

Query Evaluation with Model Counting and Knowledge Compilation: A Survey of Old and Recent Results

Antoine Amarilli

January 16th, 2024

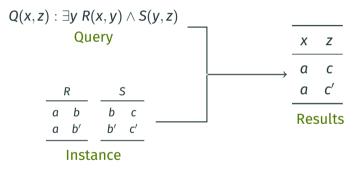
Télécom Paris

Problem statement and roadmap

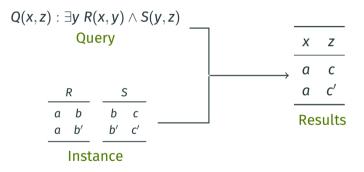
Model counting

Knowledge compilation

Conclusion and open problems

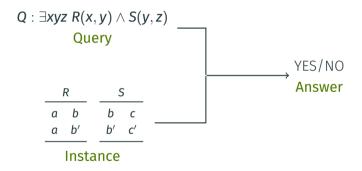


• We focus on query evaluation: evaluate a query on data

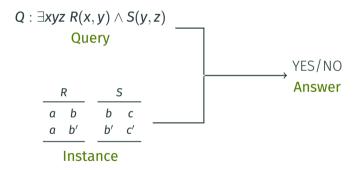


• We can test all answers (polynomial for fixed arity): focus on Boolean queries

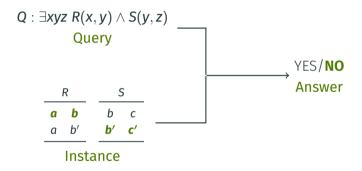
• We focus on query evaluation: evaluate a query on data



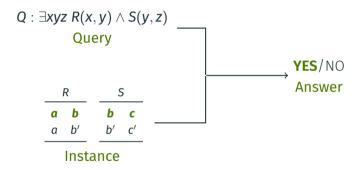
• We can test all answers (polynomial for fixed arity): focus on Boolean queries



- We can test all answers (polynomial for fixed arity): focus on Boolean queries
- We want to **explain** the Boolean result by considering all **subsets** of input facts



- We can test all answers (polynomial for fixed arity): focus on Boolean queries
- We want to **explain** the Boolean result by considering all **subsets** of input facts



- We can test all answers (polynomial for fixed arity): focus on Boolean queries
- We want to **explain** the Boolean result by considering all **subsets** of input facts

		Query: $Q : \exists xyz \ R(x,y) \land S(y,z)$		
	R			S
а	b		b	с
а	b′		b′	<i>C</i> ′

		Query: $Q : \exists xyz \ R(x,y) \land S(y,z)$			
R				S	
a b	<i>r</i> ₁		b	С	S ₁
a b'	r ₂		b′	с′	S ₂

• Add a unique identifier to every fact of the instance I

.

			Query: $Q : \exists xyz \ R(x,y) \land S(y,z)$			
	R				S	
а	b	r ₁		b	С	S ₁
а	b′	r ₂		b′	с′	S_2

- Add a unique identifier to every fact of the instance I
- There are **exponentially many** subsets of *I*: "possible worlds"

			Query: $Q : \exists xyz \ R(x,y) \land S(y,z)$			
	R				S	
а	b	<i>r</i> ₁		b	С	S ₁
а	b′	r ₂		b′	с′	S_2

- Add a unique identifier to every fact of the instance I
- There are exponentially many subsets of *I*: "possible worlds"
- We want to **understand** on which possible worlds the query **Q** is true...

			Query: $Q : \exists xyz \ R(x,y) \land S(y,z)$			
	R				S	
а	b	<i>r</i> ₁		b	С	S ₁
а	b′	r ₂		b′	с′	S_2

- Add a unique identifier to every fact of the instance I
- There are exponentially many subsets of *I*: "possible worlds"
- We want to **understand** on which possible worlds the query **Q** is true...
 - Model counting: count how many possible worlds satisfy Q
 - Uniform reliability (UR): unweighted counting
 - Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
 - Shapley values: another kind of aggregate

(here: 7)

			Query: $Q : \exists xyz \ R(x,y) \land S(y,z)$			
	R				S	
а	b	r ₁		b	с	S ₁
а	b′	r ₂		b′	С′	S ₂

- Add a unique identifier to every fact of the instance I
- There are exponentially many subsets of *I*: "possible worlds"
- We want to **understand** on which possible worlds the query **Q** is true...
 - Model counting: count how many possible worlds satisfy Q
 - Uniform reliability (UR): unweighted counting
 - Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
 - Shapley values: another kind of aggregate
 - Knowledge compilation: compute a representation of the Boolean provenance, i.e., the set of possible worlds satisfying Q (here: $(r_1 \land s_1) \lor (r_2 \land s_2)$)
 - Depends on the class of representations: circuits, diagrams, d-SDNNFs...
 - Intensional approach: we can use knowledge compilation for model counting

(here: 7)

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

- Data complexity of various queries on arbitrary data
 - $\rightarrow\,$ Self-join-free CQs, UCQs, homomorphism-closed queries, etc.

