
Query Evaluation with Model Counting and Knowledge
Compilation: A Survey of Old and Recent Results

Antoine Amarilli
January 16th, 2024

Télécom Paris

1/30



Table of contents

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

2/30



Explanations for Boolean queries

• We focus on query evaluation: evaluate a query on data

R

a b
a b′

S

b c
b′ c′

Instance

Q(x, z) : ∃y R(x, y) ∧ S(y, z)
Query x z

a c
a c′

Results

• We can test all answers (polynomial for fixed arity): focus on Boolean queries

• We want to explain the Boolean result by considering all subsets of input facts

3/30



Explanations for Boolean queries

• We focus on query evaluation: evaluate a query on data

R

a b
a b′

S

b c
b′ c′

Instance

Q(x, z) : ∃y R(x, y) ∧ S(y, z)
Query x z

a c
a c′

Results

• We can test all answers (polynomial for fixed arity): focus on Boolean queries

• We want to explain the Boolean result by considering all subsets of input facts

3/30



Explanations for Boolean queries

• We focus on query evaluation: evaluate a query on data

R

a b
a b′

S

b c
b′ c′

Instance

Q : ∃xyz R(x, y) ∧ S(y, z)
Query

YES/NO
Answer

• We can test all answers (polynomial for fixed arity): focus on Boolean queries

• We want to explain the Boolean result by considering all subsets of input facts

3/30



Explanations for Boolean queries

• We focus on query evaluation: evaluate a query on data

R

a b
a b′

S

b c
b′ c′

Instance

Q : ∃xyz R(x, y) ∧ S(y, z)
Query

YES/NO
Answer

• We can test all answers (polynomial for fixed arity): focus on Boolean queries

• We want to explain the Boolean result by considering all subsets of input facts
3/30



Explanations for Boolean queries

• We focus on query evaluation: evaluate a query on data

R

a b
a b′

S

b c
b′ c′

Instance

Q : ∃xyz R(x, y) ∧ S(y, z)
Query

YES/NO
Answer

• We can test all answers (polynomial for fixed arity): focus on Boolean queries

• We want to explain the Boolean result by considering all subsets of input facts
3/30



Explanations for Boolean queries

• We focus on query evaluation: evaluate a query on data

R

a b
a b′

S

b c
b′ c′

Instance

Q : ∃xyz R(x, y) ∧ S(y, z)
Query

YES/NO
Answer

• We can test all answers (polynomial for fixed arity): focus on Boolean queries

• We want to explain the Boolean result by considering all subsets of input facts
3/30



Model counting and knowledge compilation

Query: Q : ∃xyz R(x, y) ∧ S(y, z)
R

a b

r1

a b′

r2

S

b c

s1

b′ c′

s2

• Add a unique identifier to every fact of the instance I
• There are exponentially many subsets of I: “possible worlds”
• We want to understand on which possible worlds the query Q is true...

• Model counting: count how many possible worlds satisfy Q (here: 7)
• Uniform reliability (UR): unweighted counting
• Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
• Shapley values: another kind of aggregate

• Knowledge compilation: compute a representation of the Boolean provenance, i.e., the
set of possible worlds satisfying Q (here: (r1 ∧ s1) ∨ (r2 ∧ s2))

• Depends on the class of representations: circuits, diagrams, d-SDNNFs...
• Intensional approach: we can use knowledge compilation for model counting

4/30



Model counting and knowledge compilation

Query: Q : ∃xyz R(x, y) ∧ S(y, z)
R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

• Add a unique identifier to every fact of the instance I

• There are exponentially many subsets of I: “possible worlds”
• We want to understand on which possible worlds the query Q is true...

• Model counting: count how many possible worlds satisfy Q (here: 7)
• Uniform reliability (UR): unweighted counting
• Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
• Shapley values: another kind of aggregate

• Knowledge compilation: compute a representation of the Boolean provenance, i.e., the
set of possible worlds satisfying Q (here: (r1 ∧ s1) ∨ (r2 ∧ s2))

• Depends on the class of representations: circuits, diagrams, d-SDNNFs...
• Intensional approach: we can use knowledge compilation for model counting

4/30



Model counting and knowledge compilation

Query: Q : ∃xyz R(x, y) ∧ S(y, z)
R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

• Add a unique identifier to every fact of the instance I
• There are exponentially many subsets of I: “possible worlds”

• We want to understand on which possible worlds the query Q is true...
• Model counting: count how many possible worlds satisfy Q (here: 7)

• Uniform reliability (UR): unweighted counting
• Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
• Shapley values: another kind of aggregate

• Knowledge compilation: compute a representation of the Boolean provenance, i.e., the
set of possible worlds satisfying Q (here: (r1 ∧ s1) ∨ (r2 ∧ s2))

• Depends on the class of representations: circuits, diagrams, d-SDNNFs...
• Intensional approach: we can use knowledge compilation for model counting

4/30



Model counting and knowledge compilation

Query: Q : ∃xyz R(x, y) ∧ S(y, z)
R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

• Add a unique identifier to every fact of the instance I
• There are exponentially many subsets of I: “possible worlds”
• We want to understand on which possible worlds the query Q is true...

• Model counting: count how many possible worlds satisfy Q (here: 7)
• Uniform reliability (UR): unweighted counting
• Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
• Shapley values: another kind of aggregate

• Knowledge compilation: compute a representation of the Boolean provenance, i.e., the
set of possible worlds satisfying Q (here: (r1 ∧ s1) ∨ (r2 ∧ s2))

• Depends on the class of representations: circuits, diagrams, d-SDNNFs...
• Intensional approach: we can use knowledge compilation for model counting

4/30



Model counting and knowledge compilation

Query: Q : ∃xyz R(x, y) ∧ S(y, z)
R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

• Add a unique identifier to every fact of the instance I
• There are exponentially many subsets of I: “possible worlds”
• We want to understand on which possible worlds the query Q is true...

• Model counting: count how many possible worlds satisfy Q (here: 7)
• Uniform reliability (UR): unweighted counting
• Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
• Shapley values: another kind of aggregate

• Knowledge compilation: compute a representation of the Boolean provenance, i.e., the
set of possible worlds satisfying Q (here: (r1 ∧ s1) ∨ (r2 ∧ s2))

• Depends on the class of representations: circuits, diagrams, d-SDNNFs...
• Intensional approach: we can use knowledge compilation for model counting

4/30



Model counting and knowledge compilation

Query: Q : ∃xyz R(x, y) ∧ S(y, z)
R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

• Add a unique identifier to every fact of the instance I
• There are exponentially many subsets of I: “possible worlds”
• We want to understand on which possible worlds the query Q is true...

• Model counting: count how many possible worlds satisfy Q (here: 7)
• Uniform reliability (UR): unweighted counting
• Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
• Shapley values: another kind of aggregate

• Knowledge compilation: compute a representation of the Boolean provenance, i.e., the
set of possible worlds satisfying Q (here: (r1 ∧ s1) ∨ (r2 ∧ s2))

• Depends on the class of representations: circuits, diagrams, d-SDNNFs...
• Intensional approach: we can use knowledge compilation for model counting 4/30



Roadmap

Goal of this talk: give an overview of results on query evaluation for:

• Model counting: (approximate) counting algorithms / hardness bounds

• Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Settings covered in each case:

• Data complexity of various queries on arbitrary data
→ Self-join-free CQs, UCQs, homomorphism-closed queries, etc.

• Data complexity of expressive queries (MSO) on restricted data (treelike)

• Combined complexity

5/30



Roadmap

Goal of this talk: give an overview of results on query evaluation for:

• Model counting: (approximate) counting algorithms / hardness bounds

• Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Settings covered in each case:

• Data complexity of various queries on arbitrary data
→ Self-join-free CQs, UCQs, homomorphism-closed queries, etc.

• Data complexity of expressive queries (MSO) on restricted data (treelike)

• Combined complexity

5/30



Roadmap

Goal of this talk: give an overview of results on query evaluation for:

• Model counting: (approximate) counting algorithms / hardness bounds

• Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Settings covered in each case:

• Data complexity of various queries on arbitrary data
→ Self-join-free CQs, UCQs, homomorphism-closed queries, etc.

• Data complexity of expressive queries (MSO) on restricted data (treelike)

• Combined complexity

5/30



Roadmap

Goal of this talk: give an overview of results on query evaluation for:

• Model counting: (approximate) counting algorithms / hardness bounds

• Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Settings covered in each case:

• Data complexity of various queries on arbitrary data
→ Self-join-free CQs, UCQs, homomorphism-closed queries, etc.

