UNIVERSITE
¥ Grenoble TN
& Alpes

TELECOM
NC

i il

A Circuit-Based Approach to Efficient Enumeration

cr il

Antoine Amarilli’, Pierre Bourhis?, Louis Jachiet3, Stefan Mengel“
September 20th, 2017

1Télécom ParisTech
2CNRS CRIStAL
3Université Grenoble-Alpes

4CNRS CRIL

1/17

Problem statement

Problem: Enumerating large result sets

Input

Problem: Enumerating large result sets

Input Algorithm

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

2/17

Problem: Enumerating large result sets

Vo Yo | B
O oco|lw
[g]

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Q knowledge compilation (%] m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Solution: Enumerate solutions one after the other
2/17

Enumeration algorithm

& 2

Input

Enumeration algorithm

Step 1
— Indexing

Input | in O(input)

Enumeration algorithm

Step 1: t.
—| Indexing |»
in O(input)| Indexed
Input (input) input

Enumeration algorithm

Step 1: t. Step 2:
— Indexing |» — Enumeration
in O(input)| Indexed in O(result
Input (input) input ()

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

Indexed

Step 2:
Enumeration
in O(result)

input

Results

Enumeration algorithm

A B C
Step 1: t. Step 2: a b ¢
— Indexing |» — Enumeration >
in O(input)| Indexed in O(result
Input put) input ()
Results
0011
il
e

State

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

N

Step 2:
Enumeration
in O(result)

0 2

0011

i
o

State

Results

3/17

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

A B C
Step 2:
s| Enumeration y a b C
in O(result)
Results
010001
&
e (1 D —

State

3/17

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

A B C
Step 2:
3 Enumeration >
in O(result) a bc
Results
01100111
"
e (1 D —

State

3/17

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

A B C
Step 2:
3 Enumeration >
in O(result)
a b c
Results
1
i
o

State

3/17

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

>

Q
OO,
I

®© O

Indexed
input

N

Step 2:

Enumeration
in O(result)

ul

>l
M

State

0 2

Results

3/17

General idea for enumeration

Currently:

>
w
o

o o
o o
o n

AR a H
Input | Enumeration| Results

417

General idea for enumeration

Currently:

ol

o o
o o
o n

X —
Input | Enumeration| Results

>
w
o

[
o o
o n

7 —
Input Enumeration | Results

417

General idea for enumeration

Currently:

>
w
o

bodn

oy
Input | Enumeration| Results

o o
o o
o n

A B C
a b c
—_— ? a b ¢

Input Enumeration | Results

codns
:ﬁ;:(ﬁz —

Input [Enumeration| Resuylts

o | >
o o|w
a0 |a

417

General idea for enumeration

Currently:

A B C

a b ¢

— a b ¢
Results

A B C

a b ¢

— a b oc
Input Enumeration | Results

f‘z"& A B C

= B
Input [Enumeration| Resuylts

Input

Compilation ONG
Circuit

47

General idea for enumeration

Currently:

A B C

a b ¢

— a b ¢
Results

A B C

a b ¢

— a b oc
Input Enumeration | Results

ﬁ"& A B C

= B
Input Enumeration | Results

Input

Input

RO
5]

Compilation

Circuit

417

General idea for enumeration

Currently:

A B C

a b ¢

_)a b ¢

Results

A B C

a b ¢

_)a b ¢

Input Enumeration | Results
A B C

= 8
Input [Enumeration| Resuylts

RO
5]

Compilation

X ”

LA]
POS
s

Compilation

Circuit

417

General idea for enumeration

Currently:

‘:){:){: A B C

e O —
Input | Enumeration| Results

ﬁ)ﬂ: A B C

— S
Input Enumeration | Results

ﬁ"& A B C

= 8 -
Input [Enumeration| Resuylts

Input
- &
Input Compilation
Compilation
A B C
i?ﬁ —
Enumeration| Results

Circuit

e Directed acyclic graph of gates
@ Output gate: @
Variable gates: @
Internal gates: @ @ @

5/17

Boolean circuits

e Directed acyclic graph of gates

@ e Qutput gate: @

e Variable gates: @
° ° e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}

Example: v = {x+— 0, y — 1}..
OO

5/17

Boolean circuits

e Directed acyclic graph of gates

e Output gate: ©
e Variable gates: @
° ° e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}..