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

- Data complexity of various queries on arbitrary data
 - $\rightarrow\,$ Self-join-free CQs, UCQs, homomorphism-closed queries, etc.
- Data complexity of expressive queries (MSO) on restricted data (treelike)

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

- Data complexity of various queries on arbitrary data
 - $\rightarrow\,$ Self-join-free CQs, UCQs, homomorphism-closed queries, etc.
- Data complexity of expressive queries (MSO) on restricted data (treelike)
- Combined complexity

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

- Fix: a Boolean query **Q** (maps every database to true or false)
- Input: a relational database I
 - For PQE: also give a **probability** to each fact in the input

- Fix: a Boolean query **Q** (maps every database to true or false)
- Input: a relational database I
 - For PQE: also give a **probability** to each fact in the input
- Output:
 - For UR: the **number of subsets** of *I* such that *Q* is satisfied
 - For PQE: the **probability** of getting such a subset (assuming independence)

- Fix: a Boolean query **Q** (maps every database to true or false)
- Input: a relational database I
 - For PQE: also give a **probability** to each fact in the input
- Output:
 - For UR: the **number of subsets** of *I* such that *Q* is satisfied
 - For PQE: the **probability** of getting such a subset (assuming independence)
- Data complexity: study complexity of UR(Q) and PQE(Q) as a function of I

- Fix: a Boolean query **Q** (maps every database to true or false)
- Input: a relational database I
 - For PQE: also give a **probability** to each fact in the input
- Output:
 - For UR: the **number of subsets** of *I* such that *Q* is satisfied
 - For PQE: the **probability** of getting such a subset (assuming independence)
- Data complexity: study complexity of UR(Q) and PQE(Q) as a function of I
- \rightarrow For which queries Q are these problems UR(Q) and PQE(Q) solvable in PTIME?

A self-join free conjunctive query (SJFCQ) is a CQ without repeated relations

Theorem (Dalvi, Suciu, VLDB'04, VLDBJ'07)

The following dichotomy holds on SJFCQs **Q**:

- If **Q** is hierarchical, then PQE(**Q**) is in PTIME
- Otherwise, PQE(**Q**) is **#P-hard**

A self-join free conjunctive query (SJFCQ) is a CQ without repeated relations

Theorem (Dalvi, Suciu, VLDB'04, VLDBJ'07)

The following dichotomy holds on SJFCQs **Q**:

- If **Q** is hierarchical, then PQE(**Q**) is in PTIME
- Otherwise, PQE(**Q**) is **#P-hard**

Theorem (A., Kimelfeld, ICDT'21, LMCS'22)

The same dichotomy holds for uniform reliability (UR(Q))

Data complexity of model counting for UCQs

For the class of **unions of conjunctive queries** (UCQs):

Theorem (Dalvi, Suciu, JACM'12)

The following dichotomy holds on UCQs **Q**:

- If **Q** is **safe**, then PQE(**Q**) is in **PTIME**
- Otherwise, PQE(Q) is #P-hard

Data complexity of model counting for UCQs

For the class of **unions of conjunctive queries** (UCQs):

Theorem (Dalvi, Suciu, JACM'12)

The following dichotomy holds on UCQs **Q**:

- If Q is safe, then PQE(Q) is in PTIME
- Otherwise, PQE(**Q**) is **#P-hard**

Theorem (Kenig, Suciu, PODS'21)

- The same dichotomy holds even when probabilities can only be 1/2 and 1 (and 0)
- For some unsafe UCQs, hardness already holds for uniform reliability

Data complexity of model counting for UCQs

For the class of **unions of conjunctive queries** (UCQs):

Theorem (Dalvi, Suciu, JACM'12)

The following dichotomy holds on UCQs **Q**:

- If Q is safe, then PQE(Q) is in PTIME
- Otherwise, PQE(**Q**) is **#P-hard**

Theorem (Kenig, Suciu, PODS'21)

- The same dichotomy holds even when probabilities can only be 1/2 and 1 (and 0)
- For some unsafe UCQs, hardness already holds for uniform reliability

Is UR(*Q*) #P-hard for every **unsafe UCQ**, like PQE(*Q*)? **Open**

• A query **Q** is homomorphism-closed if satisfaction is preserved by homomorphisms

- A query **Q** is homomorphism-closed if satisfaction is preserved by homomorphisms
 - \rightarrow If I satisfies Q and I has a homomorphism to I' then I' satisfies Q
 - → Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

- A query **Q** is homomorphism-closed if satisfaction is preserved by homomorphisms
 - \rightarrow If I satisfies Q and I has a homomorphism to I' then I' satisfies Q
 - → Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- A homomorphism-closed query is **unbounded** if it is **not** equivalent to a UCQ

- A query **Q** is homomorphism-closed if satisfaction is preserved by homomorphisms
 - \rightarrow If I satisfies Q and I has a homomorphism to I' then I' satisfies Q
 - → Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- A homomorphism-closed query is **unbounded** if it is **not** equivalent to a UCQ

Theorem (A., Ceylan, ICDT'20, LMCS'22)

On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE problem is **#P-hard**

- A query **Q** is homomorphism-closed if satisfaction is preserved by homomorphisms
 - \rightarrow If *I* satisfies *Q* and *I* has a homomorphism to *I*' then *I*' satisfies *Q*
 - → Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT'20, LMCS'22)

On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE problem is **#P-hard**

Theorem (A., ICDT'23)

The same holds for the UR problem

- A query **Q** is homomorphism-closed if satisfaction is preserved by homomorphisms
 - \rightarrow If I satisfies Q and I has a homomorphism to I' then I' satisfies Q
 - → Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT'20, LMCS'22)

On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE problem is **#P-hard**

Theorem (A., ICDT'23)

The same holds for the UR problem

Do these hardness results extend to higher-arity signatures? Open

Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: **restrict the input instance**!

• Fix: a query \boldsymbol{Q} and an instance family $\boldsymbol{\mathcal{I}}$

Another way to make the problem tractable: restrict the input instance!

- Fix: a query ${\boldsymbol{Q}}$ and an instance family ${\boldsymbol{\mathcal{I}}}$
- Input: a relational database I in ${\mathcal I}$
 - For PQE: also give a probability to each fact in the input

Another way to make the problem tractable: restrict the input instance!

