Introduction	Extending GC ² Query Answering	Unrestricted Query Answering
0000	0000	00000

Finite Query Answering

Conclusion 0000

Open-World Query Answering Under Number Restrictions

Antoine Amarilli^{1,2}

¹Télécom ParisTech, Paris, France

 $^2 {\sf University}$ of Oxford, Oxford, United Kingdom

January 17, 2014

Unrestricted Query Answering

Finite Query Answering

Conclusion

Open-World Query Answering

• Instance I

 $\{R(a, b), T(b)\}$

Unrestricted Query Answering

Finite Query Answering

Conclusion

Open-World Query Answering

Instance I {R(a, b), T(b)}
 Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y) (here: fragments of first-order logic with no constants)

Unrestricted Query Answering

Finite Query Answering

Conclusion

Open-World Query Answering

- Instance I {R(a, b), T(b)}
 Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y) (here: fragments of first-order logic with no constants)
 Query q of a class Q ∃x S(x) ∧ T(x)
 - (here: UCQ or CQ: (union of) Boolean conjunctive queries)

IntroductionExtending GC2 Query Answering00000000

Unrestricted Query Answering

Finite Query Answering

Conclusion

Open-World Query Answering

Instance I {R(a, b), T(b)}
Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y) (here: fragments of first-order logic with no constants)
Query q of a class Q ∃x S(x) ∧ T(x)

(here: UCQ or CQ: (union of) Boolean conjunctive queries)

 $\Rightarrow \mathsf{QA}_{\mathsf{unr}}(\mathsf{F},\mathsf{Q}): \text{ does } q \text{ hold in every } J \supseteq I \text{ satisfying } \Theta?$ (written $I, \Theta \models_{\mathrm{unr}} q$)

Unrestricted Query Answering

Finite Query Answering

Conclusion

Open-World Query Answering

- Instance I {R(a, b), T(b)}
 Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y) (here: fragments of first-order logic with no constants)
 Query q of a class Q ∃x S(x) ∧ T(x)
 - (here: UCQ or CQ: (union of) Boolean conjunctive queries)
- $\Rightarrow \mathsf{QA}_{\mathsf{unr}}(\mathsf{F},\mathsf{Q}): \text{ does } q \text{ hold in every } J \supseteq I \text{ satisfying } \Theta?$ (written $I, \Theta \models_{\mathrm{unr}} q$)
- $\Rightarrow \mathsf{QA}_{\mathsf{fin}}(\mathsf{F},\mathsf{Q}): \text{ does } q \text{ hold in every finite } J \supseteq I \text{ satisfying } \Theta?$ (written $I, \Theta \models_{\mathrm{fin}} q$)

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Open-World Query Answering

- Instance I {R(a, b), T(b)}
 Constraints Θ of a fragment F ∀xy R(x, y) ⇒ S(y) (here: fragments of first-order logic with no constants)
 Query q of a class Q ∃x S(x) ∧ T(x)
 - (here: UCQ or CQ: (union of) Boolean conjunctive queries)
- $\Rightarrow \mathsf{QA}_{\mathsf{unr}}(\mathsf{F},\mathsf{Q}): \text{ does } q \text{ hold in every } J \supseteq I \text{ satisfying } \Theta?$ (written $I, \Theta \models_{\mathrm{unr}} q$)
- $\Rightarrow \mathsf{QA}_{\mathsf{fin}}(\mathsf{F},\mathsf{Q}): \text{ does } q \text{ hold in every finite } J \supseteq I \text{ satisfying } \Theta?$ (written $I, \Theta \models_{\mathrm{fin}} q$)
- ⇒ Equivalently: is there a (finite) model of $I \land \Theta \land \neg q$?

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Dependencies DEP

 $\tau: \forall \mathbf{x}(\phi(\mathbf{x}) \Rightarrow \exists \mathbf{y} A(\mathbf{x}, \mathbf{y}))$

Unrestricted Query Answering

Finite Query Answering

Conclusion

Dependencies DEP

$$\tau: \forall \mathbf{x}(\phi(\mathbf{x}) \Rightarrow \exists \mathbf{y} A(\mathbf{x}, \mathbf{y}))$$

- Tuple-Generating Dependencies TGD: A is a regular atom.
 - Inclusion Dependencies ID:
 - $\Rightarrow \phi$ is an atom, no repeated variables.
 - Unary Inclusion Dependencies UID:
 - \Rightarrow Only one exported variable (occurring in ϕ and A).
 - $\Rightarrow \mathsf{Example:} \ \forall e \, b, \, \mathrm{Boss}(e, b) \Rightarrow \exists b' \, \mathrm{Boss}(b, b').$
 - \Rightarrow Written $Boss^2 \subseteq Boss^1$.

Unrestricted Query Answering

Finite Query Answering

Conclusion

Dependencies DEP

$$\tau: \forall \mathbf{x}(\phi(\mathbf{x}) \Rightarrow \exists \mathbf{y} A(\mathbf{x}, \mathbf{y}))$$

- Tuple-Generating Dependencies TGD: A is a regular atom.
 - Inclusion Dependencies ID:
 - $\Rightarrow \phi$ is an atom, no repeated variables.
 - Unary Inclusion Dependencies UID:
 - \Rightarrow Only one exported variable (occurring in ϕ and A).
 - $\Rightarrow \mathsf{Example:} \ \forall e \, b, \, \mathrm{Boss}(e, b) \Rightarrow \exists b' \, \mathrm{Boss}(b, b').$
 - \Rightarrow Written $Boss^2 \subseteq Boss^1$.
- Equality-Generating Dependencies EGD: A is an equality.
 - Functional Dependencies FD:
 - $\Rightarrow \forall \mathbf{x}\mathbf{y} \ \left(S(\mathbf{x}) \land S(\mathbf{y}) \land \bigwedge_{l \in L} x_l = y_l \right) \Rightarrow x_r = y_r.$
 - Unary Functional Dependencies: |L| = 1.
 - $\Rightarrow \mathsf{Example:} \ \forall e \, e' \, b \, b', \, \mathrm{Boss}(e, b), \mathrm{Boss}(e', b'), e = e' \Rightarrow b = b'.$
 - \Rightarrow Written $Boss^1 \rightarrow Boss^2$.
 - Key Dependencies: $\bigwedge_{r \in Pos(R)} R^K \to R^r$ for some $K \subseteq Pos(R)$.
 - Unary Key Dependencies: $|\mathbf{K}| = 1$.

