
. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

.

......

Open-World Query Answering
Under Number Restrictions

Antoine Amarilli1,2

1Télécom ParisTech, Paris, France
2University of Oxford, Oxford, United Kingdom

January 17, 2014

1/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Open-World Query Answering

Instance I {R(a, b),T(b)}

Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y)
(here: fragments of first-order logic with no constants)
Query q of a class Q ∃x S(x) ∧ T(x)
(here: UCQ or CQ: (union of) Boolean conjunctive queries)

⇒ QAunr(F,Q): does q hold in every J ⊇ I satisfying Θ?
(written I,Θ |=unr q)

⇒ QAfin(F,Q): does q hold in every finite J ⊇ I satisfying Θ?
(written I,Θ |=fin q)

⇒ Equivalently: is there a (finite) model of I ∧Θ ∧ ¬q?

2/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Open-World Query Answering

Instance I {R(a, b),T(b)}
Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y)
(here: fragments of first-order logic with no constants)

Query q of a class Q ∃x S(x) ∧ T(x)
(here: UCQ or CQ: (union of) Boolean conjunctive queries)

⇒ QAunr(F,Q): does q hold in every J ⊇ I satisfying Θ?
(written I,Θ |=unr q)

⇒ QAfin(F,Q): does q hold in every finite J ⊇ I satisfying Θ?
(written I,Θ |=fin q)

⇒ Equivalently: is there a (finite) model of I ∧Θ ∧ ¬q?

2/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Open-World Query Answering

Instance I {R(a, b),T(b)}
Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y)
(here: fragments of first-order logic with no constants)
Query q of a class Q ∃x S(x) ∧ T(x)
(here: UCQ or CQ: (union of) Boolean conjunctive queries)

⇒ QAunr(F,Q): does q hold in every J ⊇ I satisfying Θ?
(written I,Θ |=unr q)

⇒ QAfin(F,Q): does q hold in every finite J ⊇ I satisfying Θ?
(written I,Θ |=fin q)

⇒ Equivalently: is there a (finite) model of I ∧Θ ∧ ¬q?

2/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Open-World Query Answering

Instance I {R(a, b),T(b)}
Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y)
(here: fragments of first-order logic with no constants)
Query q of a class Q ∃x S(x) ∧ T(x)
(here: UCQ or CQ: (union of) Boolean conjunctive queries)

⇒ QAunr(F,Q): does q hold in every J ⊇ I satisfying Θ?
(written I,Θ |=unr q)

⇒ QAfin(F,Q): does q hold in every finite J ⊇ I satisfying Θ?
(written I,Θ |=fin q)

⇒ Equivalently: is there a (finite) model of I ∧Θ ∧ ¬q?

2/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Open-World Query Answering

Instance I {R(a, b),T(b)}
Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y)
(here: fragments of first-order logic with no constants)
Query q of a class Q ∃x S(x) ∧ T(x)
(here: UCQ or CQ: (union of) Boolean conjunctive queries)

⇒ QAunr(F,Q): does q hold in every J ⊇ I satisfying Θ?
(written I,Θ |=unr q)

⇒ QAfin(F,Q): does q hold in every finite J ⊇ I satisfying Θ?
(written I,Θ |=fin q)

⇒ Equivalently: is there a (finite) model of I ∧Θ ∧ ¬q?

2/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Open-World Query Answering

Instance I {R(a, b),T(b)}
Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y)
(here: fragments of first-order logic with no constants)
Query q of a class Q ∃x S(x) ∧ T(x)
(here: UCQ or CQ: (union of) Boolean conjunctive queries)

⇒ QAunr(F,Q): does q hold in every J ⊇ I satisfying Θ?
(written I,Θ |=unr q)

⇒ QAfin(F,Q): does q hold in every finite J ⊇ I satisfying Θ?
(written I,Θ |=fin q)

⇒ Equivalently: is there a (finite) model of I ∧Θ ∧ ¬q?

2/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Dependencies DEP

τ : ∀x(ϕ(x) ⇒ ∃y A(x,y))

Tuple-Generating Dependencies TGD: A is a regular atom.
Inclusion Dependencies ID:
⇒ ϕ is an atom, no repeated variables.

Unary Inclusion Dependencies UID:
⇒ Only one exported variable (occurring in ϕ and A).
⇒ Example: ∀e b, Boss(e, b) ⇒ ∃b′ Boss(b, b′).
⇒ Written Boss2 ⊆ Boss1.

Equality-Generating Dependencies EGD: A is an equality.
Functional Dependencies FD:
⇒ ∀xy

(
S(x) ∧ S(y) ∧

∧
l∈L xl = yl

)
⇒ xr = yr.

Unary Functional Dependencies: |L| = 1.
⇒ Example: ∀e e′ b b′, Boss(e, b),Boss(e′, b′), e = e′ ⇒ b = b′.
⇒ Written Boss1 → Boss2.

Key Dependencies:
∧

r∈Pos(R) RK → Rr for some K ⊆ Pos(R).
Unary Key Dependencies: |K| = 1.

3/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Dependencies DEP

τ : ∀x(ϕ(x) ⇒ ∃y A(x,y))

Tuple-Generating Dependencies TGD: A is a regular atom.
Inclusion Dependencies ID:
⇒ ϕ is an atom, no repeated variables.

Unary Inclusion Dependencies UID:
⇒ Only one exported variable (occurring in ϕ and A).
⇒ Example: ∀e b, Boss(e, b) ⇒ ∃b′ Boss(b, b′).
⇒ Written Boss2 ⊆ Boss1.

Equality-Generating Dependencies EGD: A is an equality.
Functional Dependencies FD:
⇒ ∀xy

(
S(x) ∧ S(y) ∧

∧
l∈L xl = yl

)
⇒ xr = yr.

Unary Functional Dependencies: |L| = 1.
⇒ Example: ∀e e′ b b′, Boss(e, b),Boss(e′, b′), e = e′ ⇒ b = b′.
⇒ Written Boss1 → Boss2.

Key Dependencies:
∧

r∈Pos(R) RK → Rr for some K ⊆ Pos(R).
Unary Key Dependencies: |K| = 1.

3/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Dependencies DEP

τ : ∀x(ϕ(x) ⇒ ∃y A(x,y))

Tuple-Generating Dependencies TGD: A is a regular atom.
Inclusion Dependencies ID:
⇒ ϕ is an atom, no repeated variables.

Unary Inclusion Dependencies UID:
⇒ Only one exported variable (occurring in ϕ and A).
⇒ Example: ∀e b, Boss(e, b) ⇒ ∃b′ Boss(b, b′).
⇒ Written Boss2 ⊆ Boss1.

Equality-Generating Dependencies EGD: A is an equality.
Functional Dependencies FD:
⇒ ∀xy

(
S(x) ∧ S(y) ∧

∧
l∈L xl = yl

)
⇒ xr = yr.

