extension of $\mathcal{R}(I)$ satisfying $\mathcal{R}(\Delta), \Theta, \mathcal{R}(\Phi)$ and $\mathrm{wf}(\sigma)$ and violating $\mathcal{R}(q)$.
- Conversely, take an extension of $\mathcal{R}(I)$ satisfying $\mathcal{R}(\Delta), \Theta$, $\mathcal{R}(\Phi)$ and $\mathrm{wf}(\sigma)$ and violating $\mathcal{R}(q)$.
\Rightarrow Need to argue that, w.l.o.g., there are no duplicate facts (f and f representing $R(a, b, c)$).
\Rightarrow Decode an extension of I satisfying Δ, Θ, Φ and violating q.
\Rightarrow Decide $Q A_{\bullet}\left(U K D \cup G C^{2} \cup F R 1^{\text {a }}, C Q\right)$ from $Q A_{\bullet}\left(G C^{2}, C Q\right)$.

Table of Contents

(1) Introduction
(2) Extending GC ${ }^{2}$ Query Answering
(3) Unrestricted Query Answering
(4) Finite Query Answering
(5) Conclusion

The Chase and Separability

- Universal model: extension of I satisfying Θ and violating every q unless $I, \Theta \models$ unr q.
- The chase I^{\ominus} : infinite universal model for TGD and UCQ:
\Rightarrow Whenever a TGD is violated, create the missing head fact.
\Rightarrow Always use fresh existential witnesses.

The Chase and Separability

- Universal model: extension of I satisfying Θ and violating every q unless $I, ~ \Theta \models$ unr q.
- The chase I^{Θ} : infinite universal model for TGD and UCQ:
\Rightarrow Whenever a TGD is violated, create the missing head fact.
\Rightarrow Always use fresh existential witnesses.
- $\Phi \cup \Delta \subseteq \mathrm{EGD} \cup \mathrm{TGD}$ is separable if $I=\Phi$ implies $I^{\Delta} \models \Phi$.
$\Rightarrow \mathrm{QA}_{\text {unr }}(\mathrm{EGD} \cup(\mathrm{TGD} \cap \mathrm{GF}), \mathrm{UCQ})$ is decidable in this case:
- Check if $I=\Phi$
- Decide $\mathrm{QA}_{\mathrm{unr}}(\mathrm{TGD} \cap G F, U C Q)$ problem ignoring EGDs.
$\Rightarrow \mathrm{QA}_{\mathrm{unr}}\left(\mathrm{FD} \cup F R 1^{\mathrm{a}}, \mathrm{UCQ}\right)$ is decidable (always separable).

Result and Intuition

Theorem
$\mathrm{QA}_{\mathrm{unr}}\left(\mathrm{FD} \cup \mathrm{GC}^{2} \cup \mathrm{FR} 1, \mathrm{CQ}\right)$ is decidable.

Result and Intuition

Theorem

$\mathrm{QA}_{\mathrm{unr}}\left(\mathrm{FD} \cup \mathrm{GC}^{2} \cup \mathrm{FR} 1, \mathrm{CQ}\right)$ is decidable.
Idea: counterexample models M for $G^{2} \cup F R 1^{\text {a }}$ satisfy w.l.o.g.:
Unicity. There are no two facts $R(\mathbf{a})$ and $R(\mathbf{b})$ with $a_{i}=b_{i}$ for $R \in \sigma_{>2}$ unless both are in the instance I.
\Rightarrow Any FD violation for $\sigma_{>2}$ must occur in I.
\Rightarrow FDs can be checked on I and ignored afterwards.