5/17

Boolean circuits

e Directed acyclic graph of gates

e QOutput gate: ©
» Variable gates: @
¢ Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}..

5/17

Boolean circuits

e Directed acyclic graph of gates

e QOutput gate: ©
» Variable gates: @
¢ Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}.. mapped to 1

5/17

Boolean circuits

e Directed acyclic graph of gates

e QOutput gate: ©
» Variable gates: @
¢ Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}.. mapped to 1

» Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

5/17

Boolean circuits

e Directed acyclic graph of gates

@ e Qutput gate: @

e Variable gates: @
° ° e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}

° 0 Example: v = {x+— 0, y — 1}.. mapped to 1
» Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

’ Our task: Enumerate all satisfying assignments of an input circuit

5/17

Circuit restrictions

d-DNNF:

. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation » makes two inputs
simultaneously evaluate to 1)

6/17

Circuit restrictions

d-DNNF:

. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

6/17

Circuit restrictions

d-DNNF: v-tree: A-gates follow a tree

on the variables
. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

6/17

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

7/17

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k € N
(at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size < R
with preprocessing linear in |C| + |T| and constant delay

7/17

Application 1: Factorized databases

Orders (O for short) Dish (D for short) Items (I for short)

customer day dish dish item item price

Elise Monday burger burger patty patty 6

Elise Friday burger burger onion onion 2

Steve Friday hotdog burger bun bun 2

Joe Friday hotdog hotdog bun sausage 4
hotdog onion

hotdog sausage

Consider the join of the above relations:

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty
Elise =~ Monday burger onion
Elise = Monday burger bun
Elise Friday burger patty
Elise Friday burger onion
Elise Friday burger bun

NNONNO

(Slides courtesy of Dan Olteanu)
8/17

Application 1: Factorized databases

O(customer, day, dish), D(dish, item), I(item, price)

customer day dish item price

Elise Monday burger patty
Elise Monday burger onion
Elise Monday burger bun
Elise Friday burger patty
Elise Friday burger onion
Elise Friday burger bun

NN N NDO

A relational algebra expression encoding the above query result is:

(Elise) X (Monday) X (burger) X (patty) X (6) U
(Elise) X (Monday) X (burger) X onion X 2 u
(Elise) X (Monday) X (burger) X (bun) X (2) U
(Elise) X (Friday) X (burger) X (patty) X (6) U
(Elise) X (Friday) X (burger) X onion X 2 u
(Elise) X (Friday) X (burger) X (bun) X (2) U..

(Slides courtesy of Dan Olteanu)
8/17

Application 1: Factorized databases

x / I X
/ \ \ // \
U (burger) U U hotdog) U
X X X X X X X X X
\ \ AN AN \ AN AN N AN
(Mon) (Friy | (patty) | (bun) U (Fri) (bun) (saus.)
/N
(Elise)y (Elise) (6) (2) (Joe) (Steve) (2) (&)

(Slides courtesy of Dan Olteanu)
8/17

Application 1: Factorized databases

(Elise)y (Elise) (6) (2) (Joe) (Steve) (2) (&)

(Slides courtesy of Dan Olteanu)

8/17

Application 1: Factorized databases

(Elise)y (Elise) (6) (2) (Joe) (Steve) (2) (&)

« Decomposable: by definition (following the schema)
» Deterministic: we do not obtain the same tuple multiple times

8/17

Application 1: Factorized databases

(Elise)y (Elise) (6) (2) (Joe) (Steve) (2) (&)

« Decomposable: by definition (following the schema)
» Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Zavodny, 2015])
Given a deterministic factorized representation, we can enumerate its

tuples with linear preprocessing and constant delay .