Unary Functional Dependencies: |L| = 1.
⇒ Example: ∀e e′ b b′, Boss(e, b),Boss(e′, b′), e = e′ ⇒ b = b′.
⇒ Written Boss1 → Boss2.

Key Dependencies:
∧

r∈Pos(R) RK → Rr for some K ⊆ Pos(R).
Unary Key Dependencies: |K| = 1.

3/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Logics

Guarded Fragment GF:
⇒ Contains regular atoms and equality atoms.
⇒ Closed under Boolean connectives ∧, ∨, ¬, etc.
⇒ Quantification: given an atom A(x,y) and formula ϕ(x,y)

with free variables exactly as indicated:
∀x (A ⇒ ϕ).
∃x (A ∧ ϕ).

Two-Variable Guarded Fragment GF2:
⇒ Only two distinct variables.
⇒ Only unary and binary predicates of the signature (σ≤2).

Two-Variable Guarded Fragment with Counting GC2:
⇒ Quantifiers ∃≤cy, A(x, y) and ∃≥cy, A(x, y)

with A a binary atom and c ∈ N.
⇒ Example: ∀e∃≤1b, Boss(e, b).

4/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Logics

Guarded Fragment GF:
⇒ Contains regular atoms and equality atoms.
⇒ Closed under Boolean connectives ∧, ∨, ¬, etc.
⇒ Quantification: given an atom A(x,y) and formula ϕ(x,y)

with free variables exactly as indicated:
∀x (A ⇒ ϕ).
∃x (A ∧ ϕ).

Two-Variable Guarded Fragment GF2:
⇒ Only two distinct variables.
⇒ Only unary and binary predicates of the signature (σ≤2).

Two-Variable Guarded Fragment with Counting GC2:
⇒ Quantifiers ∃≤cy, A(x, y) and ∃≥cy, A(x, y)

with A a binary atom and c ∈ N.
⇒ Example: ∀e∃≤1b, Boss(e, b).

4/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Logics

Guarded Fragment GF:
⇒ Contains regular atoms and equality atoms.
⇒ Closed under Boolean connectives ∧, ∨, ¬, etc.
⇒ Quantification: given an atom A(x,y) and formula ϕ(x,y)

with free variables exactly as indicated:
∀x (A ⇒ ϕ).
∃x (A ∧ ϕ).

Two-Variable Guarded Fragment GF2:
⇒ Only two distinct variables.
⇒ Only unary and binary predicates of the signature (σ≤2).

Two-Variable Guarded Fragment with Counting GC2:
⇒ Quantifiers ∃≤cy, A(x, y) and ∃≥cy, A(x, y)

with A a binary atom and c ∈ N.
⇒ Example: ∀e∃≤1b, Boss(e, b).

4/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

General Results

Negative results:
QA•(FO,CQ−) is undecidable [Trakhtenbrot, 1963].
QA•(TGD,CQ−) is undecidable [Calì et al., 2013].
QA•(UKD ∪ BID,CQ) is undecidable [Calì et al., 2003].

Positive results:
QA•(GF,UCQ) is in 2EXPTIME [Barany et al., 2010].
QA•(GC2,CQ) is decidable [Pratt-Hartmann, 2009].

⇒ Can we have both high-arity constraints and expressive
low-arity constraints, including equality constraints?

5/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

General Results

Negative results:
QA•(FO,CQ−) is undecidable [Trakhtenbrot, 1963].
QA•(TGD,CQ−) is undecidable [Calì et al., 2013].
QA•(UKD ∪ BID,CQ) is undecidable [Calì et al., 2003].

Positive results:
QA•(GF,UCQ) is in 2EXPTIME [Barany et al., 2010].
QA•(GC2,CQ) is decidable [Pratt-Hartmann, 2009].

⇒ Can we have both high-arity constraints and expressive
low-arity constraints, including equality constraints?

5/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

General Results

Negative results:
QA•(FO,CQ−) is undecidable [Trakhtenbrot, 1963].
QA•(TGD,CQ−) is undecidable [Calì et al., 2013].
QA•(UKD ∪ BID,CQ) is undecidable [Calì et al., 2003].

Positive results:
QA•(GF,UCQ) is in 2EXPTIME [Barany et al., 2010].
QA•(GC2,CQ) is decidable [Pratt-Hartmann, 2009].

⇒ Can we have both high-arity constraints and expressive
low-arity constraints, including equality constraints?

5/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Table of Contents

...1 Introduction

...2 Extending GC2 Query Answering

...3 Unrestricted Query Answering

...4 Finite Query Answering

...5 Conclusion

6/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result Statement

Frontier-One Dependencies FR1:
⇒ Subset of TGD which includes UID.
⇒ One exported variable.
⇒ No repeated variable in the head.

Reification R of a structure M from σ to (extended) σ≤2:
⇒ Add binary predicates Ri for every i ∈ Pos(R) and R ∈ σ>2.
⇒ Replace facts R(a) of > 2-ary predicates by a fresh element f

and Ri(f, ai) for all i ∈ Pos(R).
⇒ Example: R(a, a, b) becomes R1(f, a),R2(f, a),R3(f, b).

Frontier-One Acyclic Dependencies FR1a:
⇒ The Gaifman graph of the reification of the body is acyclic.

.Theorem..

......QA•(UKD ∪ GC2 ∪ FR1a,CQ) is decidable.

7/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result Statement

Frontier-One Dependencies FR1:
⇒ Subset of TGD which includes UID.
⇒ One exported variable.
⇒ No repeated variable in the head.

Reification R of a structure M from σ to (extended) σ≤2:
⇒ Add binary predicates Ri for every i ∈ Pos(R) and R ∈ σ>2.
⇒ Replace facts R(a) of > 2-ary predicates by a fresh element f

and Ri(f, ai) for all i ∈ Pos(R).
⇒ Example: R(a, a, b) becomes R1(f, a),R2(f, a),R3(f, b).

Frontier-One Acyclic Dependencies FR1a:
⇒ The Gaifman graph of the reification of the body is acyclic.

.Theorem..

......QA•(UKD ∪ GC2 ∪ FR1a,CQ) is decidable.

7/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result Statement

Frontier-One Dependencies FR1:
⇒ Subset of TGD which includes UID.
⇒ One exported variable.
⇒ No repeated variable in the head.

Reification R of a structure M from σ to (extended) σ≤2:
⇒ Add binary predicates Ri for every i ∈ Pos(R) and R ∈ σ>2.
⇒ Replace facts R(a) of > 2-ary predicates by a fresh element f

and Ri(f, ai) for all i ∈ Pos(R).
⇒ Example: R(a, a, b) becomes R1(f, a),R2(f, a),R3(f, b).

Frontier-One Acyclic Dependencies FR1a:
⇒ The Gaifman graph of the reification of the body is acyclic.

.Theorem..

......QA•(UKD ∪ GC2 ∪ FR1a,CQ) is decidable.