• Data complexity of expressive queries (MSO) on restricted data (treelike)

• Combined complexity

5/30



Roadmap

Goal of this talk: give an overview of results on query evaluation for:

• Model counting: (approximate) counting algorithms / hardness bounds

• Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Settings covered in each case:

• Data complexity of various queries on arbitrary data
→ Self-join-free CQs, UCQs, homomorphism-closed queries, etc.

• Data complexity of expressive queries (MSO) on restricted data (treelike)

• Combined complexity

5/30



Table of contents

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

6/30



Model counting and data complexity

• Fix: a Boolean query Q (maps every database to true or false)

• Input: a relational database I
• For PQE: also give a probability to each fact in the input

• Output:
• For UR: the number of subsets of I such that Q is satisfied
• For PQE: the probability of getting such a subset (assuming independence)

• Data complexity: study complexity of UR(Q) and PQE(Q) as a function of I

→ For which queries Q are these problems UR(Q) and PQE(Q) solvable in PTIME?

7/30



Model counting and data complexity

• Fix: a Boolean query Q (maps every database to true or false)

• Input: a relational database I
• For PQE: also give a probability to each fact in the input

• Output:
• For UR: the number of subsets of I such that Q is satisfied
• For PQE: the probability of getting such a subset (assuming independence)

• Data complexity: study complexity of UR(Q) and PQE(Q) as a function of I

→ For which queries Q are these problems UR(Q) and PQE(Q) solvable in PTIME?

7/30



Model counting and data complexity

• Fix: a Boolean query Q (maps every database to true or false)

• Input: a relational database I
• For PQE: also give a probability to each fact in the input

• Output:
• For UR: the number of subsets of I such that Q is satisfied
• For PQE: the probability of getting such a subset (assuming independence)

• Data complexity: study complexity of UR(Q) and PQE(Q) as a function of I

→ For which queries Q are these problems UR(Q) and PQE(Q) solvable in PTIME?

7/30



Model counting and data complexity

• Fix: a Boolean query Q (maps every database to true or false)

• Input: a relational database I
• For PQE: also give a probability to each fact in the input

• Output:
• For UR: the number of subsets of I such that Q is satisfied
• For PQE: the probability of getting such a subset (assuming independence)

• Data complexity: study complexity of UR(Q) and PQE(Q) as a function of I

→ For which queries Q are these problems UR(Q) and PQE(Q) solvable in PTIME?

7/30



Data complexity of model counting for SJFCQs

A self-join free conjunctive query (SJFCQ) is a CQ without repeated relations

Theorem (Dalvi, Suciu, VLDB’04, VLDBJ’07)
The following dichotomy holds on SJFCQs Q:

• If Q is hierarchical, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

Theorem (A., Kimelfeld, ICDT’21, LMCS’22)
The same dichotomy holds for uniform reliability (UR(Q))

8/30



Data complexity of model counting for SJFCQs

A self-join free conjunctive query (SJFCQ) is a CQ without repeated relations

Theorem (Dalvi, Suciu, VLDB’04, VLDBJ’07)
The following dichotomy holds on SJFCQs Q:

• If Q is hierarchical, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

Theorem (A., Kimelfeld, ICDT’21, LMCS’22)
The same dichotomy holds for uniform reliability (UR(Q))

8/30



Data complexity of model counting for UCQs

For the class of unions of conjunctive queries (UCQs):

Theorem (Dalvi, Suciu, JACM’12)
The following dichotomy holds on UCQs Q:

• If Q is safe, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

Theorem (Kenig, Suciu, PODS’21)

• The same dichotomy holds even when probabilities can only be 1/2 and 1 (and 0)

• For some unsafe UCQs, hardness already holds for uniform reliability

Is UR(Q) #P-hard for every unsafe UCQ, like PQE(Q)? Open

9/30



Data complexity of model counting for UCQs

For the class of unions of conjunctive queries (UCQs):

Theorem (Dalvi, Suciu, JACM’12)
The following dichotomy holds on UCQs Q:

• If Q is safe, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

Theorem (Kenig, Suciu, PODS’21)

• The same dichotomy holds even when probabilities can only be 1/2 and 1 (and 0)

• For some unsafe UCQs, hardness already holds for uniform reliability

Is UR(Q) #P-hard for every unsafe UCQ, like PQE(Q)? Open

9/30



Data complexity of model counting for UCQs

For the class of unions of conjunctive queries (UCQs):

Theorem (Dalvi, Suciu, JACM’12)
The following dichotomy holds on UCQs Q:

• If Q is safe, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

Theorem (Kenig, Suciu, PODS’21)

• The same dichotomy holds even when probabilities can only be 1/2 and 1 (and 0)

• For some unsafe UCQs, hardness already holds for uniform reliability

Is UR(Q) #P-hard for every unsafe UCQ, like PQE(Q)? Open
9/30



Data complexity of model counting for homomorphism-closed queries

• A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms

→ If I satisfies Q and I has a homomorphism to I′ then I′ satisfies Q
→ Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

• A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT’20, LMCS’22)
On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE
problem is #P-hard

Theorem (A., ICDT’23)
The same holds for the UR problem

Do these hardness results extend to higher-arity signatures? Open

10/30



Data complexity of model counting for homomorphism-closed queries

• A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
→ If I satisfies Q and I has a homomorphism to I′ then I′ satisfies Q
→ Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

• A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT’20, LMCS’22)
On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE
problem is #P-hard

Theorem (A., ICDT’23)
The same holds for the UR problem

Do these hardness results extend to higher-arity signatures? Open

10/30



Data complexity of model counting for homomorphism-closed queries

• A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
→ If I satisfies Q and I has a homomorphism to I′ then I′ satisfies Q
→ Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

• A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT’20, LMCS’22)
On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE
problem is #P-hard

Theorem (A., ICDT’23)
The same holds for the UR problem

Do these hardness results extend to higher-arity signatures? Open

10/30



Data complexity of model counting for homomorphism-closed queries

• A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
→ If I satisfies Q and I has a homomorphism to I′ then I′ satisfies Q
→ Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

• A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT’20, LMCS’22)
On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE
problem is #P-hard

Theorem (A., ICDT’23)
The same holds for the UR problem

Do these hardness results extend to higher-arity signatures? Open

10/30



Data complexity of model counting for homomorphism-closed queries

• A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
→ If I satisfies Q and I has a homomorphism to I′ then I′ satisfies Q
→ Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

• A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT’20, LMCS’22)
On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE
problem is #P-hard

Theorem (A., ICDT’23)
The same holds for the UR problem

Do these hardness results extend to higher-arity signatures? Open

10/30



Data complexity of model counting for homomorphism-closed queries

• A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
→ If I satisfies Q and I has a homomorphism to I′ then I′ satisfies Q
→ Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

• A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT’20, LMCS’22)
On arity-two signatures, for any unbounded homomorphism-closed query Q, the PQE
problem is #P-hard

Theorem (A., ICDT’23)
The same holds for the UR problem

Do these hardness results extend to higher-arity signatures? Open
10/30



Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: restrict the input instance!

• Fix: a query Q and an instance family I

• Input: a relational database I in I
• For PQE: also give a probability to each fact in the input

• Output:
• For UR: the number of subsets of I such that Q is satisfied
• For PQE: the probability of getting such a subset (assuming independence)

→ For which queries Q and which instance families I are these problems
UR(Q, I) and PQE(Q, I) solvable in PTIME?

11/30



Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: restrict the input instance!

• Fix: a query Q and an instance family I

• Input: a relational database I in I
• For PQE: also give a probability to each fact in the input

• Output:
• For UR: the number of subsets of I such that Q is satisfied
• For PQE: the probability of getting such a subset (assuming independence)

→ For which queries Q and which instance families I are these problems
UR(Q, I) and PQE(Q, I) solvable in PTIME?

11/30



Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: restrict the input instance!

• Fix: a query Q and an instance family I

• Input: a relational database I in I
• For PQE: also give a probability to each fact in the input

• Output:
• For UR: the number of subsets of I such that Q is satisfied
• For PQE: the probability of getting such a subset (assuming independence)

→ For which queries Q and which instance families I are these problems
UR(Q, I) and PQE(Q, I) solvable in PTIME?

