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e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Solution: Enumerate solutions one after the other
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Boolean circuits

e Directed acyclic graph of gates

@ e Qutput gate: @

e Variable gates: @
° ° e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}

° 0 Example: v = {x+— 0, y — 1}.. mapped to 1
» Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

’ Our task: Enumerate all satisfying assignments of an input circuit
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d-DNNF: v-tree: A-gates follow a tree

on the variables
. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

6/17



Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

7/17



Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k € N
(at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size < R
with preprocessing linear in |C| + |T| and constant delay
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Application 1: Factorized databases

Orders (O for short) Dish (D for short) Items (I for short)

customer day dish dish item item price

Elise Monday burger burger patty patty 6

Elise Friday burger burger onion onion 2

Steve Friday  hotdog burger bun bun 2

Joe Friday  hotdog hotdog bun sausage 4
hotdog onion

hotdog sausage

Consider the join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise  Monday  burger patty
Elise =~ Monday  burger  onion
Elise = Monday  burger bun
Elise Friday  burger patty
Elise Friday  burger  onion
Elise Friday  burger bun

NNONNO

(Slides courtesy of Dan Olteanu)
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O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday  burger patty
Elise Monday  burger  onion
Elise Monday  burger bun
Elise Friday  burger patty
Elise Friday  burger  onion
Elise Friday  burger bun

NN N NDO

A relational algebra expression encoding the above query result is:

(Elise) X (Monday) X (burger) X (patty) X (6) U
(Elise) X (Monday) X (burger) X onion X 2 u
(Elise) X (Monday) X (burger) X (bun) X (2) U
(Elise) X (Friday) X (burger) X (patty) X (6) U
(Elise) X (Friday) X (burger) X onion X 2 u
(Elise) X (Friday) X (burger) X (bun) X (2) U..

(Slides courtesy of Dan Olteanu)
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Application 1: Factorized databases

x / I X
/ \ \ // \
U (burger) U U hotdog) U
X X X X X X X X X
\ \ AN AN \ AN AN N AN
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Application 1: Factorized databases

(Elise)y  (Elise) (6) (2) (Joe) (Steve) (2) (&)

« Decomposable: by definition (following the schema)
» Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Zavodny, 2015])
Given a deterministic factorized representation, we can enumerate its

tuples with linear preprocessing and constant delay .



Application 2: Query evaluation

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet O O O

Query Q: a sentence in monadic “Is there both a
second-order logic (MSO) pink and a blue

e Po(x) means “x is blue” node?”

e x — y means “x is the parent of y" Ixy Po(x) A Po(y)

Result: TRUE/FALSE indicating if T satisfies the query Q@

Computational complexity as a function of the tree T
(the query Q is fixed)

(Slides courtesy of Pierre Bourhis)
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Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on a tree T
— Generalizes to bounded-treewidth databases

e Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013])
For any constant k € N and fixed MSO query Q,

given a database D of treewidth < R, the results of Q on D

can be enumerated with linear preprocessing in D and linear delay
in each answer (— constant delay for free first-order variables)

9/17
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Proof overview

Preprocessing phase:

Circuit ™ Translation o Normalization (ﬁa
- - — Circuit = . . — .
A (linear-time) ero (linear-time) | Normalized
A circuit
P suppressed
v-tree semantics

Enumeration phase:

d@b Enumeration A B C
. a b ¢
. 3 (linear delay > v«
Normalized )
o in each result) Results
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Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
» Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in < 2)
11/17
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Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate
g g/ g g/
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)
and then enumerate S(g’) and for each result t enumerate S(g’)

Determinism: no duplicates and concatenate t with each result

Decomposability: no duplicates

12/17
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 Problem: if S(g) = 0 we waste time

e Solution: compute bottom-up if S(g) = 0
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Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{{x}} in chains of AND-gates
* Solution:
{{x}} . split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1
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Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

— Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

/7
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Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index
e Problem: must be done in linear time

Solution: @

» Determinism ensures we have a multitree /
(we cannot have the pattern at the right) .

e Custom constant-delay reachability index for multitrees \g

15/17
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Summary and conclusion

e Enumerate the satisfying assignments of structured d-DNNF
— in delay linear in each assignment
— in constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

Future work:

» Practice: implement the technique with automata
e Theory: handle updates on the input

arXiv.org > cs > arXiv:1709.06185

Computer Science > Databases

Enumeration on Trees under Relabelings

Antoine Amarilli, Pierre Bourhis, Stefan Mengel .
Thanks for your attention!
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