7/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result Statement

Frontier-One Dependencies FR1:
⇒ Subset of TGD which includes UID.
⇒ One exported variable.
⇒ No repeated variable in the head.

Reification R of a structure M from σ to (extended) σ≤2:
⇒ Add binary predicates Ri for every i ∈ Pos(R) and R ∈ σ>2.
⇒ Replace facts R(a) of > 2-ary predicates by a fresh element f

and Ri(f, ai) for all i ∈ Pos(R).
⇒ Example: R(a, a, b) becomes R1(f, a),R2(f, a),R3(f, b).

Frontier-One Acyclic Dependencies FR1a:
⇒ The Gaifman graph of the reification of the body is acyclic.

.Theorem..

......QA•(UKD ∪ GC2 ∪ FR1a,CQ) is decidable.
7/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Proof Idea

Encode constraints from UKD ∪ GC2 ∪ FR1a to GC2.
Show that QA under the original constraints is equivalent to
QA for the encoded constraints (and decide it as GC2 QA):
⇒ The reification of counterexample models should be

counterexample models for the encoding (easy).
⇒ Counterexample models should be decodable from

counterexample models for the encoded contraints (harder).

Well-formedness constraints wf(σ) of GC2 for the encoding:
⇒ Elements are regular elements or R-facts for some R ∈ σ>2.
⇒ The Ri’s connect regular elements and R-fact elements.
⇒ Every fact element for R has exactly one of each Ri.
⇒ The R ∈ σ≤2 connect regular elements.

8/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Proof Idea

Encode constraints from UKD ∪ GC2 ∪ FR1a to GC2.
Show that QA under the original constraints is equivalent to
QA for the encoded constraints (and decide it as GC2 QA):
⇒ The reification of counterexample models should be

counterexample models for the encoding (easy).
⇒ Counterexample models should be decodable from

counterexample models for the encoded contraints (harder).

Well-formedness constraints wf(σ) of GC2 for the encoding:
⇒ Elements are regular elements or R-facts for some R ∈ σ>2.
⇒ The Ri’s connect regular elements and R-fact elements.
⇒ Every fact element for R has exactly one of each Ri.
⇒ The R ∈ σ≤2 connect regular elements.

8/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Encoding

Encoding a key ϕ ∈ UKD to R(ϕ):
⇒ “Ri is a key” encoded to ∀x∃≤1y, Ri(y, x).
⇒ R(Φ) is clearly a GC2 constraint.

Encoding a high-arity constraint δ ∈ FR1a to R(δ):
⇒ Apply reification to the body and modify the head if ∈ σ>2.
⇒ Example:

δ : ∀xyz, S(y, x) ∧ R(x, x, z) ⇒ ∃ww′, R(x,w,w′)
⇒ R(δ) : ∀x

(
(∃y, S(y, x))∧(∃f, R1(f, x)∧R2(f, x)∧(∃z, R3(f, z)))

⇒ ∃f,R1(f, x)
)
.

⇒ R(∆) expressible as a GF2 constraint.

Encode the instance I to R(I) straightforwardly.
Encode the query q ∈ CQ to R(q) straightforwardly.
Leave the constraints Θ ⊆ GC2 unchanged.

9/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Encoding

Encoding a key ϕ ∈ UKD to R(ϕ):
⇒ “Ri is a key” encoded to ∀x∃≤1y, Ri(y, x).
⇒ R(Φ) is clearly a GC2 constraint.

Encoding a high-arity constraint δ ∈ FR1a to R(δ):
⇒ Apply reification to the body and modify the head if ∈ σ>2.
⇒ Example:

δ : ∀xyz, S(y, x) ∧ R(x, x, z) ⇒ ∃ww′, R(x,w,w′)
⇒ R(δ) : ∀x

(
(∃y, S(y, x))∧(∃f, R1(f, x)∧R2(f, x)∧(∃z, R3(f, z)))

⇒ ∃f,R1(f, x)
)
.

⇒ R(∆) expressible as a GF2 constraint.

Encode the instance I to R(I) straightforwardly.
Encode the query q ∈ CQ to R(q) straightforwardly.
Leave the constraints Θ ⊆ GC2 unchanged.

9/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Encoding

Encoding a key ϕ ∈ UKD to R(ϕ):
⇒ “Ri is a key” encoded to ∀x∃≤1y, Ri(y, x).
⇒ R(Φ) is clearly a GC2 constraint.

Encoding a high-arity constraint δ ∈ FR1a to R(δ):
⇒ Apply reification to the body and modify the head if ∈ σ>2.
⇒ Example:

δ : ∀xyz, S(y, x) ∧ R(x, x, z) ⇒ ∃ww′, R(x,w,w′)
⇒ R(δ) : ∀x

(
(∃y, S(y, x))∧(∃f, R1(f, x)∧R2(f, x)∧(∃z, R3(f, z)))

⇒ ∃f,R1(f, x)
)
.

⇒ R(∆) expressible as a GF2 constraint.

Encode the instance I to R(I) straightforwardly.
Encode the query q ∈ CQ to R(q) straightforwardly.
Leave the constraints Θ ⊆ GC2 unchanged.

9/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Concluding the Proof

Take an extension J of I satisfying ∆, Θ, Φ and violating q:
⇒ R(J) is an extension of R(I) satisfying R(∆), Θ, R(Φ) and

wf(σ) and violating R(q).

Conversely, take an extension of R(I) satisfying R(∆), Θ,
R(Φ) and wf(σ) and violating R(q).

⇒ Need to argue that, w.l.o.g., there are no duplicate facts
(f and f′ representing R(a, b, c)).

⇒ Decode an extension of I satisfying ∆, Θ, Φ and violating q.

⇒ Decide QA•(UKD ∪ GC2 ∪ FR1a,CQ) from QA•(GC2,CQ).

10/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Concluding the Proof

Take an extension J of I satisfying ∆, Θ, Φ and violating q:
⇒ R(J) is an extension of R(I) satisfying R(∆), Θ, R(Φ) and

wf(σ) and violating R(q).

Conversely, take an extension of R(I) satisfying R(∆), Θ,
R(Φ) and wf(σ) and violating R(q).

⇒ Need to argue that, w.l.o.g., there are no duplicate facts
(f and f′ representing R(a, b, c)).

⇒ Decode an extension of I satisfying ∆, Θ, Φ and violating q.

⇒ Decide QA•(UKD ∪ GC2 ∪ FR1a,CQ) from QA•(GC2,CQ).

10/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Concluding the Proof

Take an extension J of I satisfying ∆, Θ, Φ and violating q:
⇒ R(J) is an extension of R(I) satisfying R(∆), Θ, R(Φ) and

wf(σ) and violating R(q).

Conversely, take an extension of R(I) satisfying R(∆), Θ,
R(Φ) and wf(σ) and violating R(q).

⇒ Need to argue that, w.l.o.g., there are no duplicate facts
(f and f′ representing R(a, b, c)).