Introduction 0000	Extending GC^2 Query Answering 0000	Unrestricted Query Answering	Finite Query Answering	Conclusion
logics				

- Guarded Fragment GF:
 - \Rightarrow Contains regular atoms and equality atoms.
 - \Rightarrow Closed under Boolean connectives \land , \lor , \neg , etc.
 - ⇒ Quantification: given an atom $A(\mathbf{x}, \mathbf{y})$ and formula $\phi(\mathbf{x}, \mathbf{y})$ with free variables exactly as indicated:
 - $\forall \mathbf{x} (A \Rightarrow \phi).$
 - $\exists \mathbf{x} (A \land \phi).$

Introduction	Extending GC ² Query Answering	Unrestricted Query Answering	Finite Query Answering	Conclusion 0000
logics				

- Guarded Fragment GF:
 - \Rightarrow Contains regular atoms and equality atoms.
 - \Rightarrow Closed under Boolean connectives \land , \lor , \neg , etc.
 - ⇒ Quantification: given an atom $A(\mathbf{x}, \mathbf{y})$ and formula $\phi(\mathbf{x}, \mathbf{y})$ with free variables exactly as indicated:
 - $\forall \mathbf{x} (A \Rightarrow \phi).$
 - $\exists \mathbf{x} (A \land \phi).$
- Two-Variable Guarded Fragment GF²:
 - \Rightarrow Only two distinct variables.
 - \Rightarrow Only unary and binary predicates of the signature ($\sigma_{\leq 2}$).

Introduction	Extending GC ² Query Answering	Unrestricted Query Answering	Finite Query Answering	Conclusion
Logics				

- Guarded Fragment GF:
 - \Rightarrow Contains regular atoms and equality atoms.
 - \Rightarrow Closed under Boolean connectives \land , \lor , \neg , etc.
 - ⇒ Quantification: given an atom $A(\mathbf{x}, \mathbf{y})$ and formula $\phi(\mathbf{x}, \mathbf{y})$ with free variables exactly as indicated:
 - $\forall \mathbf{x} (A \Rightarrow \phi).$
 - $\exists \mathbf{x} (A \land \phi).$
- Two-Variable Guarded Fragment GF²:
 - \Rightarrow Only two distinct variables.
 - \Rightarrow Only unary and binary predicates of the signature ($\sigma_{\leq 2}$).
- Two-Variable Guarded Fragment with Counting GC²:
 - ⇒ Quantifiers $\exists^{\leq c}y$, A(x, y) and $\exists^{\geq c}y$, A(x, y) with A a binary atom and $c \in \mathbb{N}$.
 - ⇒ Example: $\forall e \exists^{\leq 1} b$, Boss(e, b).

Introduction	Extending GC^2	Query Answering
0000	0000	

Finite Query Answering

Conclusion 0000

General Results

• Negative results:

- $QA_{\bullet}(FO, CQ^{-})$ is undecidable [Trakhtenbrot, 1963].
- $QA_{\bullet}(TGD, CQ^{-})$ is undecidable [Calì et al., 2013].
- $QA_{\bullet}(UKD \cup BID, CQ)$ is undecidable [Calì et al., 2003].

Introduction	Extending GC^2	Query Answering
0000	0000	

Finite Query Answering

Conclusion 0000

General Results

• Negative results:

- $QA_{\bullet}(FO, CQ^{-})$ is undecidable [Trakhtenbrot, 1963].
- $QA_{\bullet}(TGD, CQ^{-})$ is undecidable [Calì et al., 2013].
- $QA_{\bullet}(UKD \cup BID, CQ)$ is undecidable [Calì et al., 2003].

• Positive results:

- QA_•(GF, UCQ) is in 2EXPTIME [Barany et al., 2010].
- $QA_{\bullet}(GC^2, CQ)$ is decidable [Pratt-Hartmann, 2009].

Introduction	Extending GC^2	Query Answering
0000	0000	

Finite Query Answering

Conclusion

General Results

• Negative results:

- $QA_{\bullet}(FO, CQ^{-})$ is undecidable [Trakhtenbrot, 1963].
- $QA_{\bullet}(TGD, CQ^{-})$ is undecidable [Calì et al., 2013].
- $QA_{\bullet}(UKD \cup BID, CQ)$ is undecidable [Calì et al., 2003].

• Positive results:

- QA_•(GF, UCQ) is in 2EXPTIME [Barany et al., 2010].
- $QA_{\bullet}(GC^2, CQ)$ is decidable [Pratt-Hartmann, 2009].
- ⇒ Can we have both high-arity constraints and expressive low-arity constraints, including equality constraints?

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Table of Contents

2 Extending GC² Query Answering

3 Unrestricted Query Answering

4 Finite Query Answering

5 Conclusion

ing Unrestricted Query Answering 00000 Finite Query Answering

Conclusion 0000

Result Statement

- Frontier-One Dependencies FR1:
 - \Rightarrow Subset of TGD which includes UID.
 - \Rightarrow One exported variable.
 - \Rightarrow No repeated variable in the head.

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Result Statement

- Frontier-One Dependencies FR1:
 - \Rightarrow Subset of TGD which includes UID.
 - \Rightarrow One exported variable.
 - \Rightarrow No repeated variable in the head.
- Reification \mathcal{R} of a structure M from σ to (extended) $\sigma_{\leq 2}$:
 - ⇒ Add binary predicates R_i for every $i \in Pos(R)$ and $R \in \sigma_{>2}$.
 - ⇒ Replace facts $R(\mathbf{a})$ of > 2-ary predicates by a fresh element f and $R_i(f, a_i)$ for all $i \in Pos(R)$.
 - ⇒ Example: R(a, a, b) becomes $R_1(f, a), R_2(f, a), R_3(f, b)$.

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Result Statement

- Frontier-One Dependencies FR1:
 - \Rightarrow Subset of TGD which includes UID.
 - \Rightarrow One exported variable.
 - \Rightarrow No repeated variable in the head.
- Reification \mathcal{R} of a structure M from σ to (extended) $\sigma_{\leq 2}$:
 - ⇒ Add binary predicates R_i for every $i \in Pos(R)$ and $R \in \sigma_{>2}$.
 - ⇒ Replace facts $R(\mathbf{a})$ of > 2-ary predicates by a fresh element f and $R_i(f, a_i)$ for all $i \in Pos(R)$.
 - ⇒ Example: R(a, a, b) becomes $R_1(f, a), R_2(f, a), R_3(f, b)$.
- Frontier-One Acyclic Dependencies FR1^a:
 - \Rightarrow The Gaifman graph of the reification of the body is acyclic.