Result and Intuition

Theorem

$\mathrm{QA}_{\mathrm{unr}}\left(\mathrm{FD} \cup \mathrm{GC}^{2} \cup \mathrm{FR} 1, \mathrm{CQ}\right)$ is decidable.
Idea: counterexample models M for $\mathrm{GC}^{2} \cup F R 1^{\text {a }}$ satisfy w.l.o.g.:
Unicity. There are no two facts $R(\mathbf{a})$ and $R(\mathbf{b})$ with $a_{i}=b_{i}$ for $R \in \sigma_{>2}$ unless both are in the instance I.
\Rightarrow Any FD violation for $\sigma_{>2}$ must occur in I.
\Rightarrow FDs can be checked on I and ignored afterwards.
Acyclicity. The Gaifman graph of $\mathcal{R}(M)$ is acyclic except for I :
$\Rightarrow F R 1 \backslash F R 1^{\text {a }}$ dependencies can only match on I.
\Rightarrow Convert FR1 to FR1a ${ }^{\text {a }}$ (enumerate matches).
\Rightarrow Reduce $Q_{\text {unr }}\left(F D \cup G C^{2} \cup F R 1, C Q\right)$ to $Q_{\text {unr }}\left(G^{2} \cup F R 1^{\mathrm{a}}, C Q\right)$.

Unraveling the Counterexample Model

Unravelling M to a suitable M^{\prime} (with mapping π^{\prime}):

- Add dummy binary facts covering and connecting all elements.
- Decompose the facts in bags:
- one bag per fact of $\sigma_{>2}$,
- one bag per guarded pair $\{a, b\}$ with all unary and binary facts.

Unraveling the Counterexample Model

Unravelling M to a suitable M^{\prime} (with mapping π^{\prime}):

- Add dummy binary facts covering and connecting all elements.
- Decompose the facts in bags:
- one bag per fact of $\sigma_{>2}$,
- one bag per guarded pair $\{a, b\}$ with all unary and binary facts.
- Build M^{\prime} as a tree of bags by the following inductive process:
\Rightarrow The root bag of M^{\prime} is I.
\Rightarrow The children of $t \in M^{\prime}$ are, for every $a \in \operatorname{dom}(t)$:
- For every $\sigma_{\leq 2}$-bag t^{\prime} of M containing $\pi^{\prime}(a)$:

An isomorphic copy of t^{\prime} in M^{\prime}, with a and a fresh element.

- For every $R^{i} \in \operatorname{Pos}\left(\sigma_{>2}\right)$ such that $\pi^{\prime}(a)$ occurs at R^{i} in M, if a does not occur at R^{i} in M^{\prime} :
A $\sigma_{>2}$-bag $\{R(\mathbf{b})\}$ with \mathbf{b} fresh except $b_{i}=a$.
\Rightarrow Do not consider in a bag the previous element used to reach it.

Example

Example

Example

Example

Example

Example

Properties of the Construction

- Preserves the base instance \boldsymbol{I}.

Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π^{\prime}.
\Rightarrow Ensures that the query is still false.

Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π^{\prime}.
\Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π^{\prime}. \Rightarrow Ensures that GF^{2} constraints are preserved (guarded bisimilar).
\Rightarrow Ensures that number restrictions are preserved.

Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π^{\prime}.
\Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π^{\prime}.
\Rightarrow Ensures that GF^{2} constraints are preserved (guarded bisimilar).
\Rightarrow Ensures that number restrictions are preserved.
- The mapping π^{\prime} is surjective for guarded pairs.
\Rightarrow Necessary for guarded bisimulation.

Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π^{\prime}.
\Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π^{\prime}.
\Rightarrow Ensures that GF^{2} constraints are preserved (guarded bisimilar).
\Rightarrow Ensures that number restrictions are preserved.
- The mapping π^{\prime} is surjective for guarded pairs.
\Rightarrow Necessary for guarded bisimulation.
- Elements still occur at the same positions of $\operatorname{Pos}\left(\sigma_{>2}\right)$:
\Rightarrow Ensures that FR1 ${ }^{\text {a }}$ constraints are preserved.

Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π^{\prime}.
\Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π^{\prime}.
\Rightarrow Ensures that GF^{2} constraints are preserved (guarded bisimilar).
\Rightarrow Ensures that number restrictions are preserved.
- The mapping π^{\prime} is surjective for guarded pairs.
\Rightarrow Necessary for guarded bisimulation.
- Elements still occur at the same positions of $\operatorname{Pos}\left(\sigma_{>2}\right)$: \Rightarrow Ensures that FR1 ${ }^{\text {a }}$ constraints are preserved.
- They do so at most once (except in the instance):
\Rightarrow Ensures Unicity.

Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π^{\prime}.
\Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π^{\prime}.
\Rightarrow Ensures that GF^{2} constraints are preserved (guarded bisimilar).
\Rightarrow Ensures that number restrictions are preserved.
- The mapping π^{\prime} is surjective for guarded pairs.
\Rightarrow Necessary for guarded bisimulation.
- Elements still occur at the same positions of $\operatorname{Pos}\left(\sigma_{>2}\right)$:
\Rightarrow Ensures that FR1 ${ }^{\text {a }}$ constraints are preserved.
- They do so at most once (except in the instance):
\Rightarrow Ensures Unicity.
- The model is a tree of bags.
\Rightarrow Ensures Acyclicity (and bounded treewidth).

Table of Contents

(1) Introduction

(2) Extending GC^{2} Query Answering
(3) Unrestricted Query Answering

4 Finite Query Answering
(5) Conclusion

Finite Controllability

- Finite controllability (FC): finite and unrestricted QA coincide.

Finite Controllability

- Finite controllability (FC): finite and unrestricted QA coincide.
- Holds for GF but fails with number restrictions:
- Consider $\Theta: R^{2} \rightarrow R^{1}, R^{2} \subseteq R^{1}$, and $I=\{A(a), R(a, b)\}$.
- Universal infinite chase model $A(a), R(a, b), R(b, c), \ldots$
- Finite model has to loop back, on a because of the FD: $A(a), R(a, b), R(b, c), \ldots, R(y, z), R(z, a)$.
\Rightarrow For $q: R(x, y) \wedge A(y)$, we have $I, \Theta \models_{\text {fin }} q$ but $I, \Theta \not \vDash_{\text {unr }} q$.

Finite Controllability

- Finite controllability (FC): finite and unrestricted QA coincide.
- Holds for GF but fails with number restrictions:
- Consider $\Theta: R^{2} \rightarrow R^{1}, R^{2} \subseteq R^{1}$, and $I=\{A(a), R(a, b)\}$.
- Universal infinite chase model $A(a), R(a, b), R(b, c), \ldots$
- Finite model has to loop back, on a because of the FD: $A(a), R(a, b), R(b, c), \ldots, R(y, z), R(z, a)$.
\Rightarrow For $q: R(x, y) \wedge A(y)$, we have $I, \Theta \models_{\text {fin }} q$ but $I, \Theta \not \models_{\text {unr }} q$.
- Separability not useful for finite QA (the chase is infinite):
- Separability not closed under finite implication [Rosati, 2006].
$\Rightarrow \mathrm{QA}_{\text {fin }}(K D \cup I D, C Q)$ undecidable even assuming separability.

Decidable Finite QA

- $\mathrm{QA}_{\text {fin }}\left(\mathrm{GC}^{2}, \mathrm{CQ}\right)$ not FC but decidable [Pratt-Hartmann, 2009].
\Rightarrow Only for arity-two.

Decidable Finite QA

- $\mathrm{QA}_{\text {fin }}\left(\mathrm{GC}^{2}, \mathrm{CQ}\right)$ not FC but decidable [Pratt-Hartmann, 2009]. \Rightarrow Only for arity-two.
- Enforce chase termination to get a finite universal model. \Rightarrow Too restrictive.

Decidable Finite QA

- $\mathrm{QA}_{\text {fin }}\left(\mathrm{GC}^{2}, \mathrm{CQ}\right)$ not FC but decidable [Pratt-Hartmann, 2009].
\Rightarrow Only for arity-two.
- Enforce chase termination to get a finite universal model. \Rightarrow Too restrictive.
- Restrict the language to enforce FC:
\Rightarrow KD $\cup I D$ under a foreign key condition is FC [Rosati, 2011].
\Rightarrow Also restrictive.