11/30



Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: restrict the input instance!

• Fix: a query Q and an instance family I

• Input: a relational database I in I
• For PQE: also give a probability to each fact in the input

• Output:
• For UR: the number of subsets of I such that Q is satisfied
• For PQE: the probability of getting such a subset (assuming independence)

→ For which queries Q and which instance families I are these problems
UR(Q, I) and PQE(Q, I) solvable in PTIME?

11/30



Data complexity of model counting: MSO on treelike instances

• Treewidth is a parameter intuitively measuring how close a graph is to a tree

• An instance family I is treelike if there is a constant k ∈ N such that all instances
in I have treewidth ≤ k

• Monadic second-order logic (MSO) is a query language extending first-order logic
with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP’15)
For any MSO query Q and treelike instance family I , the problem PQE(Q) is in PTIME

• In particular: PQE is in PTIME for tree automata over probabilistic trees (already in:
Cohen, Kimelfeld, Sagiv, PODS’09)

→ Is treelikeness the only condition on the instance that makes PQE tractable?

12/30



Data complexity of model counting: MSO on treelike instances

• Treewidth is a parameter intuitively measuring how close a graph is to a tree

• An instance family I is treelike if there is a constant k ∈ N such that all instances
in I have treewidth ≤ k

• Monadic second-order logic (MSO) is a query language extending first-order logic
with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP’15)
For any MSO query Q and treelike instance family I , the problem PQE(Q) is in PTIME

• In particular: PQE is in PTIME for tree automata over probabilistic trees (already in:
Cohen, Kimelfeld, Sagiv, PODS’09)

→ Is treelikeness the only condition on the instance that makes PQE tractable?

12/30



Data complexity of model counting: MSO on treelike instances

• Treewidth is a parameter intuitively measuring how close a graph is to a tree

• An instance family I is treelike if there is a constant k ∈ N such that all instances
in I have treewidth ≤ k

• Monadic second-order logic (MSO) is a query language extending first-order logic
with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP’15)
For any MSO query Q and treelike instance family I , the problem PQE(Q) is in PTIME

• In particular: PQE is in PTIME for tree automata over probabilistic trees (already in:
Cohen, Kimelfeld, Sagiv, PODS’09)

→ Is treelikeness the only condition on the instance that makes PQE tractable?

12/30



Data complexity of model counting: MSO on treelike instances

• Treewidth is a parameter intuitively measuring how close a graph is to a tree

• An instance family I is treelike if there is a constant k ∈ N such that all instances
in I have treewidth ≤ k

• Monadic second-order logic (MSO) is a query language extending first-order logic
with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP’15)
For any MSO query Q and treelike instance family I , the problem PQE(Q) is in PTIME

• In particular: PQE is in PTIME for tree automata over probabilistic trees (already in:
Cohen, Kimelfeld, Sagiv, PODS’09)

→ Is treelikeness the only condition on the instance that makes PQE tractable?

12/30



Data complexity of model counting: MSO on treelike instances

• Treewidth is a parameter intuitively measuring how close a graph is to a tree

• An instance family I is treelike if there is a constant k ∈ N such that all instances
in I have treewidth ≤ k

• Monadic second-order logic (MSO) is a query language extending first-order logic
with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP’15)
For any MSO query Q and treelike instance family I , the problem PQE(Q) is in PTIME

• In particular: PQE is in PTIME for tree automata over probabilistic trees (already in:
Cohen, Kimelfeld, Sagiv, PODS’09)

→ Is treelikeness the only condition on the instance that makes PQE tractable?

12/30



Data complexity of model counting: MSO on treelike instances

• Treewidth is a parameter intuitively measuring how close a graph is to a tree

• An instance family I is treelike if there is a constant k ∈ N such that all instances
in I have treewidth ≤ k

• Monadic second-order logic (MSO) is a query language extending first-order logic
with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP’15)
For any MSO query Q and treelike instance family I , the problem PQE(Q) is in PTIME

• In particular: PQE is in PTIME for tree automata over probabilistic trees (already in:
Cohen, Kimelfeld, Sagiv, PODS’09)

→ Is treelikeness the only condition on the instance that makes PQE tractable?
12/30



Data complexity: Counting matchings on unbounded-treewidth graphs

• Fix a binary relation R, let Q2 be the query asking if there are two incident facts
→ Q2 is a UCQ with inequalities: (R(x, y) ∨ R(y, x)) ∧ (R(y, z) ∨ R(z, y)) ∧ x ̸= z

• A non-treelike instance family I is treewidth-constructible if, given k ∈ N, we can
compute in time Poly(k) an instance in I with treewidth at least k

Theorem (A., Monet, MFCS’22)
For any treewidth-constructible instance family I , the problem PQE(Q2) is #P-hard
under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM’16))

• Does this intractability result also hold for UR? Open

• For which other queries than Q2 does this hold? What about higher arity? Open

13/30



Data complexity: Counting matchings on unbounded-treewidth graphs

• Fix a binary relation R, let Q2 be the query asking if there are two incident facts
→ Q2 is a UCQ with inequalities: (R(x, y) ∨ R(y, x)) ∧ (R(y, z) ∨ R(z, y)) ∧ x ̸= z

• A non-treelike instance family I is treewidth-constructible if, given k ∈ N, we can
compute in time Poly(k) an instance in I with treewidth at least k

Theorem (A., Monet, MFCS’22)
For any treewidth-constructible instance family I , the problem PQE(Q2) is #P-hard
under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM’16))

• Does this intractability result also hold for UR? Open

• For which other queries than Q2 does this hold? What about higher arity? Open

13/30



Data complexity: Counting matchings on unbounded-treewidth graphs

• Fix a binary relation R, let Q2 be the query asking if there are two incident facts
→ Q2 is a UCQ with inequalities: (R(x, y) ∨ R(y, x)) ∧ (R(y, z) ∨ R(z, y)) ∧ x ̸= z

• A non-treelike instance family I is treewidth-constructible if, given k ∈ N, we can
compute in time Poly(k) an instance in I with treewidth at least k

Theorem (A., Monet, MFCS’22)
For any treewidth-constructible instance family I , the problem PQE(Q2) is #P-hard
under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM’16))

• Does this intractability result also hold for UR? Open

• For which other queries than Q2 does this hold? What about higher arity? Open

13/30



Data complexity: Counting matchings on unbounded-treewidth graphs

• Fix a binary relation R, let Q2 be the query asking if there are two incident facts
→ Q2 is a UCQ with inequalities: (R(x, y) ∨ R(y, x)) ∧ (R(y, z) ∨ R(z, y)) ∧ x ̸= z

• A non-treelike instance family I is treewidth-constructible if, given k ∈ N, we can
compute in time Poly(k) an instance in I with treewidth at least k

Theorem (A., Monet, MFCS’22)
For any treewidth-constructible instance family I , the problem PQE(Q2) is #P-hard
under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM’16))

• Does this intractability result also hold for UR? Open

• For which other queries than Q2 does this hold? What about higher arity? Open

13/30



Data complexity: Counting matchings on unbounded-treewidth graphs

• Fix a binary relation R, let Q2 be the query asking if there are two incident facts
→ Q2 is a UCQ with inequalities: (R(x, y) ∨ R(y, x)) ∧ (R(y, z) ∨ R(z, y)) ∧ x ̸= z

• A non-treelike instance family I is treewidth-constructible if, given k ∈ N, we can
compute in time Poly(k) an instance in I with treewidth at least k

Theorem (A., Monet, MFCS’22)
For any treewidth-constructible instance family I , the problem PQE(Q2) is #P-hard
under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM’16))

• Does this intractability result also hold for UR? Open

• For which other queries than Q2 does this hold? What about higher arity? Open

13/30



Data complexity: Counting matchings on unbounded-treewidth graphs

• Fix a binary relation R, let Q2 be the query asking if there are two incident facts
→ Q2 is a UCQ with inequalities: (R(x, y) ∨ R(y, x)) ∧ (R(y, z) ∨ R(z, y)) ∧ x ̸= z

• A non-treelike instance family I is treewidth-constructible if, given k ∈ N, we can
compute in time Poly(k) an instance in I with treewidth at least k

Theorem (A., Monet, MFCS’22)
For any treewidth-constructible instance family I , the problem PQE(Q2) is #P-hard
under ZPP reductions

(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM’16))