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Result Statement

- Frontier-One Dependencies FR1:
 - \Rightarrow Subset of TGD which includes UID.
 - \Rightarrow One exported variable.
 - \Rightarrow No repeated variable in the head.
- Reification \mathcal{R} of a structure M from σ to (extended) $\sigma_{\leq 2}$:
 - ⇒ Add binary predicates R_i for every $i \in Pos(R)$ and $R \in \sigma_{>2}$.
 - ⇒ Replace facts $R(\mathbf{a})$ of > 2-ary predicates by a fresh element f and $R_i(f, a_i)$ for all $i \in Pos(R)$.
 - ⇒ Example: R(a, a, b) becomes $R_1(f, a), R_2(f, a), R_3(f, b)$.
- Frontier-One Acyclic Dependencies FR1^a:
 - \Rightarrow The Gaifman graph of the reification of the body is acyclic.

Theorem

 $QA_{\bullet}(UKD \cup GC^2 \cup FR1^a, CQ)$ is decidable.

Introduction Extending GC² Query Answering Unrestricted Query Answering Finite Query Answering Conclusion

- Encode constraints from $\mathsf{UKD} \cup \mathsf{GC}^2 \cup \mathsf{FR1}^a$ to GC^2 .
- Show that QA under the original constraints is equivalent to QA for the encoded constraints (and decide it as GC² QA):
 - ⇒ The reification of counterexample models should be counterexample models for the encoding (easy).
 - ⇒ Counterexample models should be decodable from counterexample models for the encoded contraints (harder).

Introduction Extending GC² Query Answering Unrestricted Query Answering Finite Query Answering Conclusion

- Encode constraints from UKD \cup GC² \cup FR1^a to GC².
- Show that QA under the original constraints is equivalent to QA for the encoded constraints (and decide it as GC² QA):
 - ⇒ The reification of counterexample models should be counterexample models for the encoding (easy).
 - ⇒ Counterexample models should be decodable from counterexample models for the encoded contraints (harder).
- Well-formedness constraints $wf(\sigma)$ of GC^2 for the encoding:
 - ⇒ Elements are regular elements or *R*-facts for some $R \in \sigma_{>2}$.
 - \Rightarrow The R_i 's connect regular elements and R-fact elements.
 - \Rightarrow Every fact element for R has exactly one of each R_i .
 - ⇒ The $R \in \sigma_{\leq 2}$ connect regular elements.

Introduction 0000	Extending GC ² Query Answering	Unrestricted Query Answering	Finite Query Answering	Conclusion
Encodi	ng			

• Encoding a key $\phi \in \mathsf{UKD}$ to $\mathcal{R}(\phi)$:

 $\Rightarrow "R^{i} \text{ is a key" encoded to } \forall x \exists \leq 1 y, R_{i}(y, x).$

 $\Rightarrow \ \mathcal{R}(\Phi) \text{ is clearly a } \mathsf{GC}^2 \text{ constraint.}$

Introduction 0000	Extending GC ² Query Answering	Unrestricted Query Answering	Finite Query Answering	Conclusion
Encodi	ng			

- Encoding a key φ ∈ UKD to R(φ):
 ⇒ "Rⁱ is a key" encoded to ∀x∃^{≤1}y, R_i(y, x).
 ⇒ R(Φ) is clearly a GC² constraint.
- Encoding a high-arity constraint $\delta \in FR1^a$ to $\mathcal{R}(\delta)$:
 - ⇒ Apply reification to the body and modify the head if $\in \sigma_{>2}$.
 - \Rightarrow Example:
 - $\delta: \forall xyz, S(y, x) \land R(x, x, z) \Rightarrow \exists ww', R(x, w, w')$ $\Rightarrow \mathcal{R}(\delta): \forall x ((\exists y, S(y, x)) \land (\exists f, R_1(f, x) \land R_2(f, x) \land (\exists z, R_3(f, z)))$ $\Rightarrow \exists f, R_1(f, x)).$
 - $\Rightarrow \mathcal{R}(\Delta)$ expressible as a GF^2 constraint.

Introduction 0000	Extending GC ² Query Answering	Unrestricted Query Answering	Finite Query Answering	Conclusion
Encodi	ng			

- Encoding a key φ ∈ UKD to R(φ):
 ⇒ "Rⁱ is a key" encoded to ∀x∃^{≤1}y, R_i(y, x).
 ⇒ R(Φ) is clearly a GC² constraint.
- Encoding a high-arity constraint $\delta \in FR1^a$ to $\mathcal{R}(\delta)$:
 - ⇒ Apply reification to the body and modify the head if $\in \sigma_{>2}$. ⇒ Example:
 - $\delta : \forall xyz, S(y, x) \land R(x, x, z) \Rightarrow \exists ww', R(x, w, w')$ $\Rightarrow \mathcal{R}(\delta) : \forall x ((\exists y, S(y, x)) \land (\exists f, R_1(f, x) \land R_2(f, x) \land (\exists z, R_3(f, z)))$ $\Rightarrow \exists f, R_1(f, x)).$
 - $\Rightarrow \mathcal{R}(\Delta)$ expressible as a GF^2 constraint.
- Encode the instance I to $\mathcal{R}(I)$ straightforwardly.
- Encode the query $q \in CQ$ to $\mathcal{R}(q)$ straightforwardly.
- Leave the constraints $\Theta \subseteq GC^2$ unchanged.

Finite Query Answering

Conclusion 0000

Concluding the Proof

- Take an extension J of I satisfying $\Delta,\,\Theta,\,\Phi$ and violating q:
- $\Rightarrow \mathcal{R}(J) \text{ is an extension of } \mathcal{R}(I) \text{ satisfying } \mathcal{R}(\Delta), \, \Theta, \, \mathcal{R}(\Phi) \text{ and } wf(\sigma) \text{ and violating } \mathcal{R}(q).$

Finite Query Answering

Conclusion 0000

Concluding the Proof

- Take an extension J of I satisfying $\Delta,\,\Theta,\,\Phi$ and violating q:
- $\Rightarrow \mathcal{R}(J) \text{ is an extension of } \mathcal{R}(I) \text{ satisfying } \mathcal{R}(\Delta), \, \Theta, \, \mathcal{R}(\Phi) \text{ and } wf(\sigma) \text{ and violating } \mathcal{R}(q).$
 - Conversely, take an extension of $\mathcal{R}(I)$ satisfying $\mathcal{R}(\Delta)$, Θ , $\mathcal{R}(\Phi)$ and wf(σ) and violating $\mathcal{R}(q)$.
- ⇒ Need to argue that, w.l.o.g., there are no duplicate facts (f and f' representing R(a, b, c)).
- \Rightarrow Decode an extension of I satisfying $\Delta,\,\Theta,\,\Phi$ and violating q.

