Query Evaluation with Model Counting and Knowledge Compilation: A Survey of Old and Recent Results

\qquad

Antoine Amarilli
January 16th, 2024

Télécom Paris

Table of contents

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

Explanations for Boolean queries

- We focus on query evaluation: evaluate a query on data

$$
\begin{aligned}
& Q(x, z): \exists y R(x, y) \wedge S(y, z) \\
& \text { Query } \\
& \begin{array}{lll}
\begin{array}{cc}
R & b \\
a & b \\
a & b^{\prime} \\
\hline
\end{array} & \begin{array}{c}
b \\
b^{\prime}
\end{array} & c^{\prime}
\end{array} \quad \longrightarrow \begin{array}{cc}
a & c^{\prime} \\
\hline
\end{array} \\
& \text { Instance }
\end{aligned}
$$

Explanations for Boolean queries

- We focus on query evaluation: evaluate a query on data

$$
\begin{aligned}
& Q(x, z): \exists y R(x, y) \wedge S(y, z) \\
& \text { Query }
\end{aligned}
$$

- We can test all answers (polynomial for fixed arity): focus on Boolean queries

Explanations for Boolean queries

- We focus on query evaluation: evaluate a query on data

- We can test all answers (polynomial for fixed arity): focus on Boolean queries

Explanations for Boolean queries

- We focus on query evaluation: evaluate a query on data

- We can test all answers (polynomial for fixed arity): focus on Boolean queries
- We want to explain the Boolean result by considering all subsets of input facts

Explanations for Boolean queries

- We focus on query evaluation: evaluate a query on data

- We can test all answers (polynomial for fixed arity): focus on Boolean queries
- We want to explain the Boolean result by considering all subsets of input facts

Explanations for Boolean queries

- We focus on query evaluation: evaluate a query on data

- We can test all answers (polynomial for fixed arity): focus on Boolean queries
- We want to explain the Boolean result by considering all subsets of input facts

Model counting and knowledge compilation

Query: $Q: \exists x y z R(x, y) \wedge S(y, z)$

	R
a	b
a	b^{\prime}

	S
b	c
b^{\prime}	c^{\prime}

Model counting and knowledge compilation

Query: $Q: \exists x y z R(x, y) \wedge S(y, z)$

R		
a	b	r_{1}
a	b^{\prime}	r_{2}

S		
b	c	s_{1}
b^{\prime}	c^{\prime}	s_{2}

- Add a unique identifier to every fact of the instance I

Model counting and knowledge compilation

Query: $Q: \exists x y z R(x, y) \wedge S(y, z)$

R		
a	b	r_{1}
a	b^{\prime}	r_{2}

S		
b	c	s_{1}
b^{\prime}	c^{\prime}	s_{2}

- Add a unique identifier to every fact of the instance I
- There are exponentially many subsets of I : "possible worlds"

Model counting and knowledge compilation

Query: $Q: \exists x y z R(x, y) \wedge S(y, z)$

R		
a	b	r_{1}
a	b^{\prime}	r_{2}

S		
b	c	s_{1}
b^{\prime}	c^{\prime}	s_{2}

- Add a unique identifier to every fact of the instance I
- There are exponentially many subsets of I : "possible worlds"
- We want to understand on which possible worlds the query Q is true...

Model counting and knowledge compilation

$$
\text { Query: } Q: \exists x y z R(x, y) \wedge S(y, z)
$$

R		
a	b	r_{1}
a	b^{\prime}	r_{2}

S		
b	c	s_{1}
b^{\prime}	c^{\prime}	s_{2}

- Add a unique identifier to every fact of the instance I
- There are exponentially many subsets of I : "possible worlds"
- We want to understand on which possible worlds the query Q is true...
- Model counting: count how many possible worlds satisfy Q
- Uniform reliability (UR): unweighted counting
- Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
- Shapley values: another kind of aggregate

Model counting and knowledge compilation

$$
\text { Query: } Q: \exists x y z R(x, y) \wedge S(y, z)
$$

R		
a	b	r_{1}
a	b^{\prime}	r_{2}

S		
b	c	s_{1}
b^{\prime}	c^{\prime}	s_{2}

- Add a unique identifier to every fact of the instance I
- There are exponentially many subsets of I : "possible worlds"
- We want to understand on which possible worlds the query Q is true...
- Model counting: count how many possible worlds satisfy Q
- Uniform reliability (UR): unweighted counting
- Probabilistic query evaluation (PQE): add probabilities (weights) to each fact
- Shapley values: another kind of aggregate
- Knowledge compilation: compute a representation of the Boolean provenance, i.e., the set of possible worlds satisfying Q (here: $\left.\left(r_{1} \wedge s_{1}\right) \vee\left(r_{2} \wedge s_{2}\right)\right)$
- Depends on the class of representations: circuits, diagrams, d-SDNNFs...
- Intensional approach: we can use knowledge compilation for model counting

Roadmap

Goal of this talk: give an overview of results on query evaluation for:

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Roadmap

Goal of this talk: give an overview of results on query evaluation for:

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds Settings covered in each case:

Roadmap

Goal of this talk: give an overview of results on query evaluation for:

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Settings covered in each case:

- Data complexity of various queries on arbitrary data
\rightarrow Self-join-free CQs, UCQs, homomorphism-closed queries, etc.