⇒ Decode an extension of I satisfying ∆, Θ, Φ and violating q.

⇒ Decide QA•(UKD ∪ GC2 ∪ FR1a,CQ) from QA•(GC2,CQ).

10/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Table of Contents

...1 Introduction

...2 Extending GC2 Query Answering

...3 Unrestricted Query Answering

...4 Finite Query Answering

...5 Conclusion

11/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

The Chase and Separability

Universal model: extension of I satisfying Θ and violating
every q unless I,Θ |=unr q.
The chase IΘ: infinite universal model for TGD and UCQ:
⇒ Whenever a TGD is violated, create the missing head fact.
⇒ Always use fresh existential witnesses.

Φ ∪∆ ⊆ EGD ∪ TGD is separable if I |= Φ implies I∆ |= Φ.
⇒ QAunr(EGD ∪ (TGD ∩ GF),UCQ) is decidable in this case:

Check if I |= Φ
Decide QAunr(TGD ∩ GF,UCQ) problem ignoring EGDs.

⇒ QAunr(FD ∪ FR1a,UCQ) is decidable (always separable).

12/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

The Chase and Separability

Universal model: extension of I satisfying Θ and violating
every q unless I,Θ |=unr q.
The chase IΘ: infinite universal model for TGD and UCQ:
⇒ Whenever a TGD is violated, create the missing head fact.
⇒ Always use fresh existential witnesses.

Φ ∪∆ ⊆ EGD ∪ TGD is separable if I |= Φ implies I∆ |= Φ.
⇒ QAunr(EGD ∪ (TGD ∩ GF),UCQ) is decidable in this case:

Check if I |= Φ
Decide QAunr(TGD ∩ GF,UCQ) problem ignoring EGDs.

⇒ QAunr(FD ∪ FR1a,UCQ) is decidable (always separable).

12/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result and Intuition

.Theorem..

......QAunr(FD ∪ GC2 ∪ FR1,CQ) is decidable.

Idea: counterexample models M for GC2 ∪ FR1a satisfy w.l.o.g.:
Unicity. There are no two facts R(a) and R(b) with ai = bi

for R ∈ σ>2 unless both are in the instance I.
⇒ Any FD violation for σ>2 must occur in I.
⇒ FDs can be checked on I and ignored afterwards.

Acyclicity. The Gaifman graph of R(M) is acyclic except for I:
⇒ FR1\FR1a dependencies can only match on I.
⇒ Convert FR1 to FR1a (enumerate matches).

⇒ Reduce QAunr(FD∪GC2∪FR1,CQ) to QAunr(GC2∪FR1a,CQ).

13/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result and Intuition

.Theorem..

......QAunr(FD ∪ GC2 ∪ FR1,CQ) is decidable.

Idea: counterexample models M for GC2 ∪ FR1a satisfy w.l.o.g.:
Unicity. There are no two facts R(a) and R(b) with ai = bi

for R ∈ σ>2 unless both are in the instance I.
⇒ Any FD violation for σ>2 must occur in I.
⇒ FDs can be checked on I and ignored afterwards.

Acyclicity. The Gaifman graph of R(M) is acyclic except for I:
⇒ FR1\FR1a dependencies can only match on I.
⇒ Convert FR1 to FR1a (enumerate matches).

⇒ Reduce QAunr(FD∪GC2∪FR1,CQ) to QAunr(GC2∪FR1a,CQ).

13/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result and Intuition

.Theorem..

......QAunr(FD ∪ GC2 ∪ FR1,CQ) is decidable.

Idea: counterexample models M for GC2 ∪ FR1a satisfy w.l.o.g.:
Unicity. There are no two facts R(a) and R(b) with ai = bi

for R ∈ σ>2 unless both are in the instance I.
⇒ Any FD violation for σ>2 must occur in I.
⇒ FDs can be checked on I and ignored afterwards.

Acyclicity. The Gaifman graph of R(M) is acyclic except for I:
⇒ FR1\FR1a dependencies can only match on I.
⇒ Convert FR1 to FR1a (enumerate matches).

⇒ Reduce QAunr(FD∪GC2∪FR1,CQ) to QAunr(GC2∪FR1a,CQ).

13/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Unraveling the Counterexample Model

Unravelling M to a suitable M′ (with mapping π′):
Add dummy binary facts covering and connecting all elements.
Decompose the facts in bags:

one bag per fact of σ>2,
one bag per guarded pair {a, b} with all unary and binary facts.

Build M′ as a tree of bags by the following inductive process:
⇒ The root bag of M′ is I.
⇒ The children of t ∈ M′ are, for every a ∈ dom(t):

For every σ≤2-bag t′ of M containing π′(a):
An isomorphic copy of t′ in M′, with a and a fresh element.
For every Ri ∈ Pos(σ>2) such that π′(a) occurs at Ri in M,
if a does not occur at Ri in M′:
A σ>2-bag {R(b)} with b fresh except bi = a.

⇒ Do not consider in a bag the previous element used to reach it.

14/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Unraveling the Counterexample Model

Unravelling M to a suitable M′ (with mapping π′):
Add dummy binary facts covering and connecting all elements.
Decompose the facts in bags:

one bag per fact of σ>2,
one bag per guarded pair {a, b} with all unary and binary facts.

Build M′ as a tree of bags by the following inductive process:
⇒ The root bag of M′ is I.
⇒ The children of t ∈ M′ are, for every a ∈ dom(t):

For every σ≤2-bag t′ of M containing π′(a):
An isomorphic copy of t′ in M′, with a and a fresh element.
For every Ri ∈ Pos(σ>2) such that π′(a) occurs at Ri in M,
if a does not occur at Ri in M′:
A σ>2-bag {R(b)} with b fresh except bi = a.

⇒ Do not consider in a bag the previous element used to reach it.

14/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Example

c d

R R

S 3

12

a

b

N

R

I = {N(a, b)}
M = I ∪ {R(b, c),
R(c, d),R(d, b),
S(b, b, d)}

15/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Example

c d

R R

S 3

12

a

b

N

R

I = {N(a, b)}
M = I ∪ {R(b, c),
R(c, d),R(d, b),
S(b, b, d)}

a

b

N

15/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Example

c d

R R

S 3

12

a

b

N

R

I = {N(a, b)}
M = I ∪ {R(b, c),
R(c, d),R(d, b),
S(b, b, d)}

c1

R

R

d1

a

b

N

15/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Example

c d

R R

S 3

12

a

b

N

R

I = {N(a, b)}
M = I ∪ {R(b, c),
R(c, d),R(d, b),
S(b, b, d)}

c1

R

S
1

R

d1

b1
2

d23

a

b

N

15/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Example

c d

R R

S 3

12

a

b

N

R

I = {N(a, b)}
M = I ∪ {R(b, c),
R(c, d),R(d, b),
S(b, b, d)}

c1

R

S
1

2

R

d1

S

b1

b2

2

1

d2

d3
3

3

a

b

N

15/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Example

c d

R R

S 3

12

a

b

N

R

I = {N(a, b)}
M = I ∪ {R(b, c),
R(c, d),R(d, b),
S(b, b, d)}

c1

R

S
1

2

R

d1

S

b1

b2

2

1

d2

d3
3

3

1

2

3

...

a

b

N

15/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Properties of the Construction

Preserves the base instance I.