Finite Query Answering

Conclusion 0000

Concluding the Proof

- Take an extension J of I satisfying $\Delta,\,\Theta,\,\Phi$ and violating q:
- $\Rightarrow \mathcal{R}(J) \text{ is an extension of } \mathcal{R}(I) \text{ satisfying } \mathcal{R}(\Delta), \, \Theta, \, \mathcal{R}(\Phi) \text{ and } wf(\sigma) \text{ and violating } \mathcal{R}(q).$
 - Conversely, take an extension of $\mathcal{R}(I)$ satisfying $\mathcal{R}(\Delta)$, Θ , $\mathcal{R}(\Phi)$ and wf(σ) and violating $\mathcal{R}(q)$.
- ⇒ Need to argue that, w.l.o.g., there are no duplicate facts (f and f' representing R(a, b, c)).
- \Rightarrow Decode an extension of I satisfying $\Delta,\,\Theta,\,\Phi$ and violating q.
- $\Rightarrow \ \mathsf{Decide} \ \mathsf{QA}_{\bullet}(\mathsf{UKD} \cup \mathsf{GC}^2 \cup \mathsf{FR1^a},\mathsf{CQ}) \ \mathsf{from} \ \mathsf{QA}_{\bullet}(\mathsf{GC}^2,\mathsf{CQ}).$

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Table of Contents

Introduction

Extending GC² Query Answering

Onrestricted Query Answering

4 Finite Query Answering

5 Conclusion

Extending GC^2 Query Answering Unrestricted Query Answering Finite Query Answering ••••••

The Chase and Separability

- Universal model: extension of I satisfying Θ and violating every q unless $I, \Theta \models_{unr} q$.
- The chase I^{Θ} : infinite universal model for TGD and UCQ:
 - ⇒ Whenever a TGD is violated, create the missing head fact.
 - Always use fresh existential witnesses. \Rightarrow

Introduction Extending GC² Query Answering 0000 Unrestricted Query Answering •0000 Finite Query Answering

Conclusion 0000

The Chase and Separability

- Universal model: extension of *I* satisfying Θ and violating every *q* unless *I*, Θ |=_{unr} *q*.
- The chase I^{Θ} : infinite universal model for TGD and UCQ:
 - ⇒ Whenever a TGD is violated, create the missing head fact.
 ⇒ Always use fresh existential witnesses.
- $\Phi \cup \Delta \subseteq \mathsf{EGD} \cup \mathsf{TGD}$ is separable if $I \models \Phi$ implies $I^{\Delta} \models \Phi$.
- $\Rightarrow~\mathsf{QA}_{\mathsf{unr}}(\mathsf{EGD} \cup (\mathsf{TGD} \cap \mathsf{GF}),\mathsf{UCQ})$ is decidable in this case:
 - Check if $I \models \Phi$
 - $\bullet~ \mbox{Decide}~ QA_{unr}(TGD\cap GF,UCQ)$ problem ignoring EGDs.
- $\Rightarrow \mathsf{QA}_{\mathsf{unr}}(\mathsf{FD} \cup \mathsf{FR1^a},\mathsf{UCQ}) \text{ is } \mathsf{decidable} \text{ (always separable)}.$

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Result and Intuition

Theorem

 $\mathsf{QA}_{\mathsf{unr}}(\mathsf{FD} \cup \mathsf{GC}^2 \cup \mathsf{FR1}, \mathsf{CQ}) \text{ is decidable.}$

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Result and Intuition

Theorem

$\mathsf{QA}_{\mathsf{unr}}(\mathsf{FD} \cup \mathsf{GC}^2 \cup \mathsf{FR1}, \mathsf{CQ}) \text{ is decidable.}$

Idea: counterexample models M for $GC^2 \cup FR1^a$ satisfy w.l.o.g.:

- Unicity. There are no two facts $R(\mathbf{a})$ and $R(\mathbf{b})$ with $a_i = b_i$ for $R \in \sigma_{>2}$ unless both are in the instance *I*.
 - \Rightarrow Any FD violation for $\sigma_{>2}$ must occur in *I*.
 - \Rightarrow FDs can be checked on *I* and ignored afterwards.

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Result and Intuition

Theorem

$\mathsf{QA}_{\mathsf{unr}}(\mathsf{FD} \cup \mathsf{GC}^2 \cup \mathsf{FR1}, \mathsf{CQ}) \text{ is decidable.}$

Idea: counterexample models M for $GC^2 \cup FR1^a$ satisfy w.l.o.g.:

- Unicity. There are no two facts $R(\mathbf{a})$ and $R(\mathbf{b})$ with $a_i = b_i$ for $R \in \sigma_{>2}$ unless both are in the instance *I*.
 - \Rightarrow Any FD violation for $\sigma_{>2}$ must occur in *I*.
 - \Rightarrow FDs can be checked on *I* and ignored afterwards.

Acyclicity. The Gaifman graph of $\mathcal{R}(M)$ is acyclic except for *I*:

- \Rightarrow FR1\FR1^a dependencies can only match on *I*.
- \Rightarrow Convert FR1 to FR1^a (enumerate matches).

 $\Rightarrow \mathsf{Reduce} \ \mathsf{QA}_{\mathsf{unr}}(\mathsf{FD} \cup \mathsf{GC}^2 \cup \mathsf{FR1}, \mathsf{CQ}) \text{ to } \mathsf{QA}_{\mathsf{unr}}(\mathsf{GC}^2 \cup \mathsf{FR1^a}, \mathsf{CQ}).$

Finite Query Answering

Conclusion

Unraveling the Counterexample Model

Extending GC^2 Query Answering

Unravelling *M* to a suitable *M'* (with mapping π'):

- Add dummy binary facts covering and connecting all elements.
- Decompose the facts in bags:
 - one bag per fact of $\sigma_{>2}\text{,}$
 - one bag per guarded pair $\{a, b\}$ with all unary and binary facts.

Finite Query Answering

Conclusion

Unraveling the Counterexample Model

Extending GC^2 Query Answering

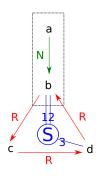
Unravelling *M* to a suitable *M'* (with mapping π'):

- Add dummy binary facts covering and connecting all elements.
- Decompose the facts in bags:
 - one bag per fact of $\sigma_{>2}$,
 - one bag per guarded pair $\{a, b\}$ with all unary and binary facts.
- Build M' as a tree of bags by the following inductive process:
 - \Rightarrow The root bag of M' is I.
 - ⇒ The children of $t \in M'$ are, for every $a \in dom(t)$:
 - For every $\sigma_{\leq 2}$ -bag t' of M containing $\pi'(a)$: An isomorphic copy of t' in M', with a and a fresh element.
 - For every $R^i \in Pos(\sigma_{>2})$ such that $\pi'(a)$ occurs at R^i in M, if a does not occur at R^i in M':

A $\sigma_{>2}$ -bag $\{R(\mathbf{b})\}$ with \mathbf{b} fresh except $b_i = a$.