- Fix: a query \boldsymbol{Q} and an instance family $\boldsymbol{\mathcal{I}}$
- Input: a relational database I in ${\mathcal I}$
 - For PQE: also give a probability to each fact in the input
- Output:
 - For UR: the number of subsets of *I* such that *Q* is satisfied
 - For PQE: the probability of getting such a subset (assuming independence)

Another way to make the problem tractable: restrict the input instance!

- Fix: a query \boldsymbol{Q} and an instance family $\boldsymbol{\mathcal{I}}$
- Input: a relational database I in ${\mathcal I}$
 - For PQE: also give a probability to each fact in the input
- Output:
 - For UR: the number of subsets of *I* such that *Q* is satisfied
 - For PQE: the probability of getting such a subset (assuming independence)
- \rightarrow For which queries *Q* and which instance families \mathcal{I} are these problems UR(Q, \mathcal{I}) and PQE(Q, \mathcal{I}) solvable in PTIME?

• Treewidth is a parameter intuitively measuring how close a graph is to a tree

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family *I* is treelike if there is a constant k ∈ N such that all instances in *I* have treewidth ≤ k

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family \mathcal{I} is **treelike** if there is a constant $k \in \mathbb{N}$ such that all instances in \mathcal{I} have treewidth $\leq k$
- Monadic second-order logic (MSO) is a query language extending first-order logic with quantification over sets

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family *I* is treelike if there is a constant k ∈ N such that all instances in *I* have treewidth ≤ k
- Monadic second-order logic (MSO) is a query language extending first-order logic with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP'15)

For any MSO query Q and treelike instance family \mathcal{I} , the problem PQE(Q) is in PTIME

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family *I* is treelike if there is a constant k ∈ N such that all instances in *I* have treewidth ≤ k
- Monadic second-order logic (MSO) is a query language extending first-order logic with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP'15)

For any MSO query Q and treelike instance family \mathcal{I} , the problem PQE(Q) is in PTIME

• In particular: PQE is in PTIME for **tree automata** over **probabilistic trees** (already in: Cohen, Kimelfeld, Sagiv, PODS'09)

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family *I* is treelike if there is a constant k ∈ N such that all instances in *I* have treewidth ≤ k
- Monadic second-order logic (MSO) is a query language extending first-order logic with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP'15)

For any MSO query **Q** and treelike instance family \mathcal{I} , the problem PQE(**Q**) is in PTIME

- In particular: PQE is in PTIME for **tree automata** over **probabilistic trees** (already in: Cohen, Kimelfeld, Sagiv, PODS'09)
- \rightarrow Is treelikeness the **only** condition on the instance that makes PQE tractable?

• Fix a binary relation R, let Q_2 be the query asking if there are two incident facts $\rightarrow Q_2$ is a UCQ with inequalities: $(R(x,y) \lor R(y,x)) \land (R(y,z) \lor R(z,y)) \land x \neq z$

- Fix a binary relation R, let Q_2 be the query asking if there are two incident facts $\rightarrow Q_2$ is a UCQ with inequalities: $(R(x,y) \lor R(y,x)) \land (R(y,z) \lor R(z,y)) \land x \neq z$
- A non-treelike instance family *I* is treewidth-constructible if, given *k* ∈ N, we can compute in time Poly(*k*) an instance in *I* with treewidth at least *k*

- Fix a binary relation R, let Q_2 be the query asking if there are two incident facts $\rightarrow Q_2$ is a UCQ with inequalities: $(R(x,y) \lor R(y,x)) \land (R(y,z) \lor R(z,y)) \land x \neq z$
- A non-treelike instance family *I* is treewidth-constructible if, given k ∈ N, we can compute in time Poly(k) an instance in *I* with treewidth at least k

Theorem (A., Monet, MFCS'22)

For any treewidth-constructible instance family \mathcal{I} , the problem $PQE(Q_2)$ is **#P-hard** under ZPP reductions

- Fix a binary relation R, let Q_2 be the query asking if there are two incident facts $\rightarrow Q_2$ is a UCQ with inequalities: $(R(x,y) \lor R(y,x)) \land (R(y,z) \lor R(z,y)) \land x \neq z$
- A non-treelike instance family *I* is treewidth-constructible if, given k ∈ N, we can compute in time Poly(k) an instance in *I* with treewidth at least k

Theorem (A., Monet, MFCS'22)

For any treewidth-constructible instance family \mathcal{I} , the problem $PQE(Q_2)$ is **#P-hard** under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM'16))

- Fix a binary relation R, let Q_2 be the query asking if there are two incident facts $\rightarrow Q_2$ is a UCQ with inequalities: $(R(x,y) \lor R(y,x)) \land (R(y,z) \lor R(z,y)) \land x \neq z$
- A non-treelike instance family *I* is treewidth-constructible if, given k ∈ N, we can compute in time Poly(k) an instance in *I* with treewidth at least k

Theorem (A., Monet, MFCS'22)

For any treewidth-constructible instance family \mathcal{I} , the problem $PQE(Q_2)$ is **#P-hard** under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM'16))

• Does this intractability result also hold for UR? Open

- Fix a binary relation R, let Q_2 be the query asking if there are two incident facts $\rightarrow Q_2$ is a UCQ with inequalities: $(R(x,y) \lor R(y,x)) \land (R(y,z) \lor R(z,y)) \land x \neq z$
- A non-treelike instance family *I* is treewidth-constructible if, given k ∈ N, we can compute in time Poly(k) an instance in *I* with treewidth at least k

Theorem (A., Monet, MFCS'22)

For any treewidth-constructible instance family \mathcal{I} , the problem $PQE(Q_2)$ is **#P-hard** under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM'16))

- Does this intractability result also hold for UR? Open
- For which other queries than Q_2 does this hold? What about higher arity? Open

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the **probability** that **Q** is true in **I**

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the **probability** that **Q** is true in **I**

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the **probability** that **Q** is true in **I**