Roadmap

Goal of this talk: give an overview of results on query evaluation for:

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Settings covered in each case:

- Data complexity of various queries on arbitrary data
\rightarrow Self-join-free CQs, UCQs, homomorphism-closed queries, etc.
- Data complexity of expressive queries (MSO) on restricted data (treelike)

Roadmap

Goal of this talk: give an overview of results on query evaluation for:

- Model counting: (approximate) counting algorithms / hardness bounds
- Knowledge compilation: algorithms to compute circuits / circuit size lower bounds

Settings covered in each case:

- Data complexity of various queries on arbitrary data
\rightarrow Self-join-free CQs, UCQs, homomorphism-closed queries, etc.
- Data complexity of expressive queries (MSO) on restricted data (treelike)
- Combined complexity

Table of contents

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

Model counting and data complexity

- Fix: a Boolean query Q (maps every database to true or false)
- Input: a relational database I
- For PQE: also give a probability to each fact in the input

Model counting and data complexity

- Fix: a Boolean query Q (maps every database to true or false)
- Input: a relational database I
- For PQE: also give a probability to each fact in the input
- Output:
- For UR: the number of subsets of I such that Q is satisfied
- For PQE: the probability of getting such a subset (assuming independence)

Model counting and data complexity

- Fix: a Boolean query Q (maps every database to true or false)
- Input: a relational database I
- For PQE: also give a probability to each fact in the input
- Output:
- For UR: the number of subsets of I such that Q is satisfied
- For PQE: the probability of getting such a subset (assuming independence)
- Data complexity: study complexity of $\operatorname{UR}(Q)$ and $\operatorname{PQE}(Q)$ as a function of $/$

Model counting and data complexity

- Fix: a Boolean query Q (maps every database to true or false)
- Input: a relational database I
- For PQE: also give a probability to each fact in the input
- Output:
- For UR: the number of subsets of I such that Q is satisfied
- For PQE: the probability of getting such a subset (assuming independence)
- Data complexity: study complexity of $\mathrm{UR}(Q)$ and $\mathrm{PQE}(Q)$ as a function of I
\rightarrow For which queries Q are these problems $\operatorname{UR}(Q)$ and $\operatorname{PQE}(Q)$ solvable in PTIME?

Data complexity of model counting for SJFCQs

A self-join free conjunctive query (SJFCQ) is a CQ without repeated relations

Theorem (Dalvi, Suciu, VLDB'04, VLDBJ'07)

The following dichotomy holds on SJFCQs Q:

- If Q is hierarchical, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Data complexity of model counting for SJFCQs

A self-join free conjunctive query (SJFCQ) is a CQ without repeated relations

Theorem (Dalvi, Suciu, VLDB'04, VLDBJ'07)

The following dichotomy holds on SJFCQs Q:

- If Q is hierarchical, then $\operatorname{PQE}(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Theorem (A., Kimelfeld, ICDT'21, LMCS'22)

The same dichotomy holds for uniform reliability (UR(Q))

Data complexity of model counting for UCQs

For the class of unions of conjunctive queries (UCQs):
Theorem (Dalvi, Suciu, JACM'12)
The following dichotomy holds on UCQs Q:

- If Q is safe, then $P Q E(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Data complexity of model counting for UCQs

For the class of unions of conjunctive queries (UCQs):
Theorem (Dalvi, Suciu, JACM'12)
The following dichotomy holds on UCQs Q:

- If Q is safe, then $P Q E(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Theorem (Kenig, Suciu, PODS'21)

- The same dichotomy holds even when probabilities can only be $1 / 2$ and 1 (and o)
- For some unsafe UCQs, hardness already holds for uniform reliability

Data complexity of model counting for UCQs

For the class of unions of conjunctive queries (UCQs):
Theorem (Dalvi, Suciu, JACM'12)
The following dichotomy holds on UCQs Q:

- If Q is safe, then $P Q E(Q)$ is in PTIME
- Otherwise, $\mathrm{PQE}(Q)$ is \#P-hard

Theorem (Kenig, Suciu, PODS'21)

- The same dichotomy holds even when probabilities can only be $1 / 2$ and 1 (and o)
- For some unsafe UCQs, hardness already holds for uniform reliability

Is UR(Q) \#P-hard for every unsafe UCQ, like PQE(Q)? Open

Data complexity of model counting for homomorphism-closed queries

- A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms

Data complexity of model counting for homomorphism-closed queries

- A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
\rightarrow If I satisfies Q and I has a homomorphism to I^{\prime} then I^{\prime} satisfies Q
\rightarrow Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.

Data complexity of model counting for homomorphism-closed queries

- A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
\rightarrow If I satisfies Q and I has a homomorphism to I^{\prime} then I^{\prime} satisfies Q
\rightarrow Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Data complexity of model counting for homomorphism-closed queries

- A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
\rightarrow If I satisfies Q and I has a homomorphism to I^{\prime} then I^{\prime} satisfies Q
\rightarrow Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT'20, LMCS'22)

On arity-two signatures, for any unbounded homomorphism-closed query Q, the $P Q E$ problem is \#P-hard

Data complexity of model counting for homomorphism-closed queries

- A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
\rightarrow If I satisfies Q and I has a homomorphism to I^{\prime} then I^{\prime} satisfies Q
\rightarrow Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT'20, LMCS'22)

On arity-two signatures, for any unbounded homomorphism-closed query Q, the $P Q E$ problem is \#P-hard

Theorem (A., ICDT'23)

The same holds for the UR problem

Data complexity of model counting for homomorphism-closed queries

- A query Q is homomorphism-closed if satisfaction is preserved by homomorphisms
\rightarrow If I satisfies Q and I has a homomorphism to I^{\prime} then I^{\prime} satisfies Q
\rightarrow Ex.: CQs, UCQs, some recursive queries like regular path queries (RPQs), Datalog, etc.
- A homomorphism-closed query is unbounded if it is not equivalent to a UCQ

Theorem (A., Ceylan, ICDT'20, LMCS'22)

On arity-two signatures, for any unbounded homomorphism-closed query Q, the $P Q E$ problem is \#P-hard

Theorem (A., ICDT'23)

The same holds for the UR problem

Do these hardness results extend to higher-arity signatures? Open

Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: restrict the input instance!

- Fix: a query Q and an instance family \mathcal{I}

Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: restrict the input instance!

- Fix: a query Q and an instance family \mathcal{I}
- Input: a relational database I in \mathcal{I}
- For PQE: also give a probability to each fact in the input

Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: restrict the input instance!