Maps back to the original model by the homomorphism π′.
⇒ Ensures that the query is still false.

Isomorphism between 1-neighborhoods for σ≤2 following π′.
⇒ Ensures that GF2 constraints are preserved (guarded bisimilar).
⇒ Ensures that number restrictions are preserved.

The mapping π′ is surjective for guarded pairs.
⇒ Necessary for guarded bisimulation.

Elements still occur at the same positions of Pos(σ>2):
⇒ Ensures that FR1a constraints are preserved.

They do so at most once (except in the instance):
⇒ Ensures Unicity.

The model is a tree of bags.
⇒ Ensures Acyclicity (and bounded treewidth).

16/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Properties of the Construction

Preserves the base instance I.
Maps back to the original model by the homomorphism π′.
⇒ Ensures that the query is still false.

Isomorphism between 1-neighborhoods for σ≤2 following π′.
⇒ Ensures that GF2 constraints are preserved (guarded bisimilar).
⇒ Ensures that number restrictions are preserved.

The mapping π′ is surjective for guarded pairs.
⇒ Necessary for guarded bisimulation.

Elements still occur at the same positions of Pos(σ>2):
⇒ Ensures that FR1a constraints are preserved.

They do so at most once (except in the instance):
⇒ Ensures Unicity.

The model is a tree of bags.
⇒ Ensures Acyclicity (and bounded treewidth).

16/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Properties of the Construction

Preserves the base instance I.
Maps back to the original model by the homomorphism π′.
⇒ Ensures that the query is still false.

Isomorphism between 1-neighborhoods for σ≤2 following π′.
⇒ Ensures that GF2 constraints are preserved (guarded bisimilar).
⇒ Ensures that number restrictions are preserved.

The mapping π′ is surjective for guarded pairs.
⇒ Necessary for guarded bisimulation.

Elements still occur at the same positions of Pos(σ>2):
⇒ Ensures that FR1a constraints are preserved.

They do so at most once (except in the instance):
⇒ Ensures Unicity.

The model is a tree of bags.
⇒ Ensures Acyclicity (and bounded treewidth).

16/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Properties of the Construction

Preserves the base instance I.
Maps back to the original model by the homomorphism π′.
⇒ Ensures that the query is still false.

Isomorphism between 1-neighborhoods for σ≤2 following π′.
⇒ Ensures that GF2 constraints are preserved (guarded bisimilar).
⇒ Ensures that number restrictions are preserved.

The mapping π′ is surjective for guarded pairs.
⇒ Necessary for guarded bisimulation.

Elements still occur at the same positions of Pos(σ>2):
⇒ Ensures that FR1a constraints are preserved.

They do so at most once (except in the instance):
⇒ Ensures Unicity.

The model is a tree of bags.
⇒ Ensures Acyclicity (and bounded treewidth).

16/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Properties of the Construction

Preserves the base instance I.
Maps back to the original model by the homomorphism π′.
⇒ Ensures that the query is still false.

Isomorphism between 1-neighborhoods for σ≤2 following π′.
⇒ Ensures that GF2 constraints are preserved (guarded bisimilar).
⇒ Ensures that number restrictions are preserved.

The mapping π′ is surjective for guarded pairs.
⇒ Necessary for guarded bisimulation.

Elements still occur at the same positions of Pos(σ>2):
⇒ Ensures that FR1a constraints are preserved.

They do so at most once (except in the instance):
⇒ Ensures Unicity.

The model is a tree of bags.
⇒ Ensures Acyclicity (and bounded treewidth).

16/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Properties of the Construction

Preserves the base instance I.
Maps back to the original model by the homomorphism π′.
⇒ Ensures that the query is still false.

Isomorphism between 1-neighborhoods for σ≤2 following π′.
⇒ Ensures that GF2 constraints are preserved (guarded bisimilar).
⇒ Ensures that number restrictions are preserved.

The mapping π′ is surjective for guarded pairs.
⇒ Necessary for guarded bisimulation.

Elements still occur at the same positions of Pos(σ>2):
⇒ Ensures that FR1a constraints are preserved.

They do so at most once (except in the instance):
⇒ Ensures Unicity.

The model is a tree of bags.
⇒ Ensures Acyclicity (and bounded treewidth).

16/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Properties of the Construction

Preserves the base instance I.
Maps back to the original model by the homomorphism π′.
⇒ Ensures that the query is still false.

Isomorphism between 1-neighborhoods for σ≤2 following π′.
⇒ Ensures that GF2 constraints are preserved (guarded bisimilar).
⇒ Ensures that number restrictions are preserved.

The mapping π′ is surjective for guarded pairs.
⇒ Necessary for guarded bisimulation.

Elements still occur at the same positions of Pos(σ>2):
⇒ Ensures that FR1a constraints are preserved.

They do so at most once (except in the instance):
⇒ Ensures Unicity.

The model is a tree of bags.
⇒ Ensures Acyclicity (and bounded treewidth).

16/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Table of Contents

...1 Introduction

...2 Extending GC2 Query Answering

...3 Unrestricted Query Answering

...4 Finite Query Answering

...5 Conclusion

17/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Finite Controllability

Finite controllability (FC): finite and unrestricted QA coincide.

Holds for GF but fails with number restrictions:
Consider Θ : R2 → R1,R2 ⊆ R1, and I = {A(a),R(a, b)}.
Universal infinite chase model A(a),R(a, b),R(b, c),
Finite model has to loop back, on a because of the FD:
A(a),R(a, b),R(b, c), . . . ,R(y, z),R(z, a).

⇒ For q : R(x, y) ∧ A(y), we have I,Θ |=fin q but I,Θ ̸|=unr q.
Separability not useful for finite QA (the chase is infinite):

Separability not closed under finite implication [Rosati, 2006].
⇒ QAfin(KD ∪ ID,CQ) undecidable even assuming separability.

18/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Finite Controllability

Finite controllability (FC): finite and unrestricted QA coincide.
Holds for GF but fails with number restrictions:

Consider Θ : R2 → R1,R2 ⊆ R1, and I = {A(a),R(a, b)}.
Universal infinite chase model A(a),R(a, b),R(b, c),
Finite model has to loop back, on a because of the FD:
A(a),R(a, b),R(b, c), . . . ,R(y, z),R(z, a).

⇒ For q : R(x, y) ∧ A(y), we have I,Θ |=fin q but I,Θ ̸|=unr q.

Separability not useful for finite QA (the chase is infinite):
Separability not closed under finite implication [Rosati, 2006].