This is **intractable** already without probabilities so we restrict the **instance** and **query**

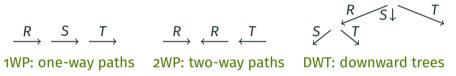
 $\xrightarrow{R} \xrightarrow{S} \xrightarrow{T}$

1WP: one-way paths

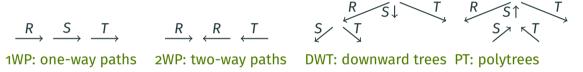
- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the **probability** that **Q** is true in **I**

$$\xrightarrow{R} \xrightarrow{S} \xrightarrow{T} \qquad \xrightarrow{R} \xleftarrow{R} \xleftarrow{T}$$
1WP: one-way paths 2WP: two-way paths

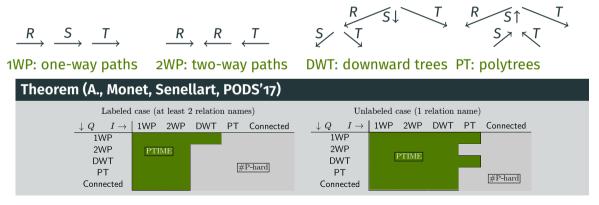
- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the **probability** that **Q** is true in **I**



- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the **probability** that **Q** is true in **I**

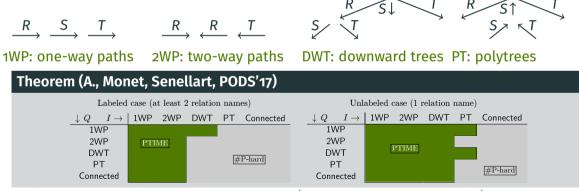


- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the **probability** that **Q** is true in **I**



- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the **probability** that **Q** is true in **I**

This is **intractable** already without probabilities so we restrict the **instance** and **query**



Do hardness results still hold for UR? Open (we haven't thought about it)

Goal: design an algorithm running in **PTIME** in the input and in the error $\epsilon > 0$ which...

Goal: design an algorithm running in **PTIME** in the input and in the error $\epsilon > 0$ which...

Additive FPRAS: • ... with probability > 1/2, gives an answer x' with additive error $\leq \epsilon$ wrt the true answer x

Goal: design an algorithm running in **PTIME** in the input and in the error $\epsilon > 0$ which...

Additive FPRAS: • ... with probability > 1/2, gives an answer x'with **additive error** $< \epsilon$ wrt the true answer **x**

 \rightarrow We want, with proba > 1/2, that $\mathbf{x} - \epsilon < \mathbf{x}' < \mathbf{x} + \epsilon$

Goal: design an algorithm running in **PTIME** in the input and in the error $\epsilon > 0$ which...

Additive FPRAS:

- ... with probability > 1/2, gives an answer x' with additive error $\leq \epsilon$ wrt the true answer x
 - ightarrow We want, with proba > 1/2, that $\mathbf{x} \epsilon < \mathbf{x}' < \mathbf{x} + \epsilon$
 - ightarrow Always possible (Monte Carlo) if you can sample and evaluate in PTIME

Goal: design an algorithm running in **PTIME** in the input and in the error $\epsilon > 0$ which...

Additive FPRAS:

- ... with probability > 1/2, gives an answer x' with additive error $\leq \epsilon$ wrt the true answer x
 - ightarrow We want, with proba > 1/2, that $\mathbf{x} \epsilon < \mathbf{x}' < \mathbf{x} + \epsilon$
 - ightarrow Always possible (Monte Carlo) if you can sample and evaluate in PTIME

FPRAS:

- ... with probability > 1/2, gives an answer x' with multiplicative error $\leq \epsilon$ wrt the true answer x
 - ightarrow We want, with proba > 1/2, that (1 $-\epsilon$)x < x' < (1 $+\epsilon$)x
 - $\rightarrow~\mbox{Rest}$ of the talk only covers this notion

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:

• For data complexity for UCQs:

 \rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

- For data complexity for UCQs:
 - \rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:

- For data complexity for UCQs:
 - \rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
 - \rightarrow Karp-Luby no longer applies (exponentially many minimal matches)

- For data complexity for UCQs:
 - \rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
 - \rightarrow Karp-Luby no longer applies (exponentially many minimal matches)
 - \rightarrow **Open** (ongoing work)

- For data complexity for UCQs:
 - ightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
 - \rightarrow Karp-Luby no longer applies (exponentially many minimal matches)
 - \rightarrow **Open** (ongoing work)
- For combined complexity, we want a combined FPRAS:

- For data complexity for UCQs:
 - \rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
 - \rightarrow Karp-Luby no longer applies (exponentially many minimal matches)
 - \rightarrow **Open** (ongoing work)
- For combined complexity, we want a combined FPRAS:
 - Input: query **Q**, instance **I** with probabilities, error $\epsilon > \mathbf{0}$
 - Output: with proba > 1/2, in polynomial time, approximation of the probability of Q on I up to multiplicative error ε

When can we have an FPRAS for model counting?

- For data complexity for UCQs:
 - \rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
 - \rightarrow Karp-Luby no longer applies (exponentially many minimal matches)
 - \rightarrow **Open** (ongoing work)
- For combined complexity, we want a combined FPRAS:
 - Input: query **Q**, instance **I** with probabilities, error $\epsilon > \mathbf{0}$
 - Output: with proba > 1/2, in polynomial time, approximation of the probability of Q on I up to multiplicative error ε
 - $\rightarrow\,$ When can we obtain such an algorithm?