 $\Rightarrow\,$ Do not consider in a bag the previous element used to reach it.

Introduction 0000	Extending GC ² Query Answering 0000	Unrestricted Query Answering	Finite Query Answering	Conclusio
Examp	le			



 $I = \{N(a, b)\} \\ M = I \cup \{R(b, c), \\ R(c, d), R(d, b), \\ S(b, b, d)\}$

Introduction	Exte
0000	000

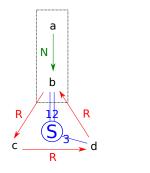
tending GC² Query Answering

Unrestricted Query Answering $\circ \circ \circ \bullet \circ$

Finite Query Answering

Conclusion 0000

Example



 $I = \{N(a, b)\} \\ M = I \cup \{R(b, c), \\ R(c, d), R(d, b), \\ S(b, b, d)\}$

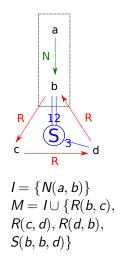
troduction Extending GC² Query Answering Unrestr

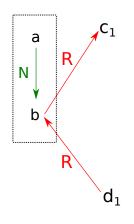
Unrestricted Query Answering $\circ \circ \circ \bullet \circ$

Finite Query Answering

Conclusion 0000

Example





Introduction 0000

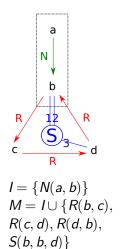
Extending GC^2 Query Answering

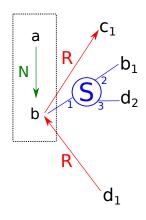
Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Example





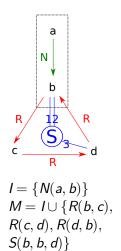
Introduction 0000 Extending GC^2 Query Answering

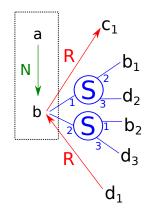
Unrestricted Query Answering $\circ \circ \circ \bullet \circ$

Finite Query Answering

Conclusion 0000

Example





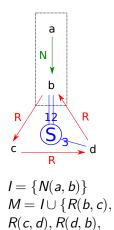
troduction Extending GC² Query Answering Ur

Unrestricted Query Answering $\circ \circ \circ \bullet \circ$

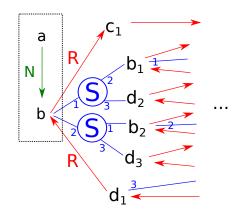
Finite Query Answering

Conclusion 0000

Example



S(b, b, d)



Introduction 0000 Extending GC^2 Query Answering 0000

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Properties of the Construction

• Preserves the base instance *I*.

Extending GC² Query Answering Unrestricted Query Answering 0000

Finite Query Answering

Conclusion 0000

- Preserves the base instance *I*.
- Maps back to the original model by the homomorphism π' .
 - \Rightarrow Ensures that the query is still false.

Extending GC² Query Answering Unrestricted C

Finite Query Answering

Conclusion

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π' .
 - \Rightarrow Ensures that the query is still false.
- \bullet Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following $\pi'.$
 - \Rightarrow Ensures that GF² constraints are preserved (guarded bisimilar).
 - \Rightarrow Ensures that number restrictions are preserved.

Extending GC² Query Answering Unrestricted

Unrestricted Query Answering Finite

Finite Query Answering

Conclusion

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π' .
 - \Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following $\pi'.$
 - \Rightarrow Ensures that GF² constraints are preserved (guarded bisimilar).
 - \Rightarrow Ensures that number restrictions are preserved.
- The mapping π' is surjective for guarded pairs.
 - \Rightarrow Necessary for guarded bisimulation.

Extending GC² Query Answering Unrestricted Query Answering 00000

Finite Query Answering

- Preserves the base instance *I*.
- Maps back to the original model by the homomorphism π' . \Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{<2}$ following π' .
 - \Rightarrow Ensures that GF² constraints are preserved (guarded bisimilar).
 - Ensures that number restrictions are preserved. \Rightarrow
- The mapping π' is surjective for guarded pairs.
 - ⇒ Necessary for guarded bisimulation.
- Elements still occur at the same positions of $Pos(\sigma_{>2})$:
 - \Rightarrow Ensures that FR1^a constraints are preserved.

Extending GC² Query Answering Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π' . \Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{<2}$ following π' .
 - \Rightarrow Ensures that GF² constraints are preserved (guarded bisimilar).
 - \Rightarrow Ensures that number restrictions are preserved.
- The mapping π' is surjective for guarded pairs.
 - \Rightarrow Necessary for guarded bisimulation.
- Elements still occur at the same positions of $Pos(\sigma_{>2})$: \Rightarrow Ensures that FR1^a constraints are preserved.
- They do so at most once (except in the instance):
 - \Rightarrow Ensures Unicity.

Extending GC² Query Answering Ur

Finite Query Answering

Conclusion

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π' .
 - \Rightarrow Ensures that the query is still false.
- \bullet Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following $\pi'.$
 - \Rightarrow Ensures that GF² constraints are preserved (guarded bisimilar).
 - \Rightarrow Ensures that number restrictions are preserved.
- The mapping π' is surjective for guarded pairs.
 - \Rightarrow Necessary for guarded bisimulation.
- Elements still occur at the same positions of $Pos(\sigma_{>2})$: \Rightarrow Ensures that FR1^a constraints are preserved.
- They do so at most once (except in the instance):
 - \Rightarrow Ensures Unicity.
- The model is a tree of bags.
 - \Rightarrow Ensures Acyclicity (and bounded treewidth).

troduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion

Table of Contents

Introduction

- 2 Extending GC² Query Answering
- Onrestricted Query Answering
- 4 Finite Query Answering

5 Conclusion

ntroduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Finite Controllability

• Finite controllability (FC): finite and unrestricted QA coincide.

roduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Finite Controllability

- Finite controllability (FC): finite and unrestricted QA coincide.
- Holds for GF but fails with number restrictions:
 - Consider $\Theta: \mathbb{R}^2 \to \mathbb{R}^1, \mathbb{R}^2 \subseteq \mathbb{R}^1$, and $I = \{A(a), \mathbb{R}(a, b)\}.$
 - Universal infinite chase model $A(a), R(a, b), R(b, c), \ldots$
 - Finite model has to loop back, on *a* because of the FD: $A(a), R(a, b), R(b, c), \dots, R(y, z), R(z, a).$
 - $\Rightarrow \text{ For } q: R(x,y) \land A(y) \text{, we have } I, \Theta \models_{\text{fin}} q \text{ but } I, \Theta \not\models_{\text{unr}} q.$

oduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion

Finite Controllability

- Finite controllability (FC): finite and unrestricted QA coincide.
- Holds for GF but fails with number restrictions:
 - Consider $\Theta: \mathbb{R}^2 \to \mathbb{R}^1, \mathbb{R}^2 \subseteq \mathbb{R}^1$, and $I = \{A(a), \mathbb{R}(a, b)\}.$
 - Universal infinite chase model $A(a), R(a, b), R(b, c), \ldots$
 - Finite model has to loop back, on *a* because of the FD: $A(a), R(a, b), R(b, c), \dots, R(y, z), R(z, a).$
 - $\Rightarrow \text{ For } q: R(x,y) \land A(y) \text{, we have } I, \Theta \models_{\text{fin}} q \text{ but } I, \Theta \not\models_{\text{unr}} q.$
- Separability not useful for finite QA (the chase is infinite):
 - Separability not closed under finite implication [Rosati, 2006].
 - $\Rightarrow \ \mathsf{QA}_{\mathsf{fin}}(\mathsf{KD} \cup \mathsf{ID},\mathsf{CQ}) \text{ undecidable even assuming separability.}$

Finite Query Answering

Conclusion 0000

Decidable Finite QA

• $QA_{fin}(GC^2, CQ)$ not FC but decidable [Pratt-Hartmann, 2009]. \Rightarrow Only for arity-two.

Finite Query Answering

Conclusion 0000

Decidable Finite QA

- $QA_{fin}(GC^2, CQ)$ not FC but decidable [Pratt-Hartmann, 2009]. \Rightarrow Only for arity-two.
- Enforce chase termination to get a finite universal model.
 ⇒ Too restrictive.

Finite Query Answering

Conclusion 0000

Decidable Finite QA

- $QA_{fin}(GC^2, CQ)$ not FC but decidable [Pratt-Hartmann, 2009]. \Rightarrow Only for arity-two.
- Enforce chase termination to get a finite universal model.
 ⇒ Too restrictive.
- Restrict the language to enforce FC:
 - \Rightarrow KD \cup ID under a foreign key condition is FC [Rosati, 2011].
 - \Rightarrow Also restrictive.

Finite Query Answering

Conclusion 0000

Result Statement

- We focus on unary IDs and (general) FDs, arbitrary arity.
- The implication problem for UIDs and FDs is decidable: PTIME finite closure construction [Cosmadakis et al., 1990].
- We show that FC holds up to finite closure:

Finite Query Answering

Conclusion 0000

Result Statement

- We focus on unary IDs and (general) FDs, arbitrary arity.
- The implication problem for UIDs and FDs is decidable: PTIME finite closure construction [Cosmadakis et al., 1990].
- We show that FC holds up to finite closure:

Theorem

For every $\Phi \cup \Delta \subseteq \mathsf{FD} \cup \mathsf{UID}$ with finite closure $\Phi^* \cup \Delta^*$, for $q \in \mathsf{UCQ}$ and I an instance s.t. $I \models \Phi^*$, we have $I, \Phi \cup \Delta \models_{\mathrm{fin}} q$ iff $I, \Delta^* \models_{\mathrm{unr}} q$.

Finite Query Answering

Conclusion 0000

Result Statement

- We focus on unary IDs and (general) FDs, arbitrary arity.
- The implication problem for UIDs and FDs is decidable: PTIME finite closure construction [Cosmadakis et al., 1990].
- We show that FC holds up to finite closure:

Theorem

For every $\Phi \cup \Delta \subseteq \mathsf{FD} \cup \mathsf{UID}$ with finite closure $\Phi^* \cup \Delta^*$, for $q \in \mathsf{UCQ}$ and I an instance s.t. $I \models \Phi^*$, we have $I, \Phi \cup \Delta \models_{\mathrm{fin}} q$ iff $I, \Delta^* \models_{\mathrm{unr}} q$.

 $\Rightarrow \mbox{QA}_{unr}(FD \cup UID, UCQ)$ is in NP [Johnson and Klug, 1984] so $\mbox{QA}_{fin}(FD \cup UID, UCQ)$ is in NP.

Introduction 0000 Extending GC^2 Query Answering 0000

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Finite Chase

- The chase is a universal model but it is infinite.
- The finite chase [Rosati, 2011]: for all k, there is a finite universal model for queries of size ≤ k.
- Reuse similar elements as nulls when chasing.

 $\begin{array}{l} N(a,b) \\ R(b,c) \\ R(c,d) \\ R(d,e) \\ R(e,f) \\ R(f,g) \\ R(g,h) \\ R(h,e) \end{array}$

 $R^2 \subseteq R^1$

- Reuses must not make new queries true relative to the chase.
- We focus on Berge-acyclic constant-free queries of size $\leq k$.
 - The graph G of q has its atoms as vertices.
 - Two atoms are connected if they share one variable.
 - We require *G* to be acyclic (including self-loops).
- We will eliminate cycles later to take care of cyclic queries.

- Reuses must not make new queries true relative to the chase.
- We focus on Berge-acyclic constant-free queries of size $\leq k$.
 - The graph G of q has its atoms as vertices.
 - Two atoms are connected if they share one variable.
 - We require *G* to be acyclic (including self-loops).
- We will eliminate cycles later to take care of cyclic queries.

Lemma

If an extension of I satisfying Δ has a homomorphism to the quotient of the chase by the k-neighborhood equivalence relation then it is universal for constant-free Berge-acyclic CQs of size $\leq k$.

ntroduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Finite Chase and FDs

- The dangerous positions of R^i are the $R^j \in Pos(R) \setminus \{R^i\}$ such that the FD $R^j \to R^i$ holds.
- At non-dangerous positions, reusing elements cannot violate unary FDs.
- At dangerous positions, we cannot reuse elements!