⇒ QAfin(KD ∪ ID,CQ) undecidable even assuming separability.

18/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Finite Controllability

Finite controllability (FC): finite and unrestricted QA coincide.
Holds for GF but fails with number restrictions:

Consider Θ : R2 → R1,R2 ⊆ R1, and I = {A(a),R(a, b)}.
Universal infinite chase model A(a),R(a, b),R(b, c),
Finite model has to loop back, on a because of the FD:
A(a),R(a, b),R(b, c), . . . ,R(y, z),R(z, a).

⇒ For q : R(x, y) ∧ A(y), we have I,Θ |=fin q but I,Θ ̸|=unr q.
Separability not useful for finite QA (the chase is infinite):

Separability not closed under finite implication [Rosati, 2006].
⇒ QAfin(KD ∪ ID,CQ) undecidable even assuming separability.

18/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Decidable Finite QA

QAfin(GC2, CQ) not FC but decidable [Pratt-Hartmann, 2009].
⇒ Only for arity-two.

Enforce chase termination to get a finite universal model.
⇒ Too restrictive.

Restrict the language to enforce FC:
⇒ KD ∪ ID under a foreign key condition is FC [Rosati, 2011].
⇒ Also restrictive.

19/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Decidable Finite QA

QAfin(GC2, CQ) not FC but decidable [Pratt-Hartmann, 2009].
⇒ Only for arity-two.

Enforce chase termination to get a finite universal model.
⇒ Too restrictive.

Restrict the language to enforce FC:
⇒ KD ∪ ID under a foreign key condition is FC [Rosati, 2011].
⇒ Also restrictive.

19/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Decidable Finite QA

QAfin(GC2, CQ) not FC but decidable [Pratt-Hartmann, 2009].
⇒ Only for arity-two.

Enforce chase termination to get a finite universal model.
⇒ Too restrictive.

Restrict the language to enforce FC:
⇒ KD ∪ ID under a foreign key condition is FC [Rosati, 2011].
⇒ Also restrictive.

19/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result Statement

We focus on unary IDs and (general) FDs, arbitrary arity.
The implication problem for UIDs and FDs is decidable:
PTIME finite closure construction [Cosmadakis et al., 1990].
We show that FC holds up to finite closure:

.Theorem..

......

For every Φ ∪∆ ⊆ FD ∪ UID with finite closure Φ∗ ∪∆∗,
for q ∈ UCQ and I an instance s.t. I |= Φ∗,
we have I,Φ ∪∆ |=fin q iff I,∆∗ |=unr q.

⇒ QAunr(FD ∪ UID,UCQ) is in NP [Johnson and Klug, 1984] so
QAfin(FD ∪ UID,UCQ) is in NP.

20/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result Statement

We focus on unary IDs and (general) FDs, arbitrary arity.
The implication problem for UIDs and FDs is decidable:
PTIME finite closure construction [Cosmadakis et al., 1990].
We show that FC holds up to finite closure:

.Theorem..

......

For every Φ ∪∆ ⊆ FD ∪ UID with finite closure Φ∗ ∪∆∗,
for q ∈ UCQ and I an instance s.t. I |= Φ∗,
we have I,Φ ∪∆ |=fin q iff I,∆∗ |=unr q.

⇒ QAunr(FD ∪ UID,UCQ) is in NP [Johnson and Klug, 1984] so
QAfin(FD ∪ UID,UCQ) is in NP.

20/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Result Statement

We focus on unary IDs and (general) FDs, arbitrary arity.
The implication problem for UIDs and FDs is decidable:
PTIME finite closure construction [Cosmadakis et al., 1990].
We show that FC holds up to finite closure:

.Theorem..

......

For every Φ ∪∆ ⊆ FD ∪ UID with finite closure Φ∗ ∪∆∗,
for q ∈ UCQ and I an instance s.t. I |= Φ∗,
we have I,Φ ∪∆ |=fin q iff I,∆∗ |=unr q.

⇒ QAunr(FD ∪ UID,UCQ) is in NP [Johnson and Klug, 1984] so
QAfin(FD ∪ UID,UCQ) is in NP.

20/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Finite Chase

The chase is a universal model but it is infinite.
The finite chase [Rosati, 2011]: for all k, there is a
finite universal model for queries of size ≤ k.
Reuse similar elements as nulls when chasing.

N(a, b)
R(b, c)
R(c, d)
R(d, e)
R(e, f)
R(f, g)
R(g, h)
R(h, e)

R2 ⊆ R1

21/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Acyclic Queries

Reuses must not make new queries true relative to the chase.
We focus on Berge-acyclic constant-free queries of size ≤ k.

The graph G of q has its atoms as vertices.
Two atoms are connected if they share one variable.
We require G to be acyclic (including self-loops).

We will eliminate cycles later to take care of cyclic queries.

.Lemma..

......

If an extension of I satisfying ∆ has a homomorphism to the
quotient of the chase by the k-neighborhood equivalence relation
then it is universal for constant-free Berge-acyclic CQs of size ≤ k.

22/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Acyclic Queries

Reuses must not make new queries true relative to the chase.
We focus on Berge-acyclic constant-free queries of size ≤ k.

The graph G of q has its atoms as vertices.
Two atoms are connected if they share one variable.
We require G to be acyclic (including self-loops).

We will eliminate cycles later to take care of cyclic queries.
.Lemma..

......

If an extension of I satisfying ∆ has a homomorphism to the
quotient of the chase by the k-neighborhood equivalence relation
then it is universal for constant-free Berge-acyclic CQs of size ≤ k.

22/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Finite Chase and FDs

The dangerous positions of Ri are the
Rj ∈ Pos(R)\{Ri} such that the FD Rj → Ri holds.
At non-dangerous positions, reusing elements
cannot violate unary FDs.
At dangerous positions, we cannot reuse elements!

N(a, b)
R(b, c)
R(c, d)
R(d, e)
R(e, f)
R(f, g)
R(g, h)
R(h, e)

R2 ⊆ R1

R2 → R1

23/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Finite Chase and FDs and Closure

Finite closure [Cosmadakis et al., 1990]:
Whenever Ri ⊆ Sj holds then ⟨Ri⟩ ≤ ⟨Sj⟩.
Whenever Si → Sj holds then ⟨Sj⟩ ≤ ⟨Si⟩.
Inequality chains imply the reverse
inequalities in the finite.
Add the reverse dependencies for such
invertible cycles.

⇒ When we create a chain with no possiblity to
reuse, the reverse dependencies must hold.

⇒ Intuitively: glue both chains together.