Result Statement

- We focus on unary IDs and (general) FDs, arbitrary arity.
- The implication problem for UIDs and FDs is decidable: PTIME finite closure construction [Cosmadakis et al., 1990].
- We show that FC holds up to finite closure:

Result Statement

- We focus on unary IDs and (general) FDs, arbitrary arity.
- The implication problem for UIDs and FDs is decidable: PTIME finite closure construction [Cosmadakis et al., 1990].
- We show that FC holds up to finite closure:

Abstract

Theorem For every $\Phi \cup \Delta \subseteq$ FD \cup UID with finite closure $\Phi^{*} \cup \Delta^{*}$, for $q \in U C Q$ and I an instance s.t. $I \models \Phi^{*}$, we have $I, \Phi \cup \Delta \models_{\text {fin }} q$ iff $I, \Delta^{*} \models_{\mathrm{unr}} q$.

Result Statement

- We focus on unary IDs and (general) FDs, arbitrary arity.
- The implication problem for UIDs and FDs is decidable: PTIME finite closure construction [Cosmadakis et al., 1990].
- We show that FC holds up to finite closure:

Theorem

For every $\Phi \cup \Delta \subseteq$ FD \cup UID with finite closure $\Phi^{*} \cup \Delta^{*}$, for $q \in U C Q$ and I an instance s.t. $I \models \Phi^{*}$,
we have $I, \Phi \cup \Delta \models_{\text {fin }} q$ iff $I, \Delta^{*} \models_{\mathrm{unr}} q$.
$\Rightarrow \mathrm{QA}_{\text {unr }}(\mathrm{FD} \cup \mathrm{UID}, \mathrm{UCQ})$ is in NP [Johnson and Klug, 1984] so $\mathrm{QA}_{\text {fin }}(\mathrm{FD} \cup U I D, U C Q)$ is in NP.

Finite Chase

- The chase is a universal model but it is infinite.
- The finite chase [Rosati, 2011]: for all k, there is a
$N(a, b)$
$R(b, c)$
$R(c, d)$ finite universal model for queries of size $\leq k$.
- Reuse similar elements as nulls when chasing.

Acyclic Queries

- Reuses must not make new queries true relative to the chase.
- We focus on Berge-acyclic constant-free queries of size $\leq k$.
- The graph G of q has its atoms as vertices.
- Two atoms are connected if they share one variable.
- We require G to be acyclic (including self-loops).
- We will eliminate cycles later to take care of cyclic queries.

Acyclic Queries

- Reuses must not make new queries true relative to the chase.
- We focus on Berge-acyclic constant-free queries of size $\leq k$.
- The graph G of q has its atoms as vertices.
- Two atoms are connected if they share one variable.
- We require G to be acyclic (including self-loops).
- We will eliminate cycles later to take care of cyclic queries.

Lemma

If an extension of I satisfying Δ has a homomorphism to the quotient of the chase by the k-neighborhood equivalence relation then it is universal for constant-free Berge-acyclic CQs of size $\leq k$.

Finite Chase and FDs

- The dangerous positions of R^{i} are the $R^{j} \in \operatorname{Pos}(R) \backslash\left\{R^{i}\right\}$ such that the FD $R^{j} \rightarrow R^{i}$ holds.
- At non-dangerous positions, reusing elements cannot violate unary FDs.
- At dangerous positions, we cannot reuse elements!
$N(a, b)$
$R(b, c)$
$R(c, d)$
$R(d, \mathbf{e})$
$R(e, f)$
$R(f, g)$
$R(g, h)$
$R(h, \mathbf{e})$
$R^{2} \subseteq R^{1}$
$R^{2} \rightarrow R^{1}$

Finite Chase and FDs and Closure

- Finite closure [Cosmadakis et al., 1990]:
- Whenever $R^{i} \subseteq S^{j}$ holds then $\left\langle R^{i}\right\rangle \leq\left\langle S^{j}\right\rangle$.
- Whenever $S^{i} \rightarrow S^{j}$ holds then $\left\langle S^{j}\right\rangle \leq\left\langle S^{i}\right\rangle$.
- Inequality chains imply the reverse inequalities in the finite.
- Add the reverse dependencies for such invertible cycles.

Finite Chase and FDs and Closure

- Finite closure [Cosmadakis et al., 1990]:
- Whenever $R^{i} \subseteq S^{j}$ holds then $\left\langle R^{i}\right\rangle \leq\left\langle S^{j}\right\rangle$.
- Whenever $S^{i} \rightarrow S^{j}$ holds then $\left\langle S^{j}\right\rangle \leq\left\langle S^{i}\right\rangle$.
- Inequality chains imply the reverse inequalities in the finite.
- Add the reverse dependencies for such invertible cycles.
\Rightarrow When we create a chain with no possiblity to reuse, the reverse dependencies must hold.
\Rightarrow Intuitively: glue both chains together.
$N(a, b)$
$R(b, c)$
$R(c, d) \quad R(z, b)$
$R(d, e) \quad R(y, z)$
$R(e, f) \quad R(x, y)$
$R(f, g) \quad R(w, x)$
$R(g, w)$

$$
\begin{array}{r}
R^{2} \subseteq R^{1} \\
R^{2} \rightarrow R^{1} \\
\mathbf{R}^{\mathbf{2}} \subseteq \mathbf{R}^{1} \\
\mathbf{R}^{\mathbf{1}} \rightarrow \mathbf{R}^{\mathbf{2}}
\end{array}
$$

Locality Result

Lemma

After chasing by k consecutive reversible UIDs, elements at positions connected by UIDs have the same k-neighborhood.

General Scheme

- Start with the instance I.
- Chase by the IDs.
- Reuse elements at non-dangerous positions.
- Connect together elements at dangerous positions.
\Rightarrow Use the previous lemma to justify they can be paired.

General Scheme

- Start with the instance I.
- Chase by the IDs.
- Reuse elements at non-dangerous positions.
- Connect together elements at dangerous positions.
\Rightarrow Use the previous lemma to justify they can be paired.
- Connect elements within an invertible cycle:
\Rightarrow We say that $\left(R^{i} \subseteq S^{j}\right) \mapsto\left(S^{p} \subseteq T^{q}\right)$ if $S^{p} \rightarrow S^{j}$.
\Rightarrow An invertible path is a cycle of \rightarrow.
\Rightarrow Chase by the ID of SCCs of \mapsto in topological order.

Higher-Arity FDs

- Non-dangerous positions defined w.r.t. unary FDs.
- The non-unary FDs are not considered in the finite closure.
- Reusing the same patterns may violate higher-arity FDs:
\Rightarrow Must make many patterns out of limited reusable elements.
\Rightarrow Ex: $R\left(x_{1}, a_{1}, b_{1}\right), R\left(x_{2}, a_{2}, b_{2}\right), R\left(x_{3}, a_{1}, b_{2}\right), R\left(x_{4}, a_{2}, b_{1}\right)$.
\Rightarrow If $R^{2} \rightarrow R^{3}$ then the non-dangerous positions have a unary key so higher-arity FDs are subsumed by UFDs.

Higher-Arity FDs

- Non-dangerous positions defined w.r.t. unary FDs.
- The non-unary FDs are not considered in the finite closure.
- Reusing the same patterns may violate higher-arity FDs:
\Rightarrow Must make many patterns out of limited reusable elements.
$\Rightarrow \mathrm{Ex}: R\left(x_{1}, a_{1}, b_{1}\right), R\left(x_{2}, a_{2}, b_{2}\right), R\left(x_{3}, a_{1}, b_{2}\right), R\left(x_{4}, a_{2}, b_{1}\right)$.
\Rightarrow If $R^{2} \rightarrow R^{3}$ then the non-dangerous positions have a unary key so higher-arity FDs are subsumed by UFDs.
\Rightarrow We need to justify that we can make many patterns out of a limited number of elements to reuse.
\Rightarrow Formally: from N elements, for any K, make $N K$ patterns (unless there is a unary key preventing this).

Dense Models

The possibility to find such patterns is a consequence of:

Lemma

For any FDs Φ over R, there exists $D \leq|R|$ such that either R has a unary key, or there exists a finite model of Φ with $O(N)$ elements and $O\left(N^{D /(D-1)}\right)$ facts.