Theorem (van Bremen, Meel, PODS'23)

There is a **combined FPRAS** for PQE with **SJFCQs Q** of **bounded hypertreewidth** and arbitrary instances **I** with probabilities on facts

Theorem (van Bremen, Meel, PODS'23)

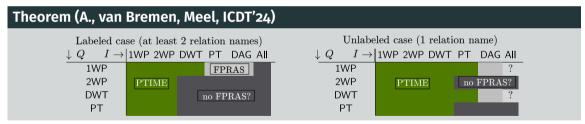
There is a **combined FPRAS** for PQE with **SJFCQs Q** of **bounded hypertreewidth** and arbitrary instances **I** with probabilities on facts

What about **self-joins**?

Theorem (van Bremen, Meel, PODS'23)

There is a **combined FPRAS** for PQE with **SJFCQs Q** of **bounded hypertreewidth** and arbitrary instances **I** with probabilities on facts

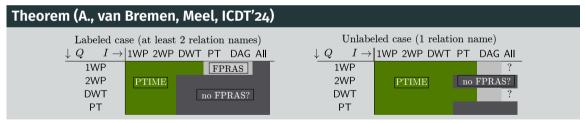
What about self-joins?



Theorem (van Bremen, Meel, PODS'23)

There is a **combined FPRAS** for PQE with **SJFCQs Q** of **bounded hypertreewidth** and arbitrary instances **I** with probabilities on facts

What about self-joins?



(Using **FPRAS for #NFA** for word and tree automata (Arenas et al., JACM'21, PODS'21))

FPRAS inexistence results assume $\mathbf{RP} \neq \mathbf{NP}$

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

$$\begin{array}{c|c} R & S \\ \hline a & b & r_1 \\ a & b' & r_2 \\ \hline \end{array} \begin{array}{c} b & c & s_1 \\ b' & c' & s_2 \\ \hline \end{array} \begin{array}{c} Query: Q : \exists xyz \ R(x,y) \land S(y,z) \\ \hline \end{array}$$

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

	R			S			Query: $Q : \exists xyz \ R(x,y) \land S(y,z)$
а	b	<i>r</i> ₁		b	С	S ₁	
а	b′	r_2	_	b′	с′	S_2	Boolean provenance: $\Phi : (r_1 \wedge s_1) \lor (r_2 \wedge s_2)$

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

R			_		S		Query: $Q : \exists xyz \ R(x,y) \land S(y,z)$
а	b	r_1		b	С	S ₁	
а	b′	r ₂		b′	С′	S ₂	Boolean provenance: $\Phi : (r_1 \land s_1) \lor (r_2 \land s_2)$

How is the provenance Φ related to **model counting**?

• The satisfying assignments of Φ are the subinstances of I where Q holds

- Fix: a Boolean query **Q**
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

R			_	S			Query: $Q : \exists xyz \ R(x, y) \land S(y, z)$
а	b	r_1		b	С	S ₁	
а	b'	r_2		b'	с′	S ₂	Boolean provenance: $\Phi : (r_1 \wedge s_1) \lor (r_2 \wedge s_2)$

How is the provenance Φ related to **model counting**?

- The satisfying assignments of Φ are the subinstances of I where Q holds
- UR asks **how many satisfying assignments** Φ has

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

R			_	S			Query: $Q : \exists xyz \ R(x, y) \land S(y, z)$
а	b	r_1		b	С	S ₁	
а	b'	r_2		b'	с′	S ₂	Boolean provenance: $\Phi : (r_1 \wedge s_1) \lor (r_2 \wedge s_2)$

How is the provenance Φ related to **model counting**?

- The satisfying assignments of Φ are the subinstances of I where Q holds
- UR asks **how many satisfying assignments** Φ has
- PQE asks for the **probability** that Φ evaluates to true

Theorem (folklore)

For any fixed UCQ **Q**, given an instance **I**, we can compute the provenance of **Q** on **I** as a **Boolean formula** in **PTIME data complexity**

Theorem (folklore)

For any fixed UCQ **Q**, given an instance **I**, we can compute the provenance of **Q** on **I** as a **Boolean formula** in **PTIME data complexity**

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (folklore)

For any fixed UCQ **Q**, given an instance **I**, we can compute the provenance of **Q** on **I** as a **Boolean formula** in **PTIME data complexity**

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (Deutch et al., ICDT'14)

For any fixed **Datalog program Q**, given an instance **I**, we can compute the provenance of **Q** on **I** in **PTIME data complexity** as a **Boolean circuit**

Theorem (folklore)

For any fixed UCQ **Q**, given an instance **I**, we can compute the provenance of **Q** on **I** as a **Boolean formula** in **PTIME data complexity**

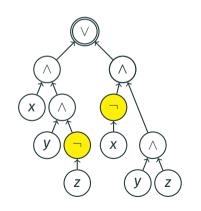
Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (Deutch et al., ICDT'14)

For any fixed **Datalog program Q**, given an instance **I**, we can compute the provenance of **Q** on **I** in **PTIME data complexity** as a **Boolean circuit**

Goal: provenance representation in tractable circuit classes from knowledge compilation

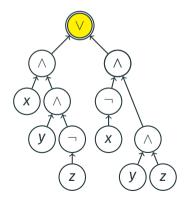
Tractable circuit class: **d-DNNF:**



Tractable circuit class: **d-DNNF:**

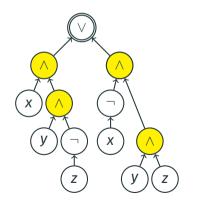
- 🕞 are only applied to variables
 - are all **deterministic**:
- The inputs are **mutually exclusive**

(= no valuation makes two inputs simultaneously evaluate to 1)



Tractable circuit class: **d-DNNF:**

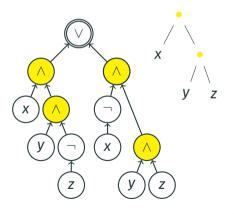
- 🕞 are only applied to variables
- 💛 are all **deterministic**:
- The inputs are **mutually exclusive**
- (= no valuation makes two inputs simultaneously evaluate to 1)
 - 🔿 are all **decomposable**:
- The inputs are **independent**
- (= no variable **x** has a path to two different inputs)



Tractable circuit class: **d-DNNF:**

- 🕞 are only applied to variables
- (V) are all **deterministic**:
- The inputs are **mutually exclusive**
- (= no valuation makes two inputs simultaneously evaluate to 1)
 - (A) are all **decomposable**:
- The inputs are **independent**
- (= no variable **x** has a path to two different inputs)

Frequent extra requirement: **structuredness** (following a **vtree**), aka **d-SDNNF**



d-DNNF requirements...