- Fix: a query Q and an instance family \mathcal{I}
- Input: a relational database I in \mathcal{I}
- For PQE: also give a probability to each fact in the input
- Output:
- For UR: the number of subsets of I such that Q is satisfied
- For PQE: the probability of getting such a subset (assuming independence)

Data complexity of model counting: Restricting the instances

Another way to make the problem tractable: restrict the input instance!

- Fix: a query Q and an instance family \mathcal{I}
- Input: a relational database I in \mathcal{I}
- For PQE: also give a probability to each fact in the input
- Output:
- For UR: the number of subsets of I such that Q is satisfied
- For PQE: the probability of getting such a subset (assuming independence)
\rightarrow For which queries Q and which instance families \mathcal{I} are these problems $\mathrm{UR}(Q, \mathcal{I})$ and $\operatorname{PQE}(Q, \mathcal{I})$ solvable in PTIME?

Data complexity of model counting: MSO on treelike instances

- Treewidth is a parameter intuitively measuring how close a graph is to a tree

Data complexity of model counting: MSO on treelike instances

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family \mathcal{I} is treelike if there is a constant $k \in \mathbb{N}$ such that all instances in \mathcal{I} have treewidth $\leq k$

Data complexity of model counting: MSO on treelike instances

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family \mathcal{I} is treelike if there is a constant $k \in \mathbb{N}$ such that all instances in \mathcal{I} have treewidth $\leq k$
- Monadic second-order logic (MSO) is a query language extending first-order logic with quantification over sets

Data complexity of model counting: MSO on treelike instances

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family \mathcal{I} is treelike if there is a constant $k \in \mathbb{N}$ such that all instances in \mathcal{I} have treewidth $\leq k$
- Monadic second-order logic (MSO) is a query language extending first-order logic with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP'15)

For any MSO query Q and treelike instance family \mathcal{I}, the problem $\operatorname{PQE}(Q)$ is in PTIME

Data complexity of model counting: MSO on treelike instances

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family \mathcal{I} is treelike if there is a constant $k \in \mathbb{N}$ such that all instances in \mathcal{I} have treewidth $\leq k$
- Monadic second-order logic (MSO) is a query language extending first-order logic with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP'15)

For any MSO query Q and treelike instance family \mathcal{I}, the problem $\operatorname{PQE}(Q)$ is in PTIME

- In particular: PQE is in PTIME for tree automata over probabilistic trees (already in: Cohen, Kimelfeld, Sagiv, PODS'09)

Data complexity of model counting: MSO on treelike instances

- Treewidth is a parameter intuitively measuring how close a graph is to a tree
- An instance family \mathcal{I} is treelike if there is a constant $k \in \mathbb{N}$ such that all instances in \mathcal{I} have treewidth $\leq k$
- Monadic second-order logic (MSO) is a query language extending first-order logic with quantification over sets

Theorem (A., Bourhis, Senellart, ICALP'15)

For any MSO query Q and treelike instance family \mathcal{I}, the problem $\operatorname{PQE}(Q)$ is in PTIME

- In particular: PQE is in PTIME for tree automata over probabilistic trees (already in: Cohen, Kimelfeld, Sagiv, PODS'09)
\rightarrow Is treelikeness the only condition on the instance that makes PQE tractable?

Data complexity: Counting matchings on unbounded-treewidth graphs

- Fix a binary relation R, let Q_{2} be the query asking if there are two incident facts
$\rightarrow Q_{2}$ is a UCQ with inequalities: $(R(x, y) \vee R(y, x)) \wedge(R(y, z) \vee R(z, y)) \wedge x \neq z$

Data complexity: Counting matchings on unbounded-treewidth graphs

- Fix a binary relation R, let Q_{2} be the query asking if there are two incident facts
$\rightarrow Q_{2}$ is a UCQ with inequalities: $(R(x, y) \vee R(y, x)) \wedge(R(y, z) \vee R(z, y)) \wedge x \neq z$
- A non-treelike instance family \mathcal{I} is treewidth-constructible if, given $k \in \mathbb{N}$, we can compute in time $\operatorname{Poly}(\boldsymbol{k})$ an instance in \mathcal{I} with treewidth at least \boldsymbol{k}

Data complexity: Counting matchings on unbounded-treewidth graphs

- Fix a binary relation R, let Q_{2} be the query asking if there are two incident facts
$\rightarrow Q_{2}$ is a UCQ with inequalities: $(R(x, y) \vee R(y, x)) \wedge(R(y, z) \vee R(z, y)) \wedge x \neq z$
- A non-treelike instance family \mathcal{I} is treewidth-constructible if, given $k \in \mathbb{N}$, we can compute in time $\operatorname{Poly}(\boldsymbol{k})$ an instance in \mathcal{I} with treewidth at least \boldsymbol{k}

Theorem (A., Monet, MFCS'22)

For any treewidth-constructible instance family \mathcal{I}, the problem $\operatorname{PQE}\left(Q_{2}\right)$ is \#P-hard under ZPP reductions

Data complexity: Counting matchings on unbounded-treewidth graphs

- Fix a binary relation R, let Q_{2} be the query asking if there are two incident facts
$\rightarrow Q_{2}$ is a UCQ with inequalities: $(R(x, y) \vee R(y, x)) \wedge(R(y, z) \vee R(z, y)) \wedge x \neq z$
- A non-treelike instance family \mathcal{I} is treewidth-constructible if, given $k \in \mathbb{N}$, we can compute in time $\operatorname{Poly}(\boldsymbol{k})$ an instance in \mathcal{I} with treewidth at least \boldsymbol{k}

Theorem (A., Monet, MFCS'22)

For any treewidth-constructible instance family \mathcal{I}, the problem $\operatorname{PQE}\left(Q_{2}\right)$ is \#P-hard under ZPP reductions
(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM'16))

Data complexity: Counting matchings on unbounded-treewidth graphs

- Fix a binary relation R, let Q_{2} be the query asking if there are two incident facts
$\rightarrow Q_{2}$ is a UCQ with inequalities: $(R(x, y) \vee R(y, x)) \wedge(R(y, z) \vee R(z, y)) \wedge x \neq z$
- A non-treelike instance family \mathcal{I} is treewidth-constructible if, given $k \in \mathbb{N}$, we can compute in time $\operatorname{Poly}(\boldsymbol{k})$ an instance in \mathcal{I} with treewidth at least \boldsymbol{k}

Theorem (A., Monet, MFCS'22)

For any treewidth-constructible instance family \mathcal{I}, the problem $\operatorname{PQE}\left(Q_{2}\right)$ is \#P-hard under ZPP reductions
(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM'16))

- Does this intractability result also hold for UR? Open

Data complexity: Counting matchings on unbounded-treewidth graphs

- Fix a binary relation R, let Q_{2} be the query asking if there are two incident facts
$\rightarrow Q_{2}$ is a UCQ with inequalities: $(R(x, y) \vee R(y, x)) \wedge(R(y, z) \vee R(z, y)) \wedge x \neq z$
- A non-treelike instance family \mathcal{I} is treewidth-constructible if, given $k \in \mathbb{N}$, we can compute in time $\operatorname{Poly}(\boldsymbol{k})$ an instance in \mathcal{I} with treewidth at least \boldsymbol{k}

Theorem (A., Monet, MFCS'22)

For any treewidth-constructible instance family \mathcal{I}, the problem $\operatorname{PQE}\left(Q_{2}\right)$ is \#P-hard under ZPP reductions
(Uses polynomial bounds on grid minor extraction (Chekuri, Chuzhoy, JACM'16))

- Does this intractability result also hold for UR? Open
- For which other queries than Q_{2} does this hold? What about higher arity? Open

Model counting: Combined complexity

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the probability that Q is true in I

Model counting: Combined complexity

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query

Model counting: Combined complexity

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query
$\xrightarrow{R} \xrightarrow{T}$
1WP: one-way paths

Model counting: Combined complexity

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query
$\xrightarrow{R} \xrightarrow{S} \xrightarrow{T} \quad \xrightarrow{R} \stackrel{R}{\longleftrightarrow}$
1WP: one-way paths 2WP: two-way paths

Model counting: Combined complexity

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query
$\xrightarrow{R} \xrightarrow{T}$
1WP: one-way paths

2WP: two-way paths

DWT: downward trees

Model counting: Combined complexity

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query
$\xrightarrow{R} \xrightarrow{T}$
1WP: one-way paths

2WP: two-way paths

DWT: downward trees PT: polytrees

Model counting: Combined complexity

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query
$\xrightarrow{R} \xrightarrow{T}$
1WP: one-way paths

2WP: two-way paths

DWT: downward trees PT: polytrees

Theorem (A., Monet, Senellart, PODS'17)

Labeled case (at least 2 relation names)

Unlabeled case (1 relation name)

Model counting: Combined complexity

- Input: an arity-two signature, a query Q, an instance I with probabilities on facts
- Output: the probability that Q is true in I

This is intractable already without probabilities so we restrict the instance and query
$\xrightarrow{R} \xrightarrow{T}$
1WP: one-way paths

2WP: two-way paths

Theorem (A., Monet, Senellart, PODS'17)

Labeled case (at least 2 relation names)

$\downarrow Q \quad I \rightarrow$	1WP	2WP	DWT	PT
Connected				
1WP				
2WP	PTIME			
DWT			\#P-hard	
PT				

Unlabeled case (1 relation name)

Do hardness results still hold for UR? Open (we haven't thought about it)

Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an approximate answer?

Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error $\epsilon>0$ which...

Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error $\epsilon>0$ which...
Additive FPRAS: - ... with probability $>1 / 2$, gives an answer x^{\prime} with additive error $\leq \epsilon$ wrt the true answer x

Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error $\epsilon>0$ which...
Additive FPRAS: • ... with probability $>1 / 2$, gives an answer x^{\prime} with additive error $\leq \epsilon$ wrt the true answer x
\rightarrow We want, with proba $>1 / 2$, that $x-\epsilon<x^{\prime}<x+\epsilon$

Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error $\epsilon>0$ which...
Additive FPRAS: • ... with probability $>1 / 2$, gives an answer x^{\prime} with additive error $\leq \epsilon$ wrt the true answer x
\rightarrow We want, with proba $>1 / 2$, that $x-\epsilon<x^{\prime}<x+\epsilon$
\rightarrow Always possible (Monte Carlo) if you can sample and evaluate in PTIME

Model counting: Approximation

Model counting problems (UR/PQE) ask for an exact answer. Is it easier to get an approximate answer?

Goal: design an algorithm running in PTIME in the input and in the error $\epsilon>0$ which...
Additive FPRAS: • ... with probability $>1 / 2$, gives an answer x^{\prime} with additive error $\leq \epsilon$ wrt the true answer x
\rightarrow We want, with proba $>1 / 2$, that $x-\epsilon<x^{\prime}<x+\epsilon$
\rightarrow Always possible (Monte Carlo) if you can sample and evaluate in PTIME
FPRAS: • ... with probability $>1 / 2$, gives an answer x^{\prime} with multiplicative error $\leq \epsilon$ wrt the true answer x
\rightarrow We want, with proba $>1 / 2$, that $(1-\epsilon) x<x^{\prime}<(1+\epsilon) x$
\rightarrow Rest of the talk only covers this notion

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

- For data complexity for UCQs:

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

- For data complexity for UCQs:
\rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

- For data complexity for UCQs:
\rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

- For data complexity for UCQs:
\rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
\rightarrow Karp-Luby no longer applies (exponentially many minimal matches)

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

- For data complexity for UCQs:
\rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
\rightarrow Karp-Luby no longer applies (exponentially many minimal matches)
\rightarrow Open (ongoing work)

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

- For data complexity for UCQs:
\rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
\rightarrow Karp-Luby no longer applies (exponentially many minimal matches)
\rightarrow Open (ongoing work)
- For combined complexity, we want a combined FPRAS:

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

- For data complexity for UCQs:
\rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
\rightarrow Karp-Luby no longer applies (exponentially many minimal matches)
\rightarrow Open (ongoing work)
- For combined complexity, we want a combined FPRAS:
- Input: query Q, instance I with probabilities, error $\epsilon>0$
- Output: with proba $>1 / 2$, in polynomial time, approximation of the probability of Q on I up to multiplicative error ϵ

Model counting: Easy approximation results

When can we have an FPRAS for model counting?