Application 2: Query evaluation

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet O O O

Query Q: a sentence in monadic “Is there both a
second-order logic (MSO) pink and a blue

e Po(x) means “x is blue” node?”

e x — y means “x is the parent of y" Ixy Po(x) A Po(y)

Result: TRUE/FALSE indicating if T satisfies the query Q@

Computational complexity as a function of the tree T
(the query Q is fixed)

(Slides courtesy of Pierre Bourhis)
9/17

Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on a tree T
— Generalizes to bounded-treewidth databases

9/17

Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on a tree T
— Generalizes to bounded-treewidth databases

e Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

9/17

Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on a tree T
— Generalizes to bounded-treewidth databases

e Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

9/17

Application 2: Query evaluation

» Compute the results (a, b, c) of a query Q(x,y,z) on a tree T
— Generalizes to bounded-treewidth databases

e Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013])
For any constant k € N and fixed MSO query Q,

given a database D of treewidth < R, the results of Q on D

can be enumerated with linear preprocessing in D and linear delay
in each answer (— constant delay for free first-order variables)

9/17

Proof techniques

Proof overview

Preprocessing phase:

v-tree

Proof overview

Preprocessing phase:

©
@
- : Y ® @
it mararol o
I\ in zero-
y/\z suppressed

v-tree semantics

Proof overview

Preprocessing phase:

Normalization
(linear-time)

©
@
! - ® @
Circuit Translation o
(linear-time) Circuit =
N in zero-
y/\z suppressed
v-tree semantics

b

Normalized
circuit

10/17

Proof overview

Preprocessing phase:

@)
@,

Circuit

Translation

(linear-time)

®» @
— Circuit =

Normalization
(linear-time)

in zero-

AN

N\

y z
v-tree

Enumeration phase:

©
Normalized
circuit

suppressed
semantics

b

Normalized
circuit

Proof overview

Preprocessing phase:

Circuit ™ Translation o Normalization (ﬁa
- - — Circuit = . . — .
A (linear-time) ero (linear-time) | Normalized
A circuit
P suppressed
v-tree semantics

Enumeration phase:

d@b Enumeration A B C
. a b ¢
. 3 (linear delay > v«
Normalized)
o in each result) Results
circuit

10/17

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:

1/17

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:
° 0 « No NOT-gate
0 a e Each gate captures a set of assignments

e Bottom-up definition with x and U

1/17

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:
O {{y}’{z}}- No NOT-gate
0 a e Each gate captures a set of assignments

e Bottom-up definition with x and U

1/17

Zero-suppressed semantics

{ovhA{xzt _ -
@ Special zero-suppressed semantics for circuits:
iz, No NOT-gate

» Each gate captures a set of assignments
e Bottom-up definition with x and U

1/17

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

» Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

1/17

Zero-suppressed semantics

{ovhA{xzt . -
@ Special zero-suppressed semantics for circuits:
iz, No NOT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
» Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

1/17

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
» Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in < 2)
11/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ :

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate

o

g g
Concatenation: enumerate S(g)
and then enumerate S(g’)

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate
g g

Concatenation: enumerate S(g)
and then enumerate S(g’)

Determinism: no duplicates

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate

ol Jol

g g/ g gl
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)

and then enumerate S(g’) and for each result t enumerate S(g’)

. . and concatenate t with each result
Determinism: no duplicates

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate
g g/ g g/
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)
and then enumerate S(g’) and for each result t enumerate S(g’)

Determinism: no duplicates and concatenate t with each result

Decomposability: no duplicates

12/17

Normalization: handling ()

13/17

Normalization: handling ()

{x33 R0

13/17

Normalization: handling ()

13/17

Normalization: handling ()

13/17

Normalization: handling ()

 Problem: if S(g) = 0 we waste time

13/17

Normalization: handling ()