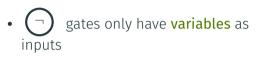
... make probability computation **easy**!

d-DNNF requirements...

... make probability computation **easy**!

d-DNNF requirements...

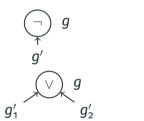
... make probability computation **easy**!



$$P(g) := 1 - P(g')$$

d-DNNF requirements...

... make probability computation **easy**!



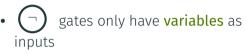
$$P(g) := 1 - P(g')$$

gates are all on

independent inputs

d-DNNF requirements...

... make probability computation **easy**!



gates always have **mutually**

 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ g'_1 \end{array} \begin{array}{c} & & \\ & &$

$$P(g) := 1 - P(g')$$

$$P(g) \mathrel{\mathop:}= P(g_1') + P(g_2')$$

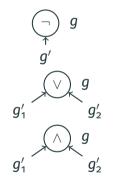
• A gates are all on independent inputs

d-DNNF requirements...

... make probability computation **easy**!

• V gates always have mutually exclusive inputs

• 🔿 gates are all on independent inputs



$$P(g) := 1 - P(g')$$

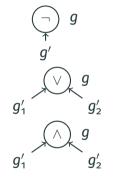
 $P(g) := P(g'_1) + P(g'_2)$

d-DNNF requirements...

... make probability computation **easy**!

• V gates always have mutually exclusive inputs

• \land gates are all on independent inputs



$$P(g) := 1 - P(g')$$

 $P(g) := P(g_1') + P(g_2')$

$$P(g) := P(g'_1) \times P(g'_2)$$

d-DNNF requirements...

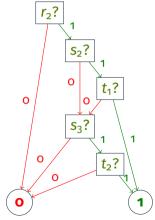
... make probability computation **easy**!

•
$$\bigcirc$$
 gates only have variables as
• \bigcirc \bigcirc g
• \bigcirc \bigcirc gates always have mutually
exclusive inputs
• \bigcirc \bigcirc gates are all on
independent inputs
 g'_1
 g'_2
 g'_1
 g'_2
 $P(g) := 1 - P(g')$
 $P(g) := P(g'_1) + P(g'_2)$
 $P(g) := P(g'_1) + P(g'_2)$

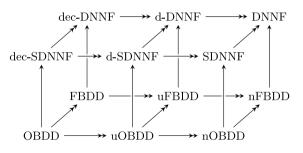
 \rightarrow If you can build a **d-DNNF provenance representation** in **PTIME**, then **PQE** is in **PTIME**

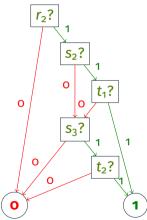
- Read-once formula: Boolean formula where each variable occurs at most once
 - \rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation

- Read-once formula: Boolean formula where each variable occurs at most once
 - \rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs

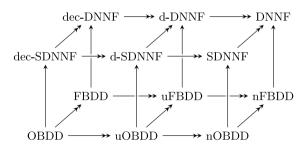


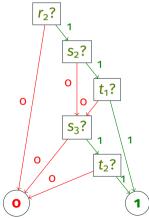
- Read-once formula: Boolean formula where each variable occurs at most once
 - \rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs





- Read-once formula: Boolean formula where each variable occurs at most once
 - \rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs





• Generalize **d-DNNFs** to **d-Ds**: allow arbitrary negations

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
 - \rightarrow We **always** have KC \Rightarrow MC

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
 - \rightarrow We **always** have KC \Rightarrow MC
 - \rightarrow **Open** if MC \Rightarrow KC: **intensional-extensional conjecture** (Mikaël's talk)

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
 - \rightarrow We **always** have KC \Rightarrow MC
 - \rightarrow **Open** if MC \Rightarrow KC: **intensional-extensional conjecture** (Mikaël's talk)

- MC: PQE is **#P-hard**
- KC: there are **no small circuits** representing provenance in a given class

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
 - \rightarrow We **always** have KC \Rightarrow MC
 - \rightarrow **Open** if MC \Rightarrow KC: **intensional-extensional conjecture** (Mikaël's talk)

- MC: PQE is **#P-hard**
- KC: there are no small circuits representing provenance in a given class
- $\overline{\text{MC}}$ is **conditional** (FP \neq #P) but $\overline{\text{KC}}$ can be **unconditional**

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
 - \rightarrow We **always** have KC \Rightarrow MC
 - \rightarrow **Open** if MC \Rightarrow KC: **intensional-extensional conjecture** (Mikaël's talk)

- MC: PQE is **#P-hard**
- KC: there are **no small circuits** representing provenance in a given class
- $\overline{\text{MC}}$ is **conditional** (FP \neq #P) but $\overline{\text{KC}}$ can be **unconditional**
- A priori incomparable:

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
 - \rightarrow We **always** have KC \Rightarrow MC
 - \rightarrow **Open** if MC \Rightarrow KC: **intensional-extensional conjecture** (Mikaël's talk)