- For data complexity for UCQs:
\rightarrow Always possible, via Karp-Luby algorithm on the disjunction of minimal matches
- For data complexity for homomorphism-closed queries:
\rightarrow Karp-Luby no longer applies (exponentially many minimal matches)
\rightarrow Open (ongoing work)
- For combined complexity, we want a combined FPRAS:
- Input: query Q, instance I with probabilities, error $\epsilon>0$
- Output: with proba $>1 / 2$, in polynomial time, approximation of the probability of Q on I up to multiplicative error ϵ
\rightarrow When can we obtain such an algorithm?

Model counting: Combined complexity of approximation

Theorem (van Bremen, Meel, PODS'23)
There is a combined FPRAS for PQE with SJFCQs Q of bounded hypertreewidth and arbitrary instances I with probabilities on facts

Model counting: Combined complexity of approximation

Theorem (van Bremen, Meel, PODS'23)
There is a combined FPRAS for PQE with SJFCQs Q of bounded hypertreewidth and arbitrary instances I with probabilities on facts

What about self-joins?

Model counting: Combined complexity of approximation

Theorem (van Bremen, Meel, PODS'23)

There is a combined FPRAS for PQE with SJFCQs Q of bounded hypertreewidth and arbitrary instances I with probabilities on facts

What about self-joins?

Theorem (A., van Bremen, Meel, ICDT'24)

Labeled case (at least 2 relation names)			Unlabeled case (1 relation name)			
$\downarrow Q \quad I \rightarrow$	1WP 2WP	PT DAG	$\downarrow Q \quad I \rightarrow$	1WP 2WP	T	DAG All
1WP		FPRAS	1WP			?
2WP	PTIME		2WP	PTIME		FPRAS?
DWT		no FPRAS?	DWT			?
PT			PT			

Model counting: Combined complexity of approximation

Theorem (van Bremen, Meel, PODS'23)

There is a combined FPRAS for PQE with SJFCQs Q of bounded hypertreewidth and arbitrary instances I with probabilities on facts

What about self-joins?

Theorem (A., van Bremen, Meel, ICDT’24)

Labeled case (at least 2 relation names)			Unlabeled case (1 relation name)			
$\downarrow Q \quad I \rightarrow$	1WP 2W	T PT DAG	$\downarrow Q \quad I \rightarrow$	1WP 2WP D		DAG All
1WP		FPRAS	1WP			?
2WP	PTIME		2WP	PTIME		FPRAS?
DWT		no FPRAS?	DWT			?
PT			PT			

(Using FPRAS for \#NFA for word and tree automata (Arenas et al., JACM'21, PODS'21))
FPRAS inexistence results assume RP $\neq \mathrm{NP}$

Table of contents

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

Boolean provenance

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

Boolean provenance

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

$$
\text { Query: } Q: \exists x y z R(x, y) \wedge S(y, z)
$$

Boolean provenance

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

Query: $Q: \exists x y z R(x, y) \wedge S(y, z)$
Boolean provenance: $\Phi:\left(r_{1} \wedge s_{1}\right) \vee\left(r_{2} \wedge s_{2}\right)$

Boolean provenance

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

Query: $Q: \exists x y z R(x, y) \wedge S(y, z)$
Boolean provenance: $\Phi:\left(r_{1} \wedge s_{1}\right) \vee\left(r_{2} \wedge s_{2}\right)$

How is the provenance Φ related to model counting?

- The satisfying assignments of Φ are the subinstances of I where Q holds

Boolean provenance

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

Query: $Q: \exists x y z R(x, y) \wedge S(y, z)$
Boolean provenance: $\Phi:\left(r_{1} \wedge s_{1}\right) \vee\left(r_{2} \wedge s_{2}\right)$

How is the provenance Φ related to model counting?

- The satisfying assignments of Φ are the subinstances of I where Q holds
- UR asks how many satisfying assignments Φ has

Boolean provenance

- Fix: a Boolean query Q
- Input: a relational database I
- Output: a representation of the Boolean provenance of Q on I

Query: $Q: \exists x y z R(x, y) \wedge S(y, z)$
Boolean provenance: $\Phi:\left(r_{1} \wedge s_{1}\right) \vee\left(r_{2} \wedge s_{2}\right)$

How is the provenance Φ related to model counting?

- The satisfying assignments of Φ are the subinstances of I where Q holds
- UR asks how many satisfying assignments Φ has
- PQE asks for the probability that Φ evaluates to true

Easy results on Boolean provenance

We can tractably compute Boolean provenance in data complexity:

Theorem (folklore)

For any fixed UCQ Q, given an instance I, we can compute the provenance of Q on I as a Boolean formula in PTIME data complexity

Easy results on Boolean provenance

We can tractably compute Boolean provenance in data complexity:

Theorem (folklore)

For any fixed UCQ Q, given an instance I, we can compute the provenance of Q on I as a Boolean formula in PTIME data complexity

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Easy results on Boolean provenance

We can tractably compute Boolean provenance in data complexity:

Theorem (folklore)

For any fixed UCQ Q, given an instance I, we can compute the provenance of Q on I as a Boolean formula in PTIME data complexity

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (Deutch et al., ICDT'14)

For any fixed Datalog program Q, given an instance I, we can compute the provenance of Q on I in PTIME data complexity as a Boolean circuit