N(a, b) R(b, c) R(c, d) R(d, e) R(e, f) R(f, g) R(g, h) R(h, e)

 $egin{aligned} R^2 &\subseteq R^1 \ R^2 &
ightarrow R^1 \end{aligned}$

Extending GC² Query Answering Unrestricted

Unrestricted Query Answering

Finite Query Answering

Conclusion

Finite Chase and FDs and Closure

- Finite closure [Cosmadakis et al., 1990]:
 - Whenever $R^i \subseteq S^j$ holds then $\langle R^i \rangle \leq \langle S^j \rangle$.
 - Whenever $S^i \to S^j$ holds then $\langle S^j \rangle \leq \langle S^i \rangle$.
 - Inequality chains imply the reverse inequalities in the finite.
 - Add the reverse dependencies for such invertible cycles.

Introduction E 0000 C

Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Finite Chase and FDs and Closure

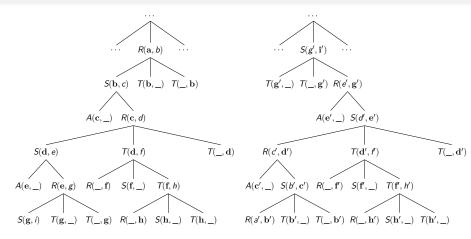
- Finite closure [Cosmadakis et al., 1990]:
 - Whenever $R^i \subseteq S^j$ holds then $\langle R^i \rangle \leq \langle S^j \rangle$.
 - Whenever $S^i \to S^j$ holds then $\langle S^j \rangle \leq \langle S^i \rangle$.
 - Inequality chains imply the reverse inequalities in the finite.
 - Add the reverse dependencies for such invertible cycles.
- ⇒ When we create a chain with no possiblity to reuse, the reverse dependencies must hold.
- \Rightarrow Intuitively: glue both chains together.

 $\begin{array}{c} N(a,b)\\ R(b,c)\\ R(c,d) \quad R(z,b)\\ R(d,e) \quad R(y,z)\\ R(e,f) \quad R(x,y)\\ R(f,g) \quad R(w,x)\\ R(g,w) \end{array}$

 $\begin{array}{l} \mathcal{R}^2 \subseteq \mathcal{R}^1 \\ \mathcal{R}^2 \to \mathcal{R}^1 \\ \mathbf{R}^2 \subseteq \mathbf{R}^1 \\ \mathbf{R}^1 \to \mathbf{R}^2 \end{array}$

0000 0000000000 00000 000000 000000000	Introduction	Extending GC ² Query Answering	Unrestricted Query Answering	Finite Query Answering	C
	0000	0000	00000	00000000000	C

Locality Result



Lemma

After chasing by k consecutive reversible UIDs, elements at positions connected by UIDs have the same k-neighborhood.

ntroduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

General Scheme

- Start with the instance *I*.
- Chase by the IDs.
- Reuse elements at non-dangerous positions.
- Connect together elements at dangerous positions.

 \Rightarrow Use the previous lemma to justify they can be paired.

troduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

General Scheme

- Start with the instance *I*.
- Chase by the IDs.
- Reuse elements at non-dangerous positions.
- Connect together elements at dangerous positions.
 - \Rightarrow Use the previous lemma to justify they can be paired.
- Connect elements within an invertible cycle:
 - $\Rightarrow \text{ We say that } (R^i \subseteq S^j) \rightarrowtail (S^p \subseteq T^q) \text{ if } S^p \to S^j.$
 - \Rightarrow An invertible path is a cycle of \rightarrowtail .
 - \Rightarrow Chase by the ID of SCCs of \mapsto in topological order.

Finite Query Answering

Conclusion 0000

Higher-Arity FDs

- Non-dangerous positions defined w.r.t. unary FDs.
- The non-unary FDs are not considered in the finite closure.
- Reusing the same patterns may violate higher-arity FDs:
 - \Rightarrow Must make many patterns out of limited reusable elements.
 - $\Rightarrow \mathsf{Ex:} \ \mathsf{R}(x_1, a_1, b_1), \ \mathsf{R}(x_2, a_2, b_2), \ \mathsf{R}(x_3, a_1, b_2), \ \mathsf{R}(x_4, a_2, b_1).$
 - ⇒ If $R^2 \rightarrow R^3$ then the non-dangerous positions have a unary key so higher-arity FDs are subsumed by UFDs.

ntroduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion 0000

Higher-Arity FDs

- Non-dangerous positions defined w.r.t. unary FDs.
- The non-unary FDs are not considered in the finite closure.
- Reusing the same patterns may violate higher-arity FDs:
 - \Rightarrow Must make many patterns out of limited reusable elements.
 - $\Rightarrow \mathsf{Ex:} \ \mathsf{R}(\mathsf{x}_1,\mathsf{a}_1,\mathsf{b}_1), \ \mathsf{R}(\mathsf{x}_2,\mathsf{a}_2,\mathsf{b}_2), \ \mathsf{R}(\mathsf{x}_3,\mathsf{a}_1,\mathsf{b}_2), \ \mathsf{R}(\mathsf{x}_4,\mathsf{a}_2,\mathsf{b}_1).$
 - ⇒ If $R^2 \rightarrow R^3$ then the non-dangerous positions have a unary key so higher-arity FDs are subsumed by UFDs.
- ⇒ We need to justify that we can make many patterns out of a limited number of elements to reuse.
 - ⇒ Formally: from N elements, for any K, make NK patterns (unless there is a unary key preventing this).

Finite Query Answering

Conclusion 0000

Dense Models

The possibility to find such patterns is a consequence of:

Lemma

For any FDs Φ over R, there exists $D \leq |R|$ such that either R has a unary key, or there exists a finite model of Φ with O(N) elements and $O(N^{D/(D-1)})$ facts.

Dense Models

The possibility to find such patterns is a consequence of:

Lemma

For any FDs Φ over R, there exists $D \leq |R|$ such that either R has a unary key, or there exists a finite model of Φ with O(N) elements and $O(N^{D/(D-1)})$ facts.

- First, collapse any UFD cycles of *R*.
- Then, consider the UFD "roots" T of R (there are ≥ 2) such that ∀t ∈ T, ∄s ∈ Pos(R), s → t, and reduce to the case:
 - the attributes of R are the non-empty parts of T.
 - the roots that determine $X \in Pos(R)$ are exactly those of X.
 - the non-unary FDs are as pessimistic as possible.
- Finally, construct the desired model on this relation.

• We need to enlarge cycles of the model, preserving constraints.

- We need to enlarge cycles of the model, preserving constraints.
- Group G generated by X is k-acyclic if there is no word w of length ≤ k of X s.t. w₁ · · · w_n = e unless w_i = w_{i+1}⁻¹ for some i.