- MC: PQE is **#P-hard**
- KC: there are **no small circuits** representing provenance in a given class
- $\overline{\text{MC}}$ is conditional (FP \neq #P) but $\overline{\text{KC}}$ can be unconditional
- A priori incomparable:
 - + $\overline{\text{MC}} \not\Rightarrow \overline{\text{KC}}$: we could have small circuits that are hard to compute

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
 - \rightarrow We **always** have KC \Rightarrow MC
 - \rightarrow **Open** if MC \Rightarrow KC: **intensional-extensional conjecture** (Mikaël's talk)

- MC: PQE is **#P-hard**
- KC: there are **no small circuits** representing provenance in a given class
- $\overline{\text{MC}}$ is conditional (FP \neq #P) but $\overline{\text{KC}}$ can be unconditional
- A priori incomparable:
 - + $\overline{\text{MC}} \not\Rightarrow \overline{\text{KC}}$: we could have small circuits that are hard to compute
 - $\overline{\text{KC}} \neq \overline{\text{MC}}$: PQE may be solvable **without circuits** (if int.-ext. conjecture fails)

Data complexity of provenance computation for UCQs and hom-closed queries

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
 - · Characterization of the UCQs for which we can compute read-once provenance

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
 - Characterization of the UCQs for which we can compute read-once provenance
 - Characterization of the UCQs for which we can compute **OBDD provenance**

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
 - Characterization of the UCQs for which we can compute read-once provenance
 - Characterization of the UCQs for which we can compute **OBDD provenance**
 - Sufficient conditions to have FBDDs and d-DNNFs

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
 - Characterization of the UCQs for which we can compute read-once provenance
 - Characterization of the UCQs for which we can compute **OBDD provenance**
 - Sufficient conditions to have FBDDs and d-DNNFs
- In particular, for UCQs:
 - Open if safe UCQs have small d-D provenance circuits (intensional-extensional conjecture)
 - **Open** if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
 - Characterization of the UCQs for which we can compute read-once provenance
 - Characterization of the UCQs for which we can compute **OBDD provenance**
 - Sufficient conditions to have FBDDs and d-DNNFs
- In particular, for UCQs:
 - Open if safe UCQs have small d-D provenance circuits (intensional-extensional conjecture)
 - **Open** if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)
- For homomorphism-closed queries: open

Going back to the setting of **restricted instance classes**, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query Q and treelike instance family I, given an instance I in I, we can compute the provenance of Q on I in PTIME as a *d-SDNNF circuit*

Going back to the setting of **restricted instance classes**, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query Q and treelike instance family I, given an instance I in I, we can compute the provenance of Q on I in PTIME as a *d-SDNNF circuit*

Can we get a weaker representation (uOBDD, etc.)? **Open**

Going back to the setting of **restricted instance classes**, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query Q and treelike instance family I, given an instance I in I, we can compute the provenance of Q on I in PTIME as a *d-SDNNF circuit*

Can we get a weaker representation (uOBDD, etc.)? **Open**

What happens on high-treewidth instances?

Going back to the setting of **restricted instance classes**, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query Q and treelike instance family I, given an instance I in I, we can compute the provenance of Q on I in PTIME as a *d-SDNNF circuit*

Can we get a weaker representation (uOBDD, etc.)? **Open**

What happens on high-treewidth instances?

Theorem (A., Bourhis, Senellart, PODS'16; A., Monet, Senellart, ICDT'18)

For the "two incident facts" query Q_2 , given an instance I, any d-SDNNF representation of the provenance of Q_2 on I is exponential: in $\Omega(2^{tw(l)^{1/d}})$ for some $d \ge 1$

For which other queries is this true? Mostly **open** (some results for connected UCQ[≠])

Going back to the setting of **restricted instance classes**, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query Q and treelike instance family I, given an instance I in I, we can compute the provenance of Q on I in PTIME as a *d-SDNNF circuit*

Can we get a weaker representation (uOBDD, etc.)? **Open**

What happens on high-treewidth instances?

Theorem (A., Bourhis, Senellart, PODS'16; A., Monet, Senellart, ICDT'18)

For the "two incident facts" query Q_2 , given an instance I, any d-SDNNF representation of the provenance of Q_2 on I is exponential: in $\Omega(2^{tw(l)^{1/d}})$ for some $d \ge 1$

For which other queries is this true? Mostly **open** (some results for connected UCQ^{\neq})

What about more expressive circuit formalisms (d-DNNF)? Open

Many combined complexity upper bounds for PQE come from **knowledge compilation**...

Many combined complexity upper bounds for PQE come from **knowledge compilation**...

• ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to **nOBDDs** for the combined FPRAS for **one-way paths** on **DAGs** (ICDT'24)

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to **nOBDDs** for the combined FPRAS for **one-way paths** on **DAGs** (ICDT'24)
- ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward trees and for connected queries on two-way paths (PODS'17)

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to **nOBDDs** for the combined FPRAS for **one-way paths** on **DAGs** (ICDT'24)
- ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward trees and for connected queries on two-way paths (PODS'17)

Many combined complexity **lower bounds** for PQE also apply to **knowledge compilation**:

- Exponential lower bounds on DNNF provenance representations of one-way path queries on arbitrary instance graphs (ICDT'24)
 - ightarrow Same applies to all cases where we show that there is (conditionally) no FPRAS

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to **nOBDDs** for the combined FPRAS for **one-way paths** on **DAGs** (ICDT'24)
- ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward trees and for connected queries on two-way paths (PODS'17)

Many combined complexity **lower bounds** for PQE also apply to **knowledge compilation**:

- Exponential lower bounds on DNNF provenance representations of one-way path queries on arbitrary instance graphs (ICDT'24)
 - ightarrow Same applies to all cases where we show that there is (conditionally) no FPRAS
- **Open** if the classes above (SDNNF, nOBDDs, β -acyclic) are "as small as possible"

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to **nOBDDs** for the combined FPRAS for **one-way paths** on **DAGs** (ICDT'24)
- ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward trees and for connected queries on two-way paths (PODS'17)

Many combined complexity **lower bounds** for PQE also apply to **knowledge compilation**:

- Exponential lower bounds on DNNF provenance representations of one-way path queries on arbitrary instance graphs (ICDT'24)
 - ightarrow Same applies to all cases where we show that there is (conditionally) no FPRAS
- **Open** if the classes above (SDNNF, nOBDDs, β -acyclic) are "as small as possible"

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

We have seen two frameworks for query explanation via the Boolean provenance, i.e., via the **possible worlds** that satisfy the query:

- Model counting: unweighted (UR) or weighted (PQE)
- Knowledge compilation: representing the Boolean provenance in tractable circuit classes

We have seen two frameworks for query explanation via the Boolean provenance, i.e., via the **possible worlds** that satisfy the query:

- Model counting: unweighted (UR) or weighted (PQE)
- Knowledge compilation: representing the Boolean provenance in tractable circuit classes

We have studied this in **several settings**:

- Data complexity for SJFCQs, UCQs, hom-closed queries, etc.
- Data complexity on restricted instance families (treelike or not)
- Combined complexity

Open problems

General research directions on these topics:

- **Connections between these two frameworks** (intensional-extensional conjecture? lower bound techniques?)
- Connections to **other aggregate queries**? (Shapley value, etc.)
- Other provenance uses? semirings, enumeration, incremental maintenance...

Open problems

General research directions on these topics:

- **Connections between these two frameworks** (intensional-extensional conjecture? lower bound techniques?)
- Connections to **other aggregate queries**? (Shapley value, etc.)
- Other provenance uses? semirings, enumeration, incremental maintenance...

Many **open questions** throughout the talk:

- Queries with **inequalities**, **negation**, **first-order** queries: (approximate) PQE?
- Can we show dichotomies on approximation for unbounded queries (RPQs...)
- Understanding higher-arity and uniform reliability where it is still open
- Unbounded queries: what if some relations are **non-probabilistic**?
- Are there **joint criteria** for the tractability of instances and queries?

Open problems

General research directions on these topics:

- **Connections between these two frameworks** (intensional-extensional conjecture? lower bound techniques?)
- Connections to **other aggregate queries**? (Shapley value, etc.)
- Other provenance uses? semirings, enumeration, incremental maintenance...

Many **open questions** throughout the talk:

- Queries with **inequalities**, **negation**, **first-order** queries: (approximate) PQE?
- Can we show dichotomies on approximation for unbounded queries (RPQs...)
- Understanding higher-arity and uniform reliability where it is still open
- Unbounded queries: what if some relations are **non-probabilistic**?
- Are there joint criteria for the tractability of instances and queries?

Thanks for your attention!

Amarilli, A., Bourhis, P., and Senellart, P. (2015). **Provenance circuits for trees and treelike instances.**

In ICALP.

Amarilli, A., Bourhis, P., and Senellart, P. (2016).

Tractable lineages on treelike instances: Limits and extensions.

In PODS.

Amarilli, A. and Ceylan, I. I. (2020).

A dichotomy for homomorphism-closed queries on probabilistic graphs. In *ICDT*.

Amarilli, A. and Ceylan, I. I. (2022).

The dichotomy of evaluating homomorphism-closed queries on probabilistic graphs. *LMCS*.

Amarilli, A. and Kimelfeld, B. (2021).

Uniform Reliability of Self-Join-Free Conjunctive Queries.

In *ICDT*.

Amarilli, A. and Kimelfeld, B. (2022).

Uniform Reliability of Self-Join-Free Conjunctive Queries.

LMCS.

Amarilli, A., Monet, M., and Senellart, P. (2017).

Conjunctive queries on probabilistic graphs: Combined complexity. In *PODS.*

Amarilli, A., van Bremen, T., and Meel, K. S. (2024).

Conjunctive queries on probabilistic graphs: The limits of approximability. In *ICDT*.

Arenas, M., Croquevielle, L. A., Jayaram, R., and Riveros, C. (2021a). When is approximate counting for conjunctive queries tractable? In *STOC*. Arenas, M., Croquevielle, L. A., Jayaram, R., and Riveros, C. (2021b). **#NFA admits an FPRAS: Efficient enumeration, counting, and uniform generation for logspace classes.**

JACM, 68(6).

Chekuri, C. and Chuzhoy, J. (2016).

Polynomial bounds for the grid-minor theorem.

JACM, 63(5).

Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009). **Running tree automata on probabilistic XML.** In *PODS*.

Dalvi, N. and Suciu, D. (2004).

Efficient query evaluation on probabilistic databases.

In VLDB.

Dalvi, N. and Suciu, D. (2007).

The dichotomy of conjunctive queries on probabilistic structures.

In PODS.

Dalvi, N. and Suciu, D. (2012).

The dichotomy of probabilistic inference for unions of conjunctive queries. *J. ACM*, 59(6).

Jha, A. and Suciu, D. (2011).

Knowledge compilation meets database theory: Compiling queries to decision diagrams.

In *ICDT*.

Jha, A. and Suciu, D. (2013).

Knowledge compilation meets database theory: Compiling queries to decision diagrams.

TCS, 52(3).

Kenig, B. and Suciu, D. (2021).

A dichotomy for the generalized model counting problem for unions of conjunctive queries.

In PODS.

van Bremen, T. and Meel, K. S. (2023).

Probabilistic query evaluation: The combined FPRAS landscape.

In PODS.