Dense Models

The possibility to find such patterns is a consequence of:
Lemma
For any FDs Φ over R, there exists $D \leq|R|$ such that either R has a unary key, or there exists a finite model of Φ with $O(N)$ elements and $O\left(N^{D /(D-1)}\right)$ facts.

- First, collapse any UFD cycles of R.
- Then, consider the UFD "roots" T of R (there are ≥ 2) such that $\forall t \in T$, $\exists s \in \operatorname{Pos}(R), s \rightarrow t$, and reduce to the case:
- the attributes of R are the non-empty parts of T.
- the roots that determine $X \in \operatorname{Pos}(R)$ are exactly those of X.
- the non-unary FDs are as pessimistic as possible.
- Finally, construct the desired model on this relation.

Expanding Cycles

- We need to enlarge cycles of the model, preserving constraints.

Expanding Cycles

- We need to enlarge cycles of the model, preserving constraints.
- Group G generated by X is k-acyclic if there is no word \mathbf{w} of length $\leq k$ of X s.t. $w_{1} \cdots w_{n}=e$ unless $w_{i}=w_{i+1}^{-1}$ for some i.

Expanding Cycles

- We need to enlarge cycles of the model, preserving constraints.
- Group G generated by X is k-acyclic if there is no word w of length $\leq k$ of X s.t. $w_{1} \cdots w_{n}=e$ unless $w_{i}=w_{i+1}^{-1}$ for some i.
- Build the product of the model with a finite acyclic group:
- Let $L(M)=\left\{l_{i}^{F}|F \in M, 1 \leq i \leq|F|\}\right.$.
- Let G be a k-acyclic group generated by $L(M)$.
- For $F=R(\mathbf{a}) \in M, g \in G$, create $R\left(\left(a_{1},\left.g\right|_{1} ^{F}\right), \ldots,\left(a_{|R|},\left.g\right|_{|R|} ^{F}\right)\right)$.
- Ex: $M=\{R(a, a)\}, M^{\prime}=\{R((a, e),(a, g)), R((a, g),(a, e))\}$.

Expanding Cycles

- We need to enlarge cycles of the model, preserving constraints.
- Group G generated by X is k-acyclic if there is no word \mathbf{w} of length $\leq k$ of X s.t. $w_{1} \cdots w_{n}=e$ unless $w_{i}=w_{i+1}^{-1}$ for some i.
- Build the product of the model with a finite acyclic group:
- Let $L(M)=\left\{I_{i}^{F}|F \in M, 1 \leq i \leq|F|\}\right.$.
- Let G be a k-acyclic group generated by $L(M)$.
- For $F=R(\mathbf{a}) \in M, g \in G$, create $R\left(\left(a_{1},\left.g\right|_{1} ^{F}\right), \ldots,\left(a_{|R|},\left.g\right|_{|R|} ^{F}\right)\right)$.
- Ex: $M=\{R(a, a)\}, M^{\prime}=\{R((a, e),(a, g)), R((a, g),(a, e))\}$.
- Properties:
\Rightarrow Can be adjusted to preserve the instance as-is.
\Rightarrow Preserves unary overlaps so preserves UIDs.
\Rightarrow Homomorphism back to M so no new queries are true.
\Rightarrow Cycles in M^{\prime} of size $\leq k$ must take one edge back-and-forth.
\Rightarrow This may violate FDs!

Expanding Cycles With FDs

- Our models have a homomorphism h to I^{Θ} / \equiv_{k}.
- Overlaps are between facts with the same h-image.
- Adjust the product $M \times G$ with $L\left(I^{\Theta} / \bar{\equiv}_{k}\right)$ not $L(M)$:
\Rightarrow If $F=R(a, b, c)$ and $F^{\prime}=R(a, b, d)$ then $h(F)=h\left(F^{\prime}\right)$ and the FD $R^{1} \rightarrow R^{2}$ cannot be violated.
\Rightarrow Any cycles in $M \times G$ are mapped by the homomorphism $(x, g) \mapsto(h(x), g)$ to cycles in the "regular" product $I^{\Theta} / \equiv_{k} \times G$.
\Rightarrow In other words:
- M satisfies the right dependencies (including FDs),
- $I^{\Theta} / \equiv_{k} \times G$ satisfies the right queries,
- $M \times G$ satisfies both.
- More work required to preserve the instance.

Table of Contents

(1) Introduction
(2) Extending GC² Query Answering
(3) Unrestricted Query Answering

4 Finite Query Answering
(5) Conclusion

Summary

We have shown the decidability of:

- QA. (UKD $\left.\cup G C^{2} \cup F R 1^{a}, C Q\right)$
- $\mathrm{QA}_{\mathrm{unr}}\left(\mathrm{FD} \cup \mathrm{GC}^{2} \cup \mathrm{FR} 1, \mathrm{CQ}\right)$
- $\mathrm{QA}_{\text {fin }}(F D \cup U I D, U C Q)$

Summary

We have shown the decidability of:

- QA. (UKD $\left.\cup G C^{2} \cup F R 1^{a}, C Q\right)$
- $\mathrm{QA}_{\mathrm{unr}}\left(\mathrm{FD} \cup \mathrm{GC}^{2} \cup \mathrm{FR} 1, \mathrm{CQ}\right)$
- QA $_{\text {fin }}(F D \cup U I D, U C Q)$

Further work:

- Derive upper and lower complexity bounds.
- For unrestricted QA:
\Rightarrow Find a more homogeneous fragment than $G^{2} \cup F R 1$.
\Rightarrow Must limit the interaction with FD and number restrictions.
- For finite QA:
\Rightarrow What about $\mathrm{FD} \cup \mathrm{GC}^{2} \cup \mathrm{FR} 1$?
\Rightarrow Can we generalize the proof beyond UIDs?

Summary

We have shown the decidability of:

- QA. (UKD $\left.\cup G C^{2} \cup F R 1^{a}, C Q\right)$
- $Q A_{u n r}\left(F D \cup G C^{2} \cup F R 1, C Q\right)$
- QA $_{\text {fin }}(F D \cup$ UID, UCQ)

Further work:

- Derive upper and lower complexity bounds.
- For unrestricted QA:
\Rightarrow Find a more homogeneous fragment than $\mathrm{GF}^{2} \cup F R 1$.
\Rightarrow Must limit the interaction with FD and number restrictions.
- For finite QA:
\Rightarrow What about $\mathrm{FD} \cup \mathrm{GC}^{2} \cup \mathrm{FR} 1$?
\Rightarrow Can we generalize the proof beyond UIDs?

Thanks for your attention!

R Barany, V., Gottlob, G., and Otto, M. (2010).
Querying the guarded fragment.
In LICS.
囦 Calì, A., Gottlob, G., and Kifer, M. (2013).
Taming the infinite chase: Query answering under expressive relational constraints.
JAIR, 48.
\square Calì, A., Lembo, D., and Rosati, R. (2003).
On the decidability and complexity of query answering over inconsistent and incomplete databases.
In PODS.

References II

围 Cosmadakis，S．S．，Kanellakis，P．C．，and Vardi，M．Y．（1990）． Polynomial－time implication problems for unary inclusion dependencies． JACM，37（1）．

國 Johnson，D．S．and Klug，A．C．（1984）．
Testing containment of conjunctive queries under functional and inclusion dependencies．
JCSS，28（1）．
囯 Pratt－Hartmann，I．（2009）．
Data－complexity of the two－variable fragment with counting quantifiers．
Inf．Comput．，207（8）．

References III

R Rosati, R. (2006).
On the decidability and finite controllability of query processing in databases with incomplete information.
In SIGMOD.
目 Rosati, R. (2011).
On the finite controllability of conjunctive query answering in databases under open-world assumption.
JCSS, 77(3).
围 Trakhtenbrot, B. A. (1963).
Impossibility of an algorithm for the decision problem in finite classes.
AMS Transl. Series 2.