 Problem: if S(g) = 0 we waste time

e Solution: compute bottom-up if S(g) = 0

13/17

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{1 in chains of AND-gates
* Solution:

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{1 in chains of AND-gates
* Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{{}} in chains of AND-gates

* Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
- remove inputs with S(g) = {{}} for AND-gates

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

* Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
- remove inputs with S(g) = {{}} for AND-gates

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{{x}} in chains of AND-gates
* Solution:
{{x}} . split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

— Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

/7

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies

g
1 to find a reachable exit (non-OR gate)

9y

92 g3

15/17

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies

g
1 to find a reachable exit (non-OR gate)

9. Solution: compute reachability index

92 g3

15/17

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index

15/17

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index
e Problem: must be done in linear time

15/17

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index
e Problem: must be done in linear time

Solution: @

» Determinism ensures we have a multitree /
(we cannot have the pattern at the right) .

e Custom constant-delay reachability index for multitrees \g

15/17

Translating to zero-suppressed semantics

« This is where we use the v-tree /\ ®/Q\)\G>
X
y z

16/17

Translating to zero-suppressed semantics

(smoothing)

« This is where we use the v-tree /\
Add explicitly untested variables X /\
y =z

16/17

Translating to zero-suppressed semantics

« This is where we use the v-tree /\

X
» Add explicitly untested variables /\

(smoothing) y 2

16/17

Translating to zero-suppressed semantics

« This is where we use the v-tree /\

X
» Add explicitly untested variables /\

(smoothing) y 2

° * Problem: quadratic blowup

°o° 00 °o°

16/17

Translating to zero-suppressed semantics

« This is where we use the v-tree /\

» Add explicitly untested variables X /\
(smoothing)

y z
° * Problem: quadratic blowup
» Solution:
o 0 0 - Order < on variables in the v-tree

x<y<2)

° ° 0 b e ° - Interval [x, Z]

- Range gates to denote \/[x, Z]
in constant space

16/17

Translating to zero-suppressed semantics

« This is where we use the v-tree /\

X
» Add explicitly untested variables /\

(smoothing) y 2

° * Problem: quadratic blowup
 Solution:
- Order < on variables in the v-tree
x<y<2)
- Interval [x, Z]
- Range gates to denote \/[x, Z]
in constant space

16/17

Conclusion

Summary and conclusion

e Enumerate the satisfying assignments of structured d-DNNF
— in delay linear in each assignment
— in constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

17/17

Summary and conclusion

e Enumerate the satisfying assignments of structured d-DNNF
— in delay linear in each assignment
— in constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

Future work:

» Practice: implement the technique with automata
e Theory: handle updates on the input

17/17

Summary and conclusion

e Enumerate the satisfying assignments of structured d-DNNF
— in delay linear in each assignment
— in constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

Future work:

» Practice: implement the technique with automata
e Theory: handle updates on the input

arXiv.org > cs > arXiv:1709.06185

Computer Science > Databases

Enumeration on Trees under Relabelings

Antoine Amarilli, Pierre Bourhis, Stefan Mengel
(Submitted on 18 Sep 2017) 17/17

Summary and conclusion

e Enumerate the satisfying assignments of structured d-DNNF
— in delay linear in each assignment
— in constant delay for constant Hamming weight

— Can recapture existing enumeration results
— Useful general-purpose result for applications

Future work:

» Practice: implement the technique with automata
e Theory: handle updates on the input

arXiv.org > cs > arXiv:1709.06185

Computer Science > Databases

Enumeration on Trees under Relabelings

Antoine Amarilli, Pierre Bourhis, Stefan Mengel .
Thanks for your attention!

(Submitted on 18 Sep 2017) 17/17

References

[4 Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
[§ Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(1).
[@ Olteanu, D. and Zavodny, J. (2015).
Size bounds for factorised representations of query results.
TODS, 40(1).

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf

	Problem statement
	Proof techniques
	Conclusion
	Appendix