N(a, b)
R(b, c)

R(c, d) R(z, b)
R(d, e) R(y, z)
R(e, f) R(x, y)
R(f, g) R(w, x)

R(g,w)

R2 ⊆ R1

R2 → R1

R2 ⊆ R1

R1 → R2

24/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Finite Chase and FDs and Closure

Finite closure [Cosmadakis et al., 1990]:
Whenever Ri ⊆ Sj holds then ⟨Ri⟩ ≤ ⟨Sj⟩.
Whenever Si → Sj holds then ⟨Sj⟩ ≤ ⟨Si⟩.
Inequality chains imply the reverse
inequalities in the finite.
Add the reverse dependencies for such
invertible cycles.

⇒ When we create a chain with no possiblity to
reuse, the reverse dependencies must hold.

⇒ Intuitively: glue both chains together.

N(a, b)
R(b, c)

R(c, d) R(z, b)
R(d, e) R(y, z)
R(e, f) R(x, y)
R(f, g) R(w, x)

R(g,w)

R2 ⊆ R1

R2 → R1

R2 ⊆ R1

R1 → R2

24/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Locality Result
..· · ·.

· · ·

.

R(a, b)

.

S(b, c)

.

A(c,_)

.

R(c, d)

.

S(d, e)

.

A(e,_)

.

R(e, g)

.

S(g, i)

.

T(g,_)

.

T(_,g)

.

T(d, f)

.

R(_, f)

.

S(f,_)

.

T(f, h)

.

R(_,h)

.

S(h,_)

.

T(h,_)

.

T(_,d)

.

T(b,_)

.

T(_,b)

.

· · ·

..· · ·.

· · ·

.

S(g′, i′)

.

T(g′,_)

.

T(_,g′)

.

R(e′,g′)

.

A(e′,_)

.

S(d′, e′)

.

R(c′,d′)

.

A(c′,_)

.

S(b′, c′)

.

R(a′,b′)

.

T(b′,_)

.

T(_,b′)

.

T(d′, f′)

.

R(_, f′)

.

S(f′,_)

.

T(f′, h′)

.

R(_,h′)

.

S(h′,_)

.

T(h′,_)

.

T(_,d′)

.

· · ·

.Lemma..

......
After chasing by k consecutive reversible UIDs, elements at
positions connected by UIDs have the same k-neighborhood.

25/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

General Scheme

Start with the instance I.
Chase by the IDs.
Reuse elements at non-dangerous positions.
Connect together elements at dangerous positions.
⇒ Use the previous lemma to justify they can be paired.

Connect elements within an invertible cycle:
⇒ We say that (Ri ⊆ Sj) ↣ (Sp ⊆ Tq) if Sp → Sj.
⇒ An invertible path is a cycle of ↣.
⇒ Chase by the ID of SCCs of ↣ in topological order.

26/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

General Scheme

Start with the instance I.
Chase by the IDs.
Reuse elements at non-dangerous positions.
Connect together elements at dangerous positions.
⇒ Use the previous lemma to justify they can be paired.

Connect elements within an invertible cycle:
⇒ We say that (Ri ⊆ Sj) ↣ (Sp ⊆ Tq) if Sp → Sj.
⇒ An invertible path is a cycle of ↣.
⇒ Chase by the ID of SCCs of ↣ in topological order.

26/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Higher-Arity FDs

Non-dangerous positions defined w.r.t. unary FDs.
The non-unary FDs are not considered in the finite closure.
Reusing the same patterns may violate higher-arity FDs:
⇒ Must make many patterns out of limited reusable elements.
⇒ Ex: R(x1, a1, b1), R(x2, a2, b2), R(x3, a1, b2), R(x4, a2, b1).
⇒ If R2 → R3 then the non-dangerous positions have a unary key

so higher-arity FDs are subsumed by UFDs.

⇒ We need to justify that we can make many patterns out of a
limited number of elements to reuse.
⇒ Formally: from N elements, for any K, make NK patterns

(unless there is a unary key preventing this).

27/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Higher-Arity FDs

Non-dangerous positions defined w.r.t. unary FDs.
The non-unary FDs are not considered in the finite closure.
Reusing the same patterns may violate higher-arity FDs:
⇒ Must make many patterns out of limited reusable elements.
⇒ Ex: R(x1, a1, b1), R(x2, a2, b2), R(x3, a1, b2), R(x4, a2, b1).
⇒ If R2 → R3 then the non-dangerous positions have a unary key

so higher-arity FDs are subsumed by UFDs.
⇒ We need to justify that we can make many patterns out of a

limited number of elements to reuse.
⇒ Formally: from N elements, for any K, make NK patterns

(unless there is a unary key preventing this).

27/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Dense Models

The possibility to find such patterns is a consequence of:
.Lemma..

......

For any FDs Φ over R, there exists D ≤ |R| such that
either R has a unary key, or there exists a finite model of Φ
with O(N) elements and O(ND/(D−1)) facts.

First, collapse any UFD cycles of R.
Then, consider the UFD “roots” T of R (there are ≥ 2) such
that ∀t ∈ T, ∄s ∈ Pos(R), s → t, and reduce to the case:

the attributes of R are the non-empty parts of T.
the roots that determine X ∈ Pos(R) are exactly those of X.
the non-unary FDs are as pessimistic as possible.

Finally, construct the desired model on this relation.

28/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Dense Models

The possibility to find such patterns is a consequence of:
.Lemma..

......

For any FDs Φ over R, there exists D ≤ |R| such that
either R has a unary key, or there exists a finite model of Φ
with O(N) elements and O(ND/(D−1)) facts.

First, collapse any UFD cycles of R.
Then, consider the UFD “roots” T of R (there are ≥ 2) such
that ∀t ∈ T, ∄s ∈ Pos(R), s → t, and reduce to the case:

the attributes of R are the non-empty parts of T.
the roots that determine X ∈ Pos(R) are exactly those of X.
the non-unary FDs are as pessimistic as possible.

Finally, construct the desired model on this relation.

28/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Expanding Cycles

We need to enlarge cycles of the model, preserving constraints.

Group G generated by X is k-acyclic if there is no word w of
length ≤ k of X s.t. w1 · · ·wn = e unless wi = w−1

i+1 for some i.
Build the product of the model with a finite acyclic group:

Let L(M) = {lFi | F ∈ M, 1 ≤ i ≤ |F|}.
Let G be a k-acyclic group generated by L(M).
For F = R(a) ∈ M, g ∈ G, create R((a1, glF1), . . . , (a|R|, glF|R|)).
Ex: M = {R(a, a)},M′ = {R((a, e), (a, g)),R((a, g), (a, e))}.

Properties:
⇒ Can be adjusted to preserve the instance as-is.
⇒ Preserves unary overlaps so preserves UIDs.
⇒ Homomorphism back to M so no new queries are true.
⇒ Cycles in M′ of size ≤ k must take one edge back-and-forth.
⇒ This may violate FDs!

29/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Expanding Cycles

We need to enlarge cycles of the model, preserving constraints.
Group G generated by X is k-acyclic if there is no word w of
length ≤ k of X s.t. w1 · · ·wn = e unless wi = w−1

i+1 for some i.