• Does this intractability result also hold for UR? Open

• For which other queries than Q2 does this hold? What about higher arity? Open

13/30



Model counting: Combined complexity

• Input: an arity-two signature, a query Q, an instance I with probabilities on facts
• Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

R S T

1WP: one-way paths

R R T

2WP: two-way paths

R
S T

S T

DWT: downward trees

R S T
S T

PT: polytrees
Theorem (A., Monet, Senellart, PODS’17)

Labeled case (at least 2 relation names)

Q I Q I

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven’t thought about it)

14/30



Model counting: Combined complexity

• Input: an arity-two signature, a query Q, an instance I with probabilities on facts
• Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

R S T

1WP: one-way paths

R R T

2WP: two-way paths

R
S T

S T

DWT: downward trees

R S T
S T

PT: polytrees
Theorem (A., Monet, Senellart, PODS’17)

Labeled case (at least 2 relation names)

Q I Q I

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven’t thought about it)

14/30



Model counting: Combined complexity

• Input: an arity-two signature, a query Q, an instance I with probabilities on facts
• Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

R S T

1WP: one-way paths

R R T

2WP: two-way paths

R
S T

S T

DWT: downward trees

R S T
S T

PT: polytrees
Theorem (A., Monet, Senellart, PODS’17)

Labeled case (at least 2 relation names)

Q I Q I

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven’t thought about it)

14/30



Model counting: Combined complexity

• Input: an arity-two signature, a query Q, an instance I with probabilities on facts
• Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

R S T

1WP: one-way paths

R R T

2WP: two-way paths

R
S T

S T

DWT: downward trees

R S T
S T

PT: polytrees
Theorem (A., Monet, Senellart, PODS’17)

Labeled case (at least 2 relation names)

Q I Q I

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven’t thought about it)

14/30



Model counting: Combined complexity

• Input: an arity-two signature, a query Q, an instance I with probabilities on facts
• Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

R S T

1WP: one-way paths

R R T

2WP: two-way paths

R
S T

S T

DWT: downward trees

R S T
S T

PT: polytrees
Theorem (A., Monet, Senellart, PODS’17)

Labeled case (at least 2 relation names)

Q I Q I

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven’t thought about it)

14/30



Model counting: Combined complexity

• Input: an arity-two signature, a query Q, an instance I with probabilities on facts
• Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

R S T

1WP: one-way paths

R R T

2WP: two-way paths

R
S T

S T

DWT: downward trees

R S T
S T

PT: polytrees

Theorem (A., Monet, Senellart, PODS’17)
Labeled case (at least 2 relation names)

Q I Q I

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven’t thought about it)

14/30



Model counting: Combined complexity

• Input: an arity-two signature, a query Q, an instance I with probabilities on facts
• Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

R S T

1WP: one-way paths

R R T

2WP: two-way paths

R
S T

S T

DWT: downward trees

R S T
S T

PT: polytrees
Theorem (A., Monet, Senellart, PODS’17)

Labeled case (at least 2 relation names)

Q I Q I

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven’t thought about it)

14/30



Model counting: Combined complexity

• Input: an arity-two signature, a query Q, an instance I with probabilities on facts
• Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

R S T

1WP: one-way paths

R R T

2WP: two-way paths

R
S T

S T

DWT: downward trees

R S T
S T

PT: polytrees
Theorem (A., Monet, Senellart, PODS’17)

Labeled case (at least 2 relation names)

Q I Q I

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven’t thought about it) 14/30



Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an
approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error ϵ > 0 which...

Additive FPRAS: • ... with probability > 1/2, gives an answer x′
with additive error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that x − ϵ < x′ < x + ϵ

→ Always possible (Monte Carlo) if you can sample and evaluate in PTIME

FPRAS: • ... with probability > 1/2, gives an answer x′
with multiplicative error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that (1 − ϵ)x < x′ < (1 + ϵ)x
→ Rest of the talk only covers this notion

15/30



Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an
approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error ϵ > 0 which...

Additive FPRAS: • ... with probability > 1/2, gives an answer x′
with additive error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that x − ϵ < x′ < x + ϵ

→ Always possible (Monte Carlo) if you can sample and evaluate in PTIME

FPRAS: • ... with probability > 1/2, gives an answer x′
with multiplicative error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that (1 − ϵ)x < x′ < (1 + ϵ)x
→ Rest of the talk only covers this notion

15/30



Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an
approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error ϵ > 0 which...

Additive FPRAS: • ... with probability > 1/2, gives an answer x′
with additive error ≤ ϵ wrt the true answer x

→ We want, with proba > 1/2, that x − ϵ < x′ < x + ϵ

→ Always possible (Monte Carlo) if you can sample and evaluate in PTIME

FPRAS: • ... with probability > 1/2, gives an answer x′
with multiplicative error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that (1 − ϵ)x < x′ < (1 + ϵ)x
→ Rest of the talk only covers this notion

15/30



Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an
approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error ϵ > 0 which...

Additive FPRAS: • ... with probability > 1/2, gives an answer x′
with additive error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that x − ϵ < x′ < x + ϵ

→ Always possible (Monte Carlo) if you can sample and evaluate in PTIME

FPRAS: • ... with probability > 1/2, gives an answer x′
with multiplicative error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that (1 − ϵ)x < x′ < (1 + ϵ)x
→ Rest of the talk only covers this notion

15/30



Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an
approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error ϵ > 0 which...

Additive FPRAS: • ... with probability > 1/2, gives an answer x′
with additive error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that x − ϵ < x′ < x + ϵ

→ Always possible (Monte Carlo) if you can sample and evaluate in PTIME

FPRAS: • ... with probability > 1/2, gives an answer x′
with multiplicative error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that (1 − ϵ)x < x′ < (1 + ϵ)x
→ Rest of the talk only covers this notion

15/30



Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an
approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error ϵ > 0 which...

Additive FPRAS: • ... with probability > 1/2, gives an answer x′
with additive error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that x − ϵ < x′ < x + ϵ

→ Always possible (Monte Carlo) if you can sample and evaluate in PTIME

FPRAS: • ... with probability > 1/2, gives an answer x′
with multiplicative error ≤ ϵ wrt the true answer x
→ We want, with proba > 1/2, that (1 − ϵ)x < x′ < (1 + ϵ)x
→ Rest of the talk only covers this notion

15/30



Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:

→ Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

• For data complexity for homomorphism-closed queries:
→ Karp-Luby no longer applies (exponentially many minimal matches)
→ Open (ongoing work)

• For combined complexity, we want a combined FPRAS:
• Input: query Q, instance I with probabilities, error ϵ > 0
• Output: with proba > 1/2, in polynomial time, approximation of the probability of Q

on I up to multiplicative error ϵ
→ When can we obtain such an algorithm?

16/30



Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:
→ Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

• For data complexity for homomorphism-closed queries:
→ Karp-Luby no longer applies (exponentially many minimal matches)
→ Open (ongoing work)

• For combined complexity, we want a combined FPRAS:
• Input: query Q, instance I with probabilities, error ϵ > 0
• Output: with proba > 1/2, in polynomial time, approximation of the probability of Q

on I up to multiplicative error ϵ
→ When can we obtain such an algorithm?

16/30



Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:
→ Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

• For data complexity for homomorphism-closed queries:

→ Karp-Luby no longer applies (exponentially many minimal matches)
→ Open (ongoing work)

• For combined complexity, we want a combined FPRAS:
• Input: query Q, instance I with probabilities, error ϵ > 0
• Output: with proba > 1/2, in polynomial time, approximation of the probability of Q

on I up to multiplicative error ϵ
→ When can we obtain such an algorithm?

16/30



Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:
→ Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

• For data complexity for homomorphism-closed queries:
→ Karp-Luby no longer applies (exponentially many minimal matches)

→ Open (ongoing work)

• For combined complexity, we want a combined FPRAS:
• Input: query Q, instance I with probabilities, error ϵ > 0
• Output: with proba > 1/2, in polynomial time, approximation of the probability of Q

on I up to multiplicative error ϵ
→ When can we obtain such an algorithm?

16/30



Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:
→ Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

• For data complexity for homomorphism-closed queries:
→ Karp-Luby no longer applies (exponentially many minimal matches)
→ Open (ongoing work)

• For combined complexity, we want a combined FPRAS:
• Input: query Q, instance I with probabilities, error ϵ > 0
• Output: with proba > 1/2, in polynomial time, approximation of the probability of Q

on I up to multiplicative error ϵ
→ When can we obtain such an algorithm?

16/30



Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:
→ Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

• For data complexity for homomorphism-closed queries:
→ Karp-Luby no longer applies (exponentially many minimal matches)
→ Open (ongoing work)

• For combined complexity, we want a combined FPRAS:

• Input: query Q, instance I with probabilities, error ϵ > 0
• Output: with proba > 1/2, in polynomial time, approximation of the probability of Q

on I up to multiplicative error ϵ
→ When can we obtain such an algorithm?

16/30



Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:
→ Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

• For data complexity for homomorphism-closed queries:
→ Karp-Luby no longer applies (exponentially many minimal matches)
→ Open (ongoing work)

• For combined complexity, we want a combined FPRAS:
• Input: query Q, instance I with probabilities, error ϵ > 0
• Output: with proba > 1/2, in polynomial time, approximation of the probability of Q

on I up to multiplicative error ϵ

→ When can we obtain such an algorithm?

16/30



Model counting: Easy approximation results

When can we have an FPRAS for model counting?

• For data complexity for UCQs:
→ Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

• For data complexity for homomorphism-closed queries:
→ Karp-Luby no longer applies (exponentially many minimal matches)
→ Open (ongoing work)

• For combined complexity, we want a combined FPRAS:
• Input: query Q, instance I with probabilities, error ϵ > 0
• Output: with proba > 1/2, in polynomial time, approximation of the probability of Q

on I up to multiplicative error ϵ
→ When can we obtain such an algorithm?

16/30



Model counting: Combined complexity of approximation

Theorem (van Bremen, Meel, PODS’23)
There is a combined FPRAS for PQE with SJFCQs Q of bounded hypertreewidth
and arbitrary instances I with probabilities on facts

What about self-joins?
Theorem (A., van Bremen, Meel, ICDT’24)

Q I Q I

FPRAS

no FPRAS?

no FPRAS?

Labeled case (at least 2 relation names) Unlabeled case (1 relation name)

(Using FPRAS for #NFA for word and tree automata (Arenas et al., JACM’21, PODS’21))

FPRAS inexistence results assume RP ̸= NP

17/30



Model counting: Combined complexity of approximation

Theorem (van Bremen, Meel, PODS’23)
There is a combined FPRAS for PQE with SJFCQs Q of bounded hypertreewidth
and arbitrary instances I with probabilities on facts

What about self-joins?

Theorem (A., van Bremen, Meel, ICDT’24)

Q I Q I

FPRAS

no FPRAS?

no FPRAS?

Labeled case (at least 2 relation names) Unlabeled case (1 relation name)

(Using FPRAS for #NFA for word and tree automata (Arenas et al., JACM’21, PODS’21))

FPRAS inexistence results assume RP ̸= NP

17/30



Model counting: Combined complexity of approximation

Theorem (van Bremen, Meel, PODS’23)
There is a combined FPRAS for PQE with SJFCQs Q of bounded hypertreewidth
and arbitrary instances I with probabilities on facts

What about self-joins?
Theorem (A., van Bremen, Meel, ICDT’24)

Q I Q I

FPRAS

no FPRAS?

no FPRAS?

Labeled case (at least 2 relation names) Unlabeled case (1 relation name)

(Using FPRAS for #NFA for word and tree automata (Arenas et al., JACM’21, PODS’21))

FPRAS inexistence results assume RP ̸= NP

17/30



Model counting: Combined complexity of approximation

Theorem (van Bremen, Meel, PODS’23)
There is a combined FPRAS for PQE with SJFCQs Q of bounded hypertreewidth
and arbitrary instances I with probabilities on facts

What about self-joins?
Theorem (A., van Bremen, Meel, ICDT’24)

Q I Q I

FPRAS

no FPRAS?

no FPRAS?

Labeled case (at least 2 relation names) Unlabeled case (1 relation name)

(Using FPRAS for #NFA for word and tree automata (Arenas et al., JACM’21, PODS’21))

FPRAS inexistence results assume RP ̸= NP 17/30



Table of contents

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

18/30



Boolean provenance

• Fix: a Boolean query Q

• Input: a relational database I

• Output: a representation of the Boolean provenance of Q on I

R

a b

r1

a b′

r2

S

b c

s1

b′ c′

s2

Query: Q : ∃xyz R(x, y) ∧ S(y, z)

Boolean provenance: Φ : (r1 ∧ s1) ∨ (r2 ∧ s2)

How is the provenance Φ related to model counting?

• The satisfying assignments of Φ are the subinstances of I where Q holds

• UR asks how many satisfying assignments Φ has

• PQE asks for the probability that Φ evaluates to true

19/30



Boolean provenance

• Fix: a Boolean query Q

• Input: a relational database I

• Output: a representation of the Boolean provenance of Q on I

R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

Query: Q : ∃xyz R(x, y) ∧ S(y, z)

Boolean provenance: Φ : (r1 ∧ s1) ∨ (r2 ∧ s2)

How is the provenance Φ related to model counting?

• The satisfying assignments of Φ are the subinstances of I where Q holds

• UR asks how many satisfying assignments Φ has

• PQE asks for the probability that Φ evaluates to true

19/30



Boolean provenance

• Fix: a Boolean query Q

• Input: a relational database I

• Output: a representation of the Boolean provenance of Q on I

R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

Query: Q : ∃xyz R(x, y) ∧ S(y, z)

Boolean provenance: Φ : (r1 ∧ s1) ∨ (r2 ∧ s2)

How is the provenance Φ related to model counting?

• The satisfying assignments of Φ are the subinstances of I where Q holds

• UR asks how many satisfying assignments Φ has

• PQE asks for the probability that Φ evaluates to true

19/30



Boolean provenance

• Fix: a Boolean query Q

• Input: a relational database I

• Output: a representation of the Boolean provenance of Q on I

R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

Query: Q : ∃xyz R(x, y) ∧ S(y, z)

Boolean provenance: Φ : (r1 ∧ s1) ∨ (r2 ∧ s2)

How is the provenance Φ related to model counting?

• The satisfying assignments of Φ are the subinstances of I where Q holds

• UR asks how many satisfying assignments Φ has

• PQE asks for the probability that Φ evaluates to true

19/30



Boolean provenance

• Fix: a Boolean query Q

• Input: a relational database I

• Output: a representation of the Boolean provenance of Q on I

R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

Query: Q : ∃xyz R(x, y) ∧ S(y, z)

Boolean provenance: Φ : (r1 ∧ s1) ∨ (r2 ∧ s2)

How is the provenance Φ related to model counting?

• The satisfying assignments of Φ are the subinstances of I where Q holds

• UR asks how many satisfying assignments Φ has

• PQE asks for the probability that Φ evaluates to true

19/30



Boolean provenance

• Fix: a Boolean query Q

• Input: a relational database I

• Output: a representation of the Boolean provenance of Q on I

R

a b r1
a b′ r2

S

b c s1
b′ c′ s2

Query: Q : ∃xyz R(x, y) ∧ S(y, z)

Boolean provenance: Φ : (r1 ∧ s1) ∨ (r2 ∧ s2)

How is the provenance Φ related to model counting?

• The satisfying assignments of Φ are the subinstances of I where Q holds

• UR asks how many satisfying assignments Φ has

• PQE asks for the probability that Φ evaluates to true
19/30



Easy results on Boolean provenance

We can tractably compute Boolean provenance in data complexity:

Theorem (folklore)
For any fixed UCQ Q, given an instance I, we can compute the provenance of Q on I as a
Boolean formula in PTIME data complexity

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (Deutch et al., ICDT’14)
For any fixed Datalog program Q, given an instance I, we can compute the provenance
of Q on I in PTIME data complexity as a Boolean circuit

Goal: provenance representation in tractable circuit classes from knowledge compilation

20/30



Easy results on Boolean provenance

We can tractably compute Boolean provenance in data complexity:

Theorem (folklore)
For any fixed UCQ Q, given an instance I, we can compute the provenance of Q on I as a
Boolean formula in PTIME data complexity

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (Deutch et al., ICDT’14)
For any fixed Datalog program Q, given an instance I, we can compute the provenance
of Q on I in PTIME data complexity as a Boolean circuit

Goal: provenance representation in tractable circuit classes from knowledge compilation

20/30



Easy results on Boolean provenance

We can tractably compute Boolean provenance in data complexity:

Theorem (folklore)
For any fixed UCQ Q, given an instance I, we can compute the provenance of Q on I as a
Boolean formula in PTIME data complexity

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (Deutch et al., ICDT’14)
For any fixed Datalog program Q, given an instance I, we can compute the provenance
of Q on I in PTIME data complexity as a Boolean circuit

Goal: provenance representation in tractable circuit classes from knowledge compilation

20/30



Easy results on Boolean provenance

We can tractably compute Boolean provenance in data complexity:

Theorem (folklore)
For any fixed UCQ Q, given an instance I, we can compute the provenance of Q on I as a
Boolean formula in PTIME data complexity

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (Deutch et al., ICDT’14)
For any fixed Datalog program Q, given an instance I, we can compute the provenance
of Q on I in PTIME data complexity as a Boolean circuit

Goal: provenance representation in tractable circuit classes from knowledge compilation
20/30



Tractable circuits: d-DNNF and d-SDNNF

Tractable circuit class: d-DNNF:

• ¬ are only applied to variables

• ∨ are all deterministic:
The inputs are mutually exclusive
(= no valuation makes two inputs simultaneously
evaluate to 1)

• ∧ are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

Frequent extra requirement:
structuredness (following a vtree),
aka d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

21/30



Tractable circuits: d-DNNF and d-SDNNF

Tractable circuit class: d-DNNF:

• ¬ are only applied to variables

• ∨ are all deterministic:
The inputs are mutually exclusive
(= no valuation makes two inputs simultaneously
evaluate to 1)

• ∧ are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

Frequent extra requirement:
structuredness (following a vtree),
aka d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

21/30



Tractable circuits: d-DNNF and d-SDNNF

Tractable circuit class: d-DNNF:

• ¬ are only applied to variables

• ∨ are all deterministic:
The inputs are mutually exclusive
(= no valuation makes two inputs simultaneously
evaluate to 1)

• ∧ are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

Frequent extra requirement:
structuredness (following a vtree),
aka d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

21/30



Tractable circuits: d-DNNF and d-SDNNF

Tractable circuit class: d-DNNF:

• ¬ are only applied to variables

• ∨ are all deterministic:
The inputs are mutually exclusive
(= no valuation makes two inputs simultaneously
evaluate to 1)

• ∧ are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

Frequent extra requirement:
structuredness (following a vtree),
aka d-SDNNF

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

21/30



Solving PQE with d-DNNF

d-DNNF requirements...

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements...

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements...

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements...

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements... ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements... ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′

P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements... ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements... ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2

P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements... ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements... ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2

P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements... ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Solving PQE with d-DNNF

d-DNNF requirements... ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

22/30



Other tractable circuit classes

• Read-once formula: Boolean formula where each variable occurs at most once
→ If the Boolean provenance is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Binary decision diagram, e.g., OBDDs

• Generalize d-DNNFs to d-Ds: allow arbitrary negations

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

23/30



Other tractable circuit classes

• Read-once formula: Boolean formula where each variable occurs at most once
→ If the Boolean provenance is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Binary decision diagram, e.g., OBDDs

• Generalize d-DNNFs to d-Ds: allow arbitrary negations

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

23/30



Other tractable circuit classes

• Read-once formula: Boolean formula where each variable occurs at most once
→ If the Boolean provenance is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Binary decision diagram, e.g., OBDDs

• Generalize d-DNNFs to d-Ds: allow arbitrary negations

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

23/30



Other tractable circuit classes

• Read-once formula: Boolean formula where each variable occurs at most once
→ If the Boolean provenance is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Binary decision diagram, e.g., OBDDs

• Generalize d-DNNFs to d-Ds: allow arbitrary negations

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

23/30



Model counting results vs knowledge compilation results

Two kinds of tractability results:

• Model counting (MC): “PQE is in PTIME”
• Knowledge compilation (KC): ”We can tractably compute circuits in a given class”

(e.g., d-SDNNFs)

→ We always have KC ⇒ MC
→ Open if MC ⇒ KC: intensional-extensional conjecture (Mikaël’s talk)

Two kinds of intractability results:

• MC: PQE is #P-hard
• KC: there are no small circuits representing provenance in a given class
• MC is conditional (FP ̸= #P) but KC can be unconditional
• A priori incomparable:

• MC ̸⇒ KC: we could have small circuits that are hard to compute
• KC ̸⇒ MC: PQE may be solvable without circuits (if int.-ext. conjecture fails)

24/30



Model counting results vs knowledge compilation results

Two kinds of tractability results:

• Model counting (MC): “PQE is in PTIME”
• Knowledge compilation (KC): ”We can tractably compute circuits in a given class”

(e.g., d-SDNNFs)
→ We always have KC ⇒ MC

→ Open if MC ⇒ KC: intensional-extensional conjecture (Mikaël’s talk)

Two kinds of intractability results:

• MC: PQE is #P-hard
• KC: there are no small circuits representing provenance in a given class
• MC is conditional (FP ̸= #P) but KC can be unconditional
• A priori incomparable:

• MC ̸⇒ KC: we could have small circuits that are hard to compute
• KC ̸⇒ MC: PQE may be solvable without circuits (if int.-ext. conjecture fails)

24/30



Model counting results vs knowledge compilation results

Two kinds of tractability results:

• Model counting (MC): “PQE is in PTIME”
• Knowledge compilation (KC): ”We can tractably compute circuits in a given class”

(e.g., d-SDNNFs)
→ We always have KC ⇒ MC
→ Open if MC ⇒ KC: intensional-extensional conjecture (Mikaël’s talk)

Two kinds of intractability results:

• MC: PQE is #P-hard
• KC: there are no small circuits representing provenance in a given class
• MC is conditional (FP ̸= #P) but KC can be unconditional
• A priori incomparable:

• MC ̸⇒ KC: we could have small circuits that are hard to compute
• KC ̸⇒ MC: PQE may be solvable without circuits (if int.-ext. conjecture fails)

24/30



Model counting results vs knowledge compilation results

Two kinds of tractability results:

• Model counting (MC): “PQE is in PTIME”
• Knowledge compilation (KC): ”We can tractably compute circuits in a given class”

(e.g., d-SDNNFs)
→ We always have KC ⇒ MC
→ Open if MC ⇒ KC: intensional-extensional conjecture (Mikaël’s talk)

Two kinds of intractability results:

• MC: PQE is #P-hard
• KC: there are no small circuits representing provenance in a given class

• MC is conditional (FP ̸= #P) but KC can be unconditional
• A priori incomparable:

• MC ̸⇒ KC: we could have small circuits that are hard to compute
• KC ̸⇒ MC: PQE may be solvable without circuits (if int.-ext. conjecture fails)

24/30



Model counting results vs knowledge compilation results

Two kinds of tractability results:

• Model counting (MC): “PQE is in PTIME”
• Knowledge compilation (KC): ”We can tractably compute circuits in a given class”

(e.g., d-SDNNFs)
→ We always have KC ⇒ MC
→ Open if MC ⇒ KC: intensional-extensional conjecture (Mikaël’s talk)

Two kinds of intractability results:

• MC: PQE is #P-hard
• KC: there are no small circuits representing provenance in a given class
• MC is conditional (FP ̸= #P) but KC can be unconditional

• A priori incomparable:
• MC ̸⇒ KC: we could have small circuits that are hard to compute
• KC ̸⇒ MC: PQE may be solvable without circuits (if int.-ext. conjecture fails)

24/30



Model counting results vs knowledge compilation results

Two kinds of tractability results:

• Model counting (MC): “PQE is in PTIME”
• Knowledge compilation (KC): ”We can tractably compute circuits in a given class”

(e.g., d-SDNNFs)
→ We always have KC ⇒ MC
→ Open if MC ⇒ KC: intensional-extensional conjecture (Mikaël’s talk)

Two kinds of intractability results:

• MC: PQE is #P-hard
• KC: there are no small circuits representing provenance in a given class
• MC is conditional (FP ̸= #P) but KC can be unconditional
• A priori incomparable:

• MC ̸⇒ KC: we could have small circuits that are hard to compute
• KC ̸⇒ MC: PQE may be solvable without circuits (if int.-ext. conjecture fails)

24/30



Model counting results vs knowledge compilation results

Two kinds of tractability results:

• Model counting (MC): “PQE is in PTIME”
• Knowledge compilation (KC): ”We can tractably compute circuits in a given class”

(e.g., d-SDNNFs)
→ We always have KC ⇒ MC
→ Open if MC ⇒ KC: intensional-extensional conjecture (Mikaël’s talk)

Two kinds of intractability results:

• MC: PQE is #P-hard
• KC: there are no small circuits representing provenance in a given class
• MC is conditional (FP ̸= #P) but KC can be unconditional
• A priori incomparable:

• MC ̸⇒ KC: we could have small circuits that are hard to compute

• KC ̸⇒ MC: PQE may be solvable without circuits (if int.-ext. conjecture fails)

24/30



Model counting results vs knowledge compilation results

Two kinds of tractability results:

• Model counting (MC): “PQE is in PTIME”
• Knowledge compilation (KC): ”We can tractably compute circuits in a given class”

(e.g., d-SDNNFs)
→ We always have KC ⇒ MC
→ Open if MC ⇒ KC: intensional-extensional conjecture (Mikaël’s talk)

Two kinds of intractability results:

• MC: PQE is #P-hard
• KC: there are no small circuits representing provenance in a given class
• MC is conditional (FP ̸= #P) but KC can be unconditional
• A priori incomparable:

• MC ̸⇒ KC: we could have small circuits that are hard to compute
• KC ̸⇒ MC: PQE may be solvable without circuits (if int.-ext. conjecture fails) 24/30



Data complexity of provenance computation for UCQs and hom-closed queries

• For UCQs, results in (Jha, Suciu, ICDT’11, TCS’13):
• Characterization of the UCQs for which we can compute read-once provenance

• Characterization of the UCQs for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• In particular, for UCQs:
• Open if safe UCQs have small d-D provenance circuits (intensional-extensional

conjecture)
• Open if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)

• For homomorphism-closed queries: open

25/30



Data complexity of provenance computation for UCQs and hom-closed queries

• For UCQs, results in (Jha, Suciu, ICDT’11, TCS’13):
• Characterization of the UCQs for which we can compute read-once provenance
• Characterization of the UCQs for which we can compute OBDD provenance

• Sufficient conditions to have FBDDs and d-DNNFs

• In particular, for UCQs:
• Open if safe UCQs have small d-D provenance circuits (intensional-extensional

conjecture)
• Open if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)

• For homomorphism-closed queries: open

25/30



Data complexity of provenance computation for UCQs and hom-closed queries

• For UCQs, results in (Jha, Suciu, ICDT’11, TCS’13):
• Characterization of the UCQs for which we can compute read-once provenance
• Characterization of the UCQs for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• In particular, for UCQs:
• Open if safe UCQs have small d-D provenance circuits (intensional-extensional

conjecture)
• Open if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)

• For homomorphism-closed queries: open

25/30



Data complexity of provenance computation for UCQs and hom-closed queries

• For UCQs, results in (Jha, Suciu, ICDT’11, TCS’13):
• Characterization of the UCQs for which we can compute read-once provenance
• Characterization of the UCQs for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• In particular, for UCQs:
• Open if safe UCQs have small d-D provenance circuits (intensional-extensional

conjecture)
• Open if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)

• For homomorphism-closed queries: open

25/30



Data complexity of provenance computation for UCQs and hom-closed queries

• For UCQs, results in (Jha, Suciu, ICDT’11, TCS’13):
• Characterization of the UCQs for which we can compute read-once provenance
• Characterization of the UCQs for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• In particular, for UCQs:
• Open if safe UCQs have small d-D provenance circuits (intensional-extensional

conjecture)
• Open if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)

• For homomorphism-closed queries: open

25/30



Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:
Theorem (A., Bourhis, Senellart, ICALP’15, PODS’16)
For any fixed MSO query Q and treelike instance family I , given an instance I in I , we
can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open

What happens on high-treewidth instances?
Theorem (A., Bourhis, Senellart, PODS’16; A., Monet, Senellart, ICDT’18)
For the “two incident facts” query Q2, given an instance I, any d-SDNNF representation
of the provenance of Q2 on I is exponential: in Ω

(
2tw(I)1/d) for some d ≥ 1

For which other queries is this true? Mostly open (some results for connected UCQ̸=)

What about more expressive circuit formalisms (d-DNNF)? Open

26/30



Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:
Theorem (A., Bourhis, Senellart, ICALP’15, PODS’16)
For any fixed MSO query Q and treelike instance family I , given an instance I in I , we
can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open

What happens on high-treewidth instances?
Theorem (A., Bourhis, Senellart, PODS’16; A., Monet, Senellart, ICDT’18)
For the “two incident facts” query Q2, given an instance I, any d-SDNNF representation
of the provenance of Q2 on I is exponential: in Ω

(
2tw(I)1/d) for some d ≥ 1

For which other queries is this true? Mostly open (some results for connected UCQ̸=)

What about more expressive circuit formalisms (d-DNNF)? Open

26/30



Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:
Theorem (A., Bourhis, Senellart, ICALP’15, PODS’16)
For any fixed MSO query Q and treelike instance family I , given an instance I in I , we
can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open

What happens on high-treewidth instances?

Theorem (A., Bourhis, Senellart, PODS’16; A., Monet, Senellart, ICDT’18)
For the “two incident facts” query Q2, given an instance I, any d-SDNNF representation
of the provenance of Q2 on I is exponential: in Ω

(
2tw(I)1/d) for some d ≥ 1

For which other queries is this true? Mostly open (some results for connected UCQ̸=)

What about more expressive circuit formalisms (d-DNNF)? Open

26/30



Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:
Theorem (A., Bourhis, Senellart, ICALP’15, PODS’16)
For any fixed MSO query Q and treelike instance family I , given an instance I in I , we
can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open

What happens on high-treewidth instances?
Theorem (A., Bourhis, Senellart, PODS’16; A., Monet, Senellart, ICDT’18)
For the “two incident facts” query Q2, given an instance I, any d-SDNNF representation
of the provenance of Q2 on I is exponential: in Ω

(
2tw(I)1/d) for some d ≥ 1

For which other queries is this true? Mostly open (some results for connected UCQ̸=)

What about more expressive circuit formalisms (d-DNNF)? Open

26/30



Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:
Theorem (A., Bourhis, Senellart, ICALP’15, PODS’16)
For any fixed MSO query Q and treelike instance family I , given an instance I in I , we
can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open

What happens on high-treewidth instances?
Theorem (A., Bourhis, Senellart, PODS’16; A., Monet, Senellart, ICDT’18)
For the “two incident facts” query Q2, given an instance I, any d-SDNNF representation
of the provenance of Q2 on I is exponential: in Ω

(
2tw(I)1/d) for some d ≥ 1

For which other queries is this true? Mostly open (some results for connected UCQ̸=)

What about more expressive circuit formalisms (d-DNNF)? Open 26/30



Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

• ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS’23)

• ... to nOBDDs for the combined FPRAS for one-way paths on DAGs (ICDT’24)

• ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward
trees and for connected queries on two-way paths (PODS’17)

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

• Exponential lower bounds on DNNF provenance representations of one-way path
queries on arbitrary instance graphs (ICDT’24)
→ Same applies to all cases where we show that there is (conditionally) no FPRAS

• Open if the classes above (SDNNF, nOBDDs, β-acyclic) are “as small as possible”

27/30



Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

• ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS’23)

• ... to nOBDDs for the combined FPRAS for one-way paths on DAGs (ICDT’24)

• ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward
trees and for connected queries on two-way paths (PODS’17)

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

• Exponential lower bounds on DNNF provenance representations of one-way path
queries on arbitrary instance graphs (ICDT’24)
→ Same applies to all cases where we show that there is (conditionally) no FPRAS

• Open if the classes above (SDNNF, nOBDDs, β-acyclic) are “as small as possible”

27/30



Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

• ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS’23)

• ... to nOBDDs for the combined FPRAS for one-way paths on DAGs (ICDT’24)

• ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward
trees and for connected queries on two-way paths (PODS’17)

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

• Exponential lower bounds on DNNF provenance representations of one-way path
queries on arbitrary instance graphs (ICDT’24)
→ Same applies to all cases where we show that there is (conditionally) no FPRAS

• Open if the classes above (SDNNF, nOBDDs, β-acyclic) are “as small as possible”

27/30



Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

• ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS’23)

• ... to nOBDDs for the combined FPRAS for one-way paths on DAGs (ICDT’24)

• ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward
trees and for connected queries on two-way paths (PODS’17)

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

• Exponential lower bounds on DNNF provenance representations of one-way path
queries on arbitrary instance graphs (ICDT’24)
→ Same applies to all cases where we show that there is (conditionally) no FPRAS

• Open if the classes above (SDNNF, nOBDDs, β-acyclic) are “as small as possible”

27/30



Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

• ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS’23)

• ... to nOBDDs for the combined FPRAS for one-way paths on DAGs (ICDT’24)

• ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward
trees and for connected queries on two-way paths (PODS’17)

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

• Exponential lower bounds on DNNF provenance representations of one-way path
queries on arbitrary instance graphs (ICDT’24)
→ Same applies to all cases where we show that there is (conditionally) no FPRAS

• Open if the classes above (SDNNF, nOBDDs, β-acyclic) are “as small as possible”

27/30



Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

• ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS’23)

• ... to nOBDDs for the combined FPRAS for one-way paths on DAGs (ICDT’24)

• ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward
trees and for connected queries on two-way paths (PODS’17)

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

• Exponential lower bounds on DNNF provenance representations of one-way path
queries on arbitrary instance graphs (ICDT’24)
→ Same applies to all cases where we show that there is (conditionally) no FPRAS

• Open if the classes above (SDNNF, nOBDDs, β-acyclic) are “as small as possible”
27/30



Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

• ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS’23)

• ... to nOBDDs for the combined FPRAS for one-way paths on DAGs (ICDT’24)

• ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward
trees and for connected queries on two-way paths (PODS’17)

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

• Exponential lower bounds on DNNF provenance representations of one-way path
queries on arbitrary instance graphs (ICDT’24)
→ Same applies to all cases where we show that there is (conditionally) no FPRAS

• Open if the classes above (SDNNF, nOBDDs, β-acyclic) are “as small as possible”
27/30



Table of contents

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

28/30



Conclusion

We have seen two frameworks for query explanation via the Boolean provenance, i.e., via
the possible worlds that satisfy the query:

• Model counting: unweighted (UR) or weighted (PQE)

• Knowledge compilation: representing the Boolean provenance in tractable circuit
classes

We have studied this in several settings:

• Data complexity for SJFCQs, UCQs, hom-closed queries, etc.

• Data complexity on restricted instance families (treelike or not)

• Combined complexity

29/30



Conclusion

We have seen two frameworks for query explanation via the Boolean provenance, i.e., via
the possible worlds that satisfy the query:

• Model counting: unweighted (UR) or weighted (PQE)

• Knowledge compilation: representing the Boolean provenance in tractable circuit
classes

We have studied this in several settings:

• Data complexity for SJFCQs, UCQs, hom-closed queries, etc.

• Data complexity on restricted instance families (treelike or not)

• Combined complexity

29/30



Open problems

General research directions on these topics:

• Connections between these two frameworks (intensional-extensional conjecture?
lower bound techniques?)
• Connections to other aggregate queries? (Shapley value, etc.)
• Other provenance uses? semirings, enumeration, incremental maintenance...

Many open questions throughout the talk:

• Queries with inequalities, negation, first-order queries: (approximate) PQE?
• Can we show dichotomies on approximation for unbounded queries (RPQs...)
• Understanding higher-arity and uniform reliability where it is still open
• Unbounded queries: what if some relations are non-probabilistic?
• Are there joint criteria for the tractability of instances and queries?

Thanks for your attention!

30/30



Open problems

General research directions on these topics:

• Connections between these two frameworks (intensional-extensional conjecture?
lower bound techniques?)
• Connections to other aggregate queries? (Shapley value, etc.)
• Other provenance uses? semirings, enumeration, incremental maintenance...

Many open questions throughout the talk:

• Queries with inequalities, negation, first-order queries: (approximate) PQE?
• Can we show dichotomies on approximation for unbounded queries (RPQs...)
• Understanding higher-arity and uniform reliability where it is still open
• Unbounded queries: what if some relations are non-probabilistic?
• Are there joint criteria for the tractability of instances and queries?

Thanks for your attention!

30/30



Open problems

General research directions on these topics:

• Connections between these two frameworks (intensional-extensional conjecture?
lower bound techniques?)
• Connections to other aggregate queries? (Shapley value, etc.)
• Other provenance uses? semirings, enumeration, incremental maintenance...

Many open questions throughout the talk:

• Queries with inequalities, negation, first-order queries: (approximate) PQE?
• Can we show dichotomies on approximation for unbounded queries (RPQs...)
• Understanding higher-arity and uniform reliability where it is still open
• Unbounded queries: what if some relations are non-probabilistic?
• Are there joint criteria for the tractability of instances and queries?

Thanks for your attention!
30/30



References i

Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.
Amarilli, A. and Ceylan, I. I. (2020).
A dichotomy for homomorphism-closed queries on probabilistic graphs.
In ICDT.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/
https://arxiv.org/abs/1910.02048
https://diku-dk.github.io/edbticdt2020/


References ii

Amarilli, A. and Ceylan, I. I. (2022).
The dichotomy of evaluating homomorphism-closed queries on probabilistic graphs.
LMCS.
Amarilli, A. and Kimelfeld, B. (2021).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
In ICDT.
Amarilli, A. and Kimelfeld, B. (2022).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
LMCS.

https://arxiv.org/abs/1910.02048
https://lmcs.episciences.org/
https://drops.dagstuhl.de/opus/frontdoor.php?source_opus=13725
https://databasetheory.org/node/106
https://arxiv.org/abs/1908.07093
https://lmcs.episciences.org/


References iii

Amarilli, A., Monet, M., and Senellart, P. (2017).
Conjunctive queries on probabilistic graphs: Combined complexity.
In PODS.
Amarilli, A., van Bremen, T., and Meel, K. S. (2024).
Conjunctive queries on probabilistic graphs: The limits of approximability.
In ICDT.
Arenas, M., Croquevielle, L. A., Jayaram, R., and Riveros, C. (2021a).
When is approximate counting for conjunctive queries tractable?
In STOC.

https://arxiv.org/abs/1703.03201
http://sigmod2017.org/
https://arxiv.org/abs/2309.13287
https://databasetheory.org/ICDT/what-is-icdt
https://arxiv.org/abs/2005.10029


References iv

Arenas, M., Croquevielle, L. A., Jayaram, R., and Riveros, C. (2021b).
#NFA admits an FPRAS: Efficient enumeration, counting, and uniform generation for
logspace classes.
JACM, 68(6).
Chekuri, C. and Chuzhoy, J. (2016).
Polynomial bounds for the grid-minor theorem.
JACM, 63(5).
Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic XML.
In PODS.

https://arxiv.org/abs/1906.09226
https://arxiv.org/abs/1906.09226
https://dl.acm.org/doi/abs/10.1145/2820609
https://www.cs.huji.ac.il/~sara/papers/running-tree-automata.pdf


References v

Dalvi, N. and Suciu, D. (2004).
Efficient query evaluation on probabilistic databases.
In VLDB.
Dalvi, N. and Suciu, D. (2007).
The dichotomy of conjunctive queries on probabilistic structures.
In PODS.
Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries.
J. ACM, 59(6).

https://homes.cs.washington.edu/~suciu/probdb.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5240&rep=rep1&type=pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf


References vi

Jha, A. and Suciu, D. (2011).
Knowledge compilation meets database theory: Compiling queries to decision
diagrams.
In ICDT.
Jha, A. and Suciu, D. (2013).
Knowledge compilation meets database theory: Compiling queries to decision
diagrams.
TCS, 52(3).

https://openproceedings.org/2011/conf/icdt/JhaS11.pdf
https://openproceedings.org/2011/conf/icdt/JhaS11.pdf


References vii

Kenig, B. and Suciu, D. (2021).
A dichotomy for the generalized model counting problem for unions of conjunctive
queries.
In PODS.
van Bremen, T. and Meel, K. S. (2023).
Probabilistic query evaluation: The combined FPRAS landscape.
In PODS.

https://arxiv.org/abs/2008.00896
https://arxiv.org/abs/2008.00896
https://www.comp.nus.edu.sg/~tvanbr/papers/pods23.pdf

	Problem statement and roadmap
	Model counting
	Knowledge compilation
	Conclusion and open problems
	Appendix