Easy results on Boolean provenance

We can tractably compute Boolean provenance in data complexity:

Theorem (folklore)

For any fixed UCQ Q, given an instance I, we can compute the provenance of Q on I as a Boolean formula in PTIME data complexity

Proof: Simply test all possible variable assignments (disjunctive normal form formula)

Theorem (Deutch et al., ICDT'14)

For any fixed Datalog program Q, given an instance I, we can compute the provenance of Q on I in PTIME data complexity as a Boolean circuit

Goal: provenance representation in tractable circuit classes from knowledge compilation

Tractable circuits: d-DNNF and d-SDNNF

Tractable circuit class: d-DNNF:

- (are only applied to variables

Tractable circuits: d-DNNF and d-SDNNF

Tractable circuit class: d-DNNF:

- \nearrow are only applied to variables
- (V) are all deterministic:

The inputs are mutually exclusive (= no valuation makes two inputs simultaneously evaluate to 1)

Tractable circuits: d-DNNF and d-SDNNF

Tractable circuit class: d-DNNF:

- \nearrow are only applied to variables
- V are all deterministic:

The inputs are mutually exclusive (= no valuation makes two inputs simultaneously evaluate to 1)

- \bigwedge are all decomposable:

The inputs are independent (= no variable x has a path to two different inputs)

Tractable circuits: d-DNNF and d-SDNNF

Tractable circuit class: d-DNNF:

- \nearrow are only applied to variables
- V are all deterministic:

The inputs are mutually exclusive (= no valuation makes two inputs simultaneously evaluate to 1)

- \bigwedge are all decomposable:

The inputs are independent (= no variable x has a path to two different inputs)

Frequent extra requirement: structuredness (following a vtree), aka d-SDNNF

Solving PQE with d-DNNF

d-DNNF requirements...

Solving PQE with d-DNNF

d-DNNF requirements...

- (gates only have variables as
inputs

Solving PQE with d-DNNF

d-DNNF requirements...

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs

Solving PQE with d-DNNF

d-DNNF requirements...

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- (gates are all on independent inputs

Solving PQE with d-DNNF

d-DNNF requirements...
... make probability computation easy!

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- \bigwedge gates are all on independent inputs

Solving PQE with d-DNNF

d-DNNF requirements...

- (gates only have variables as inputs
... make probability computation easy!
- V gates always have mutually exclusive inputs
- (gates are all on independent inputs

Solving PQE with d-DNNF

d-DNNF requirements...

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- $($ gates are all on independent inputs
... make probability computation easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

Solving PQE with d-DNNF

d-DNNF requirements...

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- \bigwedge gates are all on independent inputs
... make probability computation easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

Solving PQE with d-DNNF

d-DNNF requirements...

- (gates only have variables as inputs
- (V) gates always have mutually exclusive inputs
- \bigwedge gates are all on independent inputs
... make probability computation easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

$$
P(g):=P\left(g_{1}^{\prime}\right)+P\left(g_{2}^{\prime}\right)
$$

Solving PQE with d-DNNF

d-DNNF requirements...
... make probability computation easy!

- (gates only have variables as inputs

Solving PQE with d-DNNF

d-DNNF requirements...
... make probability computation easy!

- (gates only have variables as inputs
P(g):=1-P(g') $\quad P(g):=P\left(g_{1}^{\prime}\right)+P\left(g_{2}^{\prime}\right)$

Solving PQE with d-DNNF

d-DNNF requirements...
... make probability computation easy!

- (gates only have variables as inputs
($\quad P(g):=1-P\left(g^{\prime}\right)$
\rightarrow If you can build a d-DNNF provenance representation in PTIME, then PQE is in PTIME

Other tractable circuit classes

- Read-once formula: Boolean formula where each variable occurs at most once
\rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation

Other tractable circuit classes

- Read-once formula: Boolean formula where each variable occurs at most once
\rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs

Other tractable circuit classes

- Read-once formula: Boolean formula where each variable occurs at most once
\rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs

Other tractable circuit classes

- Read-once formula: Boolean formula where each variable occurs at most once
\rightarrow If the Boolean provenance is written in this way, we can compute the probability with independent AND, independent OR, negation
- Binary decision diagram, e.g., OBDDs

- Generalize d-DNNFs to d-Ds: allow arbitrary negations

Model counting results vs knowledge compilation results

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)

Model counting results vs knowledge compilation results

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
\rightarrow We always have $\mathrm{KC} \Rightarrow \mathrm{MC}$

Model counting results vs knowledge compilation results

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
\rightarrow We always have $\mathrm{KC} \Rightarrow \mathrm{MC}$
\rightarrow Open if $M C \Rightarrow K C$: intensional-extensional conjecture (Mikaël's talk)

Model counting results vs knowledge compilation results

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
\rightarrow We always have $\mathrm{KC} \Rightarrow \mathrm{MC}$
\rightarrow Open if $M C \Rightarrow K C$: intensional-extensional conjecture (Mikaël's talk)

Two kinds of intractability results:

- $\overline{\mathrm{MC}}: \mathrm{PQE}$ is \#P-hard
- $\overline{\mathrm{KC}}$: there are no small circuits representing provenance in a given class

Model counting results vs knowledge compilation results

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
\rightarrow We always have $\mathrm{KC} \Rightarrow \mathrm{MC}$
\rightarrow Open if $M C \Rightarrow K C$: intensional-extensional conjecture (Mikaël's talk)

Two kinds of intractability results:

- $\overline{\mathrm{MC}}:$ PQE is \#P-hard
- $\overline{\mathrm{KC}}$: there are no small circuits representing provenance in a given class
- $\overline{M C}$ is conditional (FP $\neq \# P$) but $\overline{K C}$ can be unconditional

Model counting results vs knowledge compilation results

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
\rightarrow We always have $\mathrm{KC} \Rightarrow \mathrm{MC}$
\rightarrow Open if $M C \Rightarrow K C$: intensional-extensional conjecture (Mikaël's talk)

Two kinds of intractability results:

- $\overline{\mathrm{MC}}:$ PQE is \#P-hard
- $\overline{\mathrm{KC}}$: there are no small circuits representing provenance in a given class
- $\overline{M C}$ is conditional ($F P \neq \# P$) but $\overline{K C}$ can be unconditional
- A priori incomparable:

Model counting results vs knowledge compilation results

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
\rightarrow We always have $\mathrm{KC} \Rightarrow \mathrm{MC}$
\rightarrow Open if $M C \Rightarrow K C$: intensional-extensional conjecture (Mikaël's talk)

Two kinds of intractability results:

- $\overline{M C}: ~ P Q E ~ i s ~ \# P-h a r d ~$
- $\overline{\mathrm{KC}}$: there are no small circuits representing provenance in a given class
- $\overline{M C}$ is conditional ($F P \neq \# P$) but $\overline{K C}$ can be unconditional
- A priori incomparable:
- $\overline{\mathrm{MC}} \nRightarrow \overline{\mathrm{KC}}$: we could have small circuits that are hard to compute

Model counting results vs knowledge compilation results

Two kinds of tractability results:

- Model counting (MC): "PQE is in PTIME"
- Knowledge compilation (KC): "We can tractably compute circuits in a given class" (e.g., d-SDNNFs)
\rightarrow We always have $\mathrm{KC} \Rightarrow \mathrm{MC}$
\rightarrow Open if $M C \Rightarrow$ KC: intensional-extensional conjecture (Mikaël's talk)

Two kinds of intractability results:

- $\overline{\mathrm{MC}}: \mathrm{PQE}$ is \#P-hard
- $\overline{\mathrm{KC}}$: there are no small circuits representing provenance in a given class
- $\overline{\mathrm{MC}}$ is conditional ($\mathrm{FP} \neq \# P$) but $\overline{\mathrm{KC}}$ can be unconditional
- A priori incomparable:
- $\overline{\mathrm{MC}} \nRightarrow \overline{\mathrm{KC}}$: we could have small circuits that are hard to compute
- $\overline{\mathrm{KC}} \nRightarrow \overline{\mathrm{MC}}:$ PQE may be solvable without circuits (if int.-ext. conjecture fails)

Data complexity of provenance computation for UCQs and hom-closed queries

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
- Characterization of the UCQs for which we can compute read-once provenance

Data complexity of provenance computation for UCQs and hom-closed queries

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
- Characterization of the UCQs for which we can compute read-once provenance
- Characterization of the UCQs for which we can compute OBDD provenance

Data complexity of provenance computation for UCQs and hom-closed queries

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
- Characterization of the UCQs for which we can compute read-once provenance
- Characterization of the UCQs for which we can compute OBDD provenance
- Sufficient conditions to have FBDDs and d-DNNFs

Data complexity of provenance computation for UCQs and hom-closed queries

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
- Characterization of the UCQs for which we can compute read-once provenance
- Characterization of the UCQs for which we can compute OBDD provenance
- Sufficient conditions to have FBDDs and d-DNNFs
- In particular, for UCQs:
- Open if safe UCQs have small d-D provenance circuits (intensional-extensional conjecture)
- Open if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)

Data complexity of provenance computation for UCQs and hom-closed queries

- For UCQs, results in (Jha, Suciu, ICDT'11, TCS'13):
- Characterization of the UCQs for which we can compute read-once provenance
- Characterization of the UCQs for which we can compute OBDD provenance
- Sufficient conditions to have FBDDs and d-DNNFs
- In particular, for UCQs:
- Open if safe UCQs have small d-D provenance circuits (intensional-extensional conjecture)
- Open if unsafe UCQs do not have small tractable circuits (beyond RO and OBDDs)
- For homomorphism-closed queries: open

Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query \mathbb{Q} and treelike instance family \mathcal{I}, given an instance I in \mathcal{I}, we can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query \mathbb{Q} and treelike instance family \mathcal{I}, given an instance I in \mathcal{I}, we can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open

Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query \mathbb{Q} and treelike instance family \mathcal{I}, given an instance I in \mathcal{I}, we can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open What happens on high-treewidth instances?

Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query \mathbb{Q} and treelike instance family \mathcal{I}, given an instance I in \mathcal{I}, we can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open
What happens on high-treewidth instances?

Theorem (A., Bourhis, Senellart, PODS'16; A., Monet, Senellart, ICDT'18)

For the "two incident facts" query Q_{2}, given an instance I, any d-SDNNF representation of the provenance of Q_{2} on I is exponential: in $\Omega\left(2^{t w(I)^{1 / d}}\right)$ for some $d \geq 1$

For which other queries is this true? Mostly open (some results for connected UCQ \neq)

Data complexity of provenance computation for treelike data

Going back to the setting of restricted instance classes, we have:

Theorem (A., Bourhis, Senellart, ICALP'15, PODS'16)

For any fixed MSO query Q and treelike instance family \mathcal{I}, given an instance I in \mathcal{I}, we can compute the provenance of Q on I in PTIME as a d-SDNNF circuit

Can we get a weaker representation (uOBDD, etc.)? Open
What happens on high-treewidth instances?

Theorem (A., Bourhis, Senellart, PODS'16; A., Monet, Senellart, ICDT'18)

For the "two incident facts" query Q_{2}, given an instance I, any d-SDNNF representation of the provenance of Q_{2} on I is exponential: in $\Omega\left(2^{t w(I)^{1 / d}}\right)$ for some $d \geq 1$

For which other queries is this true? Mostly open (some results for connected UCQ \neq) What about more expressive circuit formalisms (d-DNNF)? Open

Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)

Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to nOBDDs for the combined FPRAS for one-way paths on DAGs

Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to nOBDDs for the combined FPRAS for one-way paths on DAGs
- ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward trees and for connected queries on two-way paths

Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to nOBDDs for the combined FPRAS for one-way paths on DAGs
- ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward trees and for connected queries on two-way paths

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

- Exponential lower bounds on DNNF provenance representations of one-way path queries on arbitrary instance graphs
\rightarrow Same applies to all cases where we show that there is (conditionally) no FPRAS

Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to nOBDDs for the combined FPRAS for one-way paths on DAGs
(ICDT'24)
- ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward trees and for connected queries on two-way paths

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

- Exponential lower bounds on DNNF provenance representations of one-way path queries on arbitrary instance graphs
\rightarrow Same applies to all cases where we show that there is (conditionally) no FPRAS
- Open if the classes above (SDNNF, nOBDDs, β-acyclic) are "as small as possible"

Combined complexity of provenance computation

Many combined complexity upper bounds for PQE come from knowledge compilation...

- ... to SDNNF, for the combined FPRAS for bounded-hypertreewidth SJFCQs (PODS'23)
- ... to nOBDDs for the combined FPRAS for one-way paths on DAGs
(ICDT'24)
- ... to β-acyclic lineages, for the exact algorithms for one-way paths on downward trees and for connected queries on two-way paths

Many combined complexity lower bounds for PQE also apply to knowledge compilation:

- Exponential lower bounds on DNNF provenance representations of one-way path queries on arbitrary instance graphs
\rightarrow Same applies to all cases where we show that there is (conditionally) no FPRAS
- Open if the classes above (SDNNF, nOBDDs, β-acyclic) are "as small as possible"

Table of contents

Problem statement and roadmap

Model counting

Knowledge compilation

Conclusion and open problems

Conclusion

We have seen two frameworks for query explanation via the Boolean provenance, i.e., via the possible worlds that satisfy the query:

- Model counting: unweighted (UR) or weighted (PQE)
- Knowledge compilation: representing the Boolean provenance in tractable circuit classes

Conclusion

We have seen two frameworks for query explanation via the Boolean provenance, i.e., via the possible worlds that satisfy the query:

- Model counting: unweighted (UR) or weighted (PQE)
- Knowledge compilation: representing the Boolean provenance in tractable circuit classes

We have studied this in several settings:

- Data complexity for SJFCQs, UCQs, hom-closed queries, etc.
- Data complexity on restricted instance families (treelike or not)
- Combined complexity

Open problems

General research directions on these topics:

- Connections between these two frameworks (intensional-extensional conjecture? lower bound techniques?)
- Connections to other aggregate queries? (Shapley value, etc.)
- Other provenance uses? semirings, enumeration, incremental maintenance...

Open problems

General research directions on these topics:

- Connections between these two frameworks (intensional-extensional conjecture? lower bound techniques?)
- Connections to other aggregate queries? (Shapley value, etc.)
- Other provenance uses? semirings, enumeration, incremental maintenance...

Many open questions throughout the talk:

- Queries with inequalities, negation, first-order queries: (approximate) PQE?
- Can we show dichotomies on approximation for unbounded queries (RPQs...)
- Understanding higher-arity and uniform reliability where it is still open
- Unbounded queries: what if some relations are non-probabilistic?
- Are there joint criteria for the tractability of instances and queries?

Open problems

General research directions on these topics:

- Connections between these two frameworks (intensional-extensional conjecture? lower bound techniques?)
- Connections to other aggregate queries? (Shapley value, etc.)
- Other provenance uses? semirings, enumeration, incremental maintenance...

Many open questions throughout the talk:

- Queries with inequalities, negation, first-order queries: (approximate) PQE?
- Can we show dichotomies on approximation for unbounded queries (RPQs...)
- Understanding higher-arity and uniform reliability where it is still open
- Unbounded queries: what if some relations are non-probabilistic?
- Are there joint criteria for the tractability of instances and queries?

Thanks for your attention!

References i

Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.
Amarilli, A. and Ceylan, I. I. (2020).
A dichotomy for homomorphism-closed queries on probabilistic graphs.
In ICDT.

References ii

Amarilli, A. and Ceylan, I. I. (2022).

The dichotomy of evaluating homomorphism-closed queries on probabilistic graphs.
LMCS.
Amarilli, A. and Kimelfeld, B. (2021).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
In ICDT.
Amarilli, A. and Kimelfeld, B. (2022).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
LMCS.

References iif

Amarilli, A., Monet, M., and Senellart, P. (2017).
Conjunctive queries on probabilistic graphs: Combined complexity. In PODS.
Amarilli, A., van Bremen, T., and Meel, K. S. (2024).
Conjunctive queries on probabilistic graphs: The limits of approximability. In ICDT.

Arenas, M., Croquevielle, L. A., Jayaram, R., and Riveros, C. (2021a). When is approximate counting for conjunctive queries tractable?
In STOC.

References iv

Arenas, M., Croquevielle, L. A., Jayaram, R., and Riveros, C. (2021b). \#NFA admits an FPRAS: Efficient enumeration, counting, and uniform generation for logspace classes.
JACM, 68(6).
Chekuri, C. and Chuzhoy, J. (2016).
Polynomial bounds for the grid-minor theorem.
JACM, 63(5).
Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic XML.
In PODS.

Dalvi, N. and Suciu, D. (2004).
Efficient query evaluation on probabilistic databases.
In VLDB.
Dalvi, N. and Suciu, D. (2007).
The dichotomy of conjunctive queries on probabilistic structures.
In PODS.
Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries.
J. ACM, 59(6).

References vi

Jha, A. and Suciu, D. (2011).
Knowledge compilation meets database theory: Compiling queries to decision diagrams.
In ICDT.
Jha, A. and Suciu, D. (2013).
Knowledge compilation meets database theory: Compiling queries to decision diagrams.
TCS, 52(3).

References vii

Kenig, B. and Suciu, D. (2021).
A dichotomy for the generalized model counting problem for unions of conjunctive queries.
In PODS.
van Bremen, T. and Meel, K. S. (2023).
Probabilistic query evaluation: The combined FPRAS landscape.
In PODS.