Build the product of the model with a finite acyclic group:
Let L(M) = {lFi | F ∈ M, 1 ≤ i ≤ |F|}.
Let G be a k-acyclic group generated by L(M).
For F = R(a) ∈ M, g ∈ G, create R((a1, glF1), . . . , (a|R|, glF|R|)).
Ex: M = {R(a, a)},M′ = {R((a, e), (a, g)),R((a, g), (a, e))}.

Properties:
⇒ Can be adjusted to preserve the instance as-is.
⇒ Preserves unary overlaps so preserves UIDs.
⇒ Homomorphism back to M so no new queries are true.
⇒ Cycles in M′ of size ≤ k must take one edge back-and-forth.
⇒ This may violate FDs!

29/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Expanding Cycles

We need to enlarge cycles of the model, preserving constraints.
Group G generated by X is k-acyclic if there is no word w of
length ≤ k of X s.t. w1 · · ·wn = e unless wi = w−1

i+1 for some i.
Build the product of the model with a finite acyclic group:

Let L(M) = {lFi | F ∈ M, 1 ≤ i ≤ |F|}.
Let G be a k-acyclic group generated by L(M).
For F = R(a) ∈ M, g ∈ G, create R((a1, glF1), . . . , (a|R|, glF|R|)).
Ex: M = {R(a, a)},M′ = {R((a, e), (a, g)),R((a, g), (a, e))}.

Properties:
⇒ Can be adjusted to preserve the instance as-is.
⇒ Preserves unary overlaps so preserves UIDs.
⇒ Homomorphism back to M so no new queries are true.
⇒ Cycles in M′ of size ≤ k must take one edge back-and-forth.
⇒ This may violate FDs!

29/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Expanding Cycles

We need to enlarge cycles of the model, preserving constraints.
Group G generated by X is k-acyclic if there is no word w of
length ≤ k of X s.t. w1 · · ·wn = e unless wi = w−1

i+1 for some i.
Build the product of the model with a finite acyclic group:

Let L(M) = {lFi | F ∈ M, 1 ≤ i ≤ |F|}.
Let G be a k-acyclic group generated by L(M).
For F = R(a) ∈ M, g ∈ G, create R((a1, glF1), . . . , (a|R|, glF|R|)).
Ex: M = {R(a, a)},M′ = {R((a, e), (a, g)),R((a, g), (a, e))}.

Properties:
⇒ Can be adjusted to preserve the instance as-is.
⇒ Preserves unary overlaps so preserves UIDs.
⇒ Homomorphism back to M so no new queries are true.
⇒ Cycles in M′ of size ≤ k must take one edge back-and-forth.
⇒ This may violate FDs!

29/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Expanding Cycles With FDs

Our models have a homomorphism h to IΘ/≡k.
Overlaps are between facts with the same h-image.
Adjust the product M × G with L(IΘ/≡k) not L(M):
⇒ If F = R(a, b, c) and F′ = R(a, b, d) then h(F) = h(F′) and the

FD R1 → R2 cannot be violated.
⇒ Any cycles in M × G are mapped by the homomorphism

(x, g) 7→ (h(x), g) to cycles in the “regular” product IΘ/≡k ×G.
⇒ In other words:

M satisfies the right dependencies (including FDs),
IΘ/≡k × G satisfies the right queries,
M × G satisfies both.

More work required to preserve the instance.

30/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Table of Contents

...1 Introduction

...2 Extending GC2 Query Answering

...3 Unrestricted Query Answering

...4 Finite Query Answering

...5 Conclusion

31/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Summary
We have shown the decidability of:

QA•(UKD ∪ GC2 ∪ FR1a,CQ)

QAunr(FD ∪ GC2 ∪ FR1,CQ)

QAfin(FD ∪ UID,UCQ)

Further work:
Derive upper and lower complexity bounds.
For unrestricted QA:
⇒ Find a more homogeneous fragment than GF2 ∪ FR1.
⇒ Must limit the interaction with FD and number restrictions.

For finite QA:
⇒ What about FD ∪ GC2 ∪ FR1?
⇒ Can we generalize the proof beyond UIDs?

Thanks for your attention!

32/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Summary
We have shown the decidability of:

QA•(UKD ∪ GC2 ∪ FR1a,CQ)

QAunr(FD ∪ GC2 ∪ FR1,CQ)

QAfin(FD ∪ UID,UCQ)

Further work:
Derive upper and lower complexity bounds.
For unrestricted QA:
⇒ Find a more homogeneous fragment than GF2 ∪ FR1.
⇒ Must limit the interaction with FD and number restrictions.

For finite QA:
⇒ What about FD ∪ GC2 ∪ FR1?
⇒ Can we generalize the proof beyond UIDs?

Thanks for your attention!

32/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

Summary
We have shown the decidability of:

QA•(UKD ∪ GC2 ∪ FR1a,CQ)

QAunr(FD ∪ GC2 ∪ FR1,CQ)

QAfin(FD ∪ UID,UCQ)

Further work:
Derive upper and lower complexity bounds.
For unrestricted QA:
⇒ Find a more homogeneous fragment than GF2 ∪ FR1.
⇒ Must limit the interaction with FD and number restrictions.

For finite QA:
⇒ What about FD ∪ GC2 ∪ FR1?
⇒ Can we generalize the proof beyond UIDs?

Thanks for your attention!

32/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

References I

Barany, V., Gottlob, G., and Otto, M. (2010).
Querying the guarded fragment.
In LICS.
Calì, A., Gottlob, G., and Kifer, M. (2013).
Taming the infinite chase: Query answering under expressive
relational constraints.
JAIR, 48.
Calì, A., Lembo, D., and Rosati, R. (2003).
On the decidability and complexity of query answering over
inconsistent and incomplete databases.
In PODS.

33/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

References II

Cosmadakis, S. S., Kanellakis, P. C., and Vardi, M. Y. (1990).
Polynomial-time implication problems for unary inclusion
dependencies.
JACM, 37(1).

Johnson, D. S. and Klug, A. C. (1984).
Testing containment of conjunctive queries under functional
and inclusion dependencies.
JCSS, 28(1).

Pratt-Hartmann, I. (2009).
Data-complexity of the two-variable fragment with counting
quantifiers.
Inf. Comput., 207(8).

34/35

. . . .
Introduction

. . . .
Extending GC2 Query Answering

.
Unrestricted Query Answering

.
Finite Query Answering

. . . .
Conclusion

References III

Rosati, R. (2006).
On the decidability and finite controllability of query
processing in databases with incomplete information.
In SIGMOD.
Rosati, R. (2011).
On the finite controllability of conjunctive query answering in
databases under open-world assumption.
JCSS, 77(3).

Trakhtenbrot, B. A. (1963).
Impossibility of an algorithm for the decision problem in finite
classes.
AMS Transl. Series 2.

35/35

	Introduction
	Extending GC 2 Query Answering
	Unrestricted Query Answering
	Finite Query Answering
	Conclusion