- We need to enlarge cycles of the model, preserving constraints.
- Group G generated by X is k-acyclic if there is no word w of length ≤ k of X s.t. w₁ · · · w_n = e unless w_i = w_{i+1}⁻¹ for some i.
- Build the product of the model with a finite acyclic group:

• Let
$$L(M) = \{ I_i^F \mid F \in M, 1 \le i \le |F| \}.$$

- Let G be a k-acyclic group generated by L(M).
- For $F = R(\mathbf{a}) \in M, g \in G$, create $R((a_1, gl_1^F), \dots, (a_{|R|}, gl_{|R|}^F))$.
- Ex: $M = \{R(a, a)\}, M' = \{R((a, e), (a, g)), R((a, g), (a, e))\}.$

- We need to enlarge cycles of the model, preserving constraints.
- Group G generated by X is k-acyclic if there is no word w of length ≤ k of X s.t. w₁ · · · w_n = e unless w_i = w_{i+1}⁻¹ for some i.
- Build the product of the model with a finite acyclic group:

• Let
$$L(M) = \{I_i^F \mid F \in M, 1 \le i \le |F|\}.$$

- Let G be a k-acyclic group generated by L(M).
- For $F = R(\mathbf{a}) \in M, g \in G$, create $R((a_1, gl_1^F), \dots, (a_{|R|}, gl_{|R|}^F))$.
- Ex: $M = \{R(a, a)\}, M' = \{R((a, e), (a, g)), R((a, g), (a, e))\}.$
- Properties:
 - \Rightarrow Can be adjusted to preserve the instance as-is.
 - ⇒ Preserves unary overlaps so preserves UIDs.
 - \Rightarrow Homomorphism back to *M* so no new queries are true.
 - \Rightarrow Cycles in *M*' of size $\leq k$ must take one edge back-and-forth.
 - ⇒ This may violate FDs!

Extending GC² Query Answering Unrestricted Query Answering 0000

Finite Query Answering

Conclusion

Expanding Cycles With FDs

- Our models have a homomorphism h to I^{Θ}/\equiv_k .
- Overlaps are between facts with the same *h*-image.
- Adjust the product $M \times G$ with $L(\mathbb{M} | \Xi_k)$ not $L(\mathbb{M})$:
 - ⇒ If F = R(a, b, c) and F' = R(a, b, d) then h(F) = h(F') and the FD $R^1 \rightarrow R^2$ cannot be violated.
 - ⇒ Any cycles in $M \times G$ are mapped by the homomorphism $(x,g) \mapsto (h(x),g)$ to cycles in the "regular" product $I^{\Theta} / \equiv_k \times G$.
 - \Rightarrow In other words:
 - *M* satisfies the right dependencies (including FDs),
 - $I^{\Theta}/\equiv_k \times G$ satisfies the right queries,
 - $M \times G$ satisfies both.
- More work required to preserve the instance.

troduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion

Table of Contents

Introduction

- 2 Extending GC² Query Answering
- Onrestricted Query Answering
- 4 Finite Query Answering

Introduction 0000 Extending GC^2 Query Answering 0000

Unrestricted Query Answering

Finite Query Answering

Conclusion •000

Summary

We have shown the decidability of:

- $QA_{\bullet}(UKD \cup GC^2 \cup FR1^a, CQ)$
- $QA_{unr}(FD \cup GC^2 \cup FR1, CQ)$
- $\bullet \ \mathsf{QA}_{\mathsf{fin}}(\mathsf{FD} \cup \mathsf{UID},\mathsf{UCQ})$

Introduction 0000 Extending GC^2 Query Answering 0000

Unrestricted Query Answering

Finite Query Answering

Conclusion •000

Summary

We have shown the decidability of:

- $QA_{\bullet}(UKD \cup GC^2 \cup FR1^a, CQ)$
- $QA_{unr}(FD \cup GC^2 \cup FR1, CQ)$
- $QA_{fin}(FD \cup UID, UCQ)$

Further work:

- Derive upper and lower complexity bounds.
- For unrestricted QA:
 - ⇒ Find a more homogeneous fragment than $GF^2 \cup FR1$.
 - \Rightarrow Must limit the interaction with FD and number restrictions.
- For finite QA:
 - \Rightarrow What about FD \cup GC² \cup FR1?
 - \Rightarrow Can we generalize the proof beyond UIDs?

Introduction 0000 Extending GC^2 Query Answering 0000

Unrestricted Query Answering

Finite Query Answering

Conclusion •000

Summary

We have shown the decidability of:

- $QA_{\bullet}(UKD \cup GC^2 \cup FR1^a, CQ)$
- $QA_{unr}(FD \cup GC^2 \cup FR1, CQ)$
- $QA_{fin}(FD \cup UID, UCQ)$

Further work:

- Derive upper and lower complexity bounds.
- For unrestricted QA:
 - \Rightarrow Find a more homogeneous fragment than $GF^2 \cup FR1$.
 - \Rightarrow Must limit the interaction with FD and number restrictions.
- For finite QA:
 - \Rightarrow What about FD \cup GC² \cup FR1?
 - \Rightarrow Can we generalize the proof beyond UIDs?

Thanks for your attention!

Barany, V., Gottlob, G., and Otto, M. (2010). Querying the guarded fragment.

 In *LICS*.
 Calì, A., Gottlob, G., and Kifer, M. (2013). Taming the infinite chase: Query answering under expressive relational constraints. *JAIR*, 48.

Calì, A., Lembo, D., and Rosati, R. (2003).
 On the decidability and complexity of query answering over inconsistent and incomplete databases.
 In PODS.

- Cosmadakis, S. S., Kanellakis, P. C., and Vardi, M. Y. (1990). Polynomial-time implication problems for unary inclusion dependencies. JACM, 37(1).
- Johnson, D. S. and Klug, A. C. (1984). Testing containment of conjunctive queries under functional and inclusion dependencies. JCSS, 28(1).
- 📄 Pratt-Hartmann, I. (2009).

Data-complexity of the two-variable fragment with counting quantifiers.

Inf. Comput., 207(8).

troduction Extending GC² Query Answering

Unrestricted Query Answering

Finite Query Answering

Conclusion

References III

🖥 Rosati, R. (2006).

On the decidability and finite controllability of query processing in databases with incomplete information. In *SIGMOD*.

Rosati, R. (2011).

On the finite controllability of conjunctive query answering in databases under open-world assumption. *JCSS*, 77(3).

Trakhtenbrot, B. A. (1963).

Impossibility of an algorithm for the decision problem in finite classes.

AMS Transl. Series 2.