

Antoine Amarilli¹, Pierre Bourhis ${ }^{2}$, Louis Jachiet ${ }^{2}$, Stefan Mengel ${ }^{3}$, Matthias Niewerth ${ }^{4}$

May 20, 2019
${ }^{1}$ Télécom ParisTech
${ }^{2}$ CNRS CRIStAL
${ }^{3}$ CNRS CRIL

Roadmap of this talk

- Stefan has presented enumeration for d-DNNF set circuits

Roadmap of this talk

- Stefan has presented enumeration for d-DNNF set circuits
- This talk: introduce MSO query evaluation on trees and build a set circuit that represents the answers to enumerate

Roadmap of this talk

- Stefan has presented enumeration for d-DNNF set circuits
- This talk: introduce MSO query evaluation on trees and build a set circuit that represents the answers to enumerate
- Using the previous talk we can reprove the result:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

Roadmap of this talk

- Stefan has presented enumeration for d-DNNF set circuits
- This talk: introduce MSO query evaluation on trees and build a set circuit that represents the answers to enumerate
- Using the previous talk we can reprove the result:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

- Also: new results on combined complexity:

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]

We can enumerate the results of an automaton on a tree with:

- Preprocessing linear in the tree and polynomial in the automaton
- Delay constant in the tree and polynomial in the automaton

Roadmap of this talk

- Stefan has presented enumeration for d-DNNF set circuits
- This talk: introduce MSO query evaluation on trees and build a set circuit that represents the answers to enumerate
- Using the previous talk we can reprove the result:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

- Also: new results on combined complexity:

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]

We can enumerate the results of an automaton on a tree with:

- Preprocessing linear in the tree and polynomial in the automaton
- Delay constant in the tree and polynomial in the automaton
- Next talk: how to support updates (and prove new results)

Boolean MSO on trees

Boolean query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Boolean query evaluation on trees

Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a sentence in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "

Boolean query evaluation on trees

©Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a sentence in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "

> "Is there both a pink and a blue node?" $\exists x y P_{\circ}(x) \wedge P_{\circ}(y)$

1 Result: TRUE/FALSE indicating if the tree T satisfies the query Q

Boolean query evaluation on trees

©Data: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a sentence in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "

> "Is there both a pink and a blue node?" $\exists x y P_{\circ}(x) \wedge P_{\circ}(y)$
(1) Result: TRUE/FALSE indicating if the tree T satisfies the query Q

Computational complexity as a function of T
(the query Q is fixed)

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the parent of y "

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the parent of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the parent of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the parent of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x$ y $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"
- Monadic second-order logic (MSO): adds quantifiers over sets
- $\exists S \forall x S(x)$ means "there is a set S containing every element x "
- Can express transitive closure $x \rightarrow^{*} y$, i.e., " x is an ancestor of y "
- $\forall x P_{\bigcirc}(x) \Rightarrow \exists y P_{\bigcirc}(y) \wedge x \rightarrow^{*} y$ means "There is a blue node below every pink node"

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{T\}$
- Initial function: $\bigcirc \perp \bigcirc P \quad \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{T\}$
- Initial function: $\bigcirc \perp \bigcirc P \quad \bigcirc$
- Transitions (examples):

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{T\}$
- Initial function: $\bigcirc \perp \bigcirc P \quad$ \perp
- Transitions (examples):

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees
\rightarrow Given a Boolean MSO query, we can compute a tree automaton that accepts precisely the trees on which the query holds

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees
\rightarrow Given a Boolean MSO query, we can compute a tree automaton that accepts precisely the trees on which the query holds
\rightarrow Complexity (in the query) is generally nonelementary

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]

MSO and tree automata have the same expressive power on trees
\rightarrow Given a Boolean MSO query, we can compute a tree automaton that accepts precisely the trees on which the query holds
\rightarrow Complexity (in the query) is generally nonelementary

Corollary

Evaluating a Boolean MSO query on a tree is in linear time in the tree

Set Circuits for

 Non-Boolean MSO Queries
Overall idea

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}

Overall idea

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds

Overall idea

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special nodes: for each node n and variable x_{i}, add a node n_{i} which is colored red iff x_{i} is the node n

Overall idea

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special nodes: for each node n and variable x_{i}, add a node n_{i} which is colored red iff x_{i} is the node n

- Rewrite the query to a Boolean query which uses the new nodes n_{i} to read the valuation of x_{i}
- This can be done in linear time in the input tree

Overall idea

- Query: $Q\left(x_{1}, \ldots, x_{n}\right)$ with free variables x_{1}, \ldots, x_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special nodes: for each node n and variable x_{i}, add a node n_{i} which is colored red iff x_{i} is the node n

- Rewrite the query to a Boolean query which uses the new nodes n_{i} to read the valuation of x_{i}
- This can be done in linear time in the input tree
- Remark: same construction for free second-order variables

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2 \mapsto 1, * \mapsto \mathrm{O}\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto 0\}$

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, \quad * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"
The tree automaton A accepts

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$
A: "Is there both a pink and a blue node?"
The tree automaton A rejects

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto 0\}$
A: "Is there both a pink and a blue node?"
The tree automaton A accepts

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S\left(g_{0}\right)$ of the output gate g_{\circ} contains $\{g \in C \mid \nu(g)=1\}$.

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $\mathrm{S}\left(g_{\circ}\right)$ of the output gate g_{\circ} contains $\{g \in C \mid \nu(g)=1\}$.

Query: Is there both a pink and a blue node?

Set circuit

Set circuit:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S\left(g_{0}\right)$ of the output gate g_{\circ} contains $\{g \in C \mid \nu(g)=1\}$.

Query: Is there both a pink and a blue node?

Set circuit

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then A accepts $\nu(T)$ iff the set $S\left(g_{\circ}\right)$ of the output gate g_{\circ} contains $\{g \in C \mid \nu(g)=1\}$.

Query: Is there both a pink and a blue node?

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, \top\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a d-DNNF set circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\circ}(x) \wedge P_{\circ}(y)$

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$
Data:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\circ}(x) \wedge P_{\circ}(y)$

Provenance circuit:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Provenance circuit:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Provenance circuit:

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Results:	
X_{1}	X_{2}
1	2
1	3

Provenance circuit:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

Circuits as factorized representations of query results

\rightarrow The set circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Provenance circuit:

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

Application to Pattern Matching in Texts

Problem statement: Pattern matching in texts

```
Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...
```


Problem statement: Pattern matching in texts

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017 . Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016 . Former student of the École normale superieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git...

? Query: a pattern P given as a regular expression

$$
P:=\quad \text { ப [a-z0-9.]* @ [a-z0-9.]* ப }
$$

Problem statement: Pattern matching in texts

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017 . Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016 . Former student of the École normale superieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git...
? Query: a pattern P given as a regular expression

$$
P:=~ \sqcup[a-z 0-9 .]^{*} @[a-z 0-9 .]^{*} \text { ப }
$$

(i) Output: the list of substrings of T that match P :
$[186,200\rangle,[483,500), \ldots$

Problem statement: Pattern matching in texts

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017 . Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the Ecole normale superieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git...

? Query: a pattern P given as a regular expression

$$
P:=\quad \text { ப [a-z0-9.]* @ [a-z0-9.]* ப }
$$

(i) Output: the list of substrings of T that match P :

$$
[186,200\rangle, \quad[483,500\rangle, \ldots
$$

Goal:

- be very efficient in T (constant-delay)
- be reasonably efficient in P (polynomial-time)

Reducing to MSO

- A text is just a tree with a simpler shape

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO
\rightarrow More generally: regular expressions with variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta b^{*} \gamma \bullet *$
- Translate to a word automaton (with capture variables)

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO
\rightarrow More generally: regular expressions with variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta b^{*} \gamma \bullet *$
- Translate to a word automaton (with capture variables)

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO
\rightarrow More generally: regular expressions with variables
\rightarrow Example: $\mathbf{P}:=\bullet^{*} \alpha a^{*} \beta b^{*} \gamma \bullet *$
- Translate to a word automaton (with capture variables)

\rightarrow The MSO result implies:

Theorem [Florenzano et al., 2018]

We can enumerate all matches of a regular expression pattern on a tree with linear preprocessing and constant delay

Reducing to MSO

- A text is just a tree with a simpler shape
- A regular expression pattern can be expressed in MSO
\rightarrow More generally: regular expressions with variables
\rightarrow Example: $\boldsymbol{P}:=\bullet^{*} \alpha a^{*} \beta b^{*} \gamma \bullet *$
- Translate to a word automaton (with capture variables)

\rightarrow The MSO result implies:

Theorem [Florenzano et al., 2018]

We can enumerate all matches of a regular expression pattern on a tree with linear preprocessing and constant delay
\rightarrow The resulting set circuit is a binary decision diagram, i.e., each \times-gate has only one input which is not a variable

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity
- For regular expressions: exponential (determinization)

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity
- For regular expressions: exponential (determinization)
- However: our methods adapt to nondeterministic automata
- Constant-delay enumeration for set circuits without assuming determinism but bounding some notion of width

Efficiency in the query

We have shown linear preprocessing and constant delay in the data; but what about the query?

- For general MSO queries: nonelementary complexity
- For regular expressions: exponential (determinization)
- However: our methods adapt to nondeterministic automata
- Constant-delay enumeration for set circuits without assuming determinism but bounding some notion of width

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]

We can enumerate all matches of a nondeterministic tree automaton on a tree with

- Preprocessing linear in the tree and polynomial in the automaton
- Delay constant in the tree and polynomial in the automaton

Corollary: enumeration for regular expression patterns on text

Implementation (ongoing internship by Rémi Dupré)

- Prototype to find matches of a regular expression in a text
- https://github.com/remi-dupre/enum-spanner-rs
- Work-in-progress

Implementation (ongoing internship by Rémi Dupré)

- Prototype to find matches of a regular expression in a text
- https://github.com/remi-dupre/enum-spanner-rs
- Work-in-progress
- Open questions / projects:
- What about memory usage? (we cannot keep the whole index)
- Output matches in streaming? (problem: duplicates)
- Can we enumerate other notions of matches?
\rightarrow factors of maximal/minimal size
\rightarrow distinct matching strings
\rightarrow etc.

Implementation (ongoing internship by Rémi Dupré)

- Prototype to find matches of a regular expression in a text
- https://github.com/remi-dupre/enum-spanner-rs
- Work-in-progress
- Open questions / projects:
- What about memory usage? (we cannot keep the whole index)
- Output matches in streaming? (problem: duplicates)
- Can we enumerate other notions of matches?
\rightarrow factors of maximal/minimal size
\rightarrow distinct matching strings
\rightarrow etc.
- Which application domains need this?
- Are there good benchmarks?

Other problems?

- Counting the number of solutions:
- Can be done with unambiguous automata and d-DNNF set circuits
- With nondeterministic automata: hard [Florenzano et al., 2018]

Other problems?

- Counting the number of solutions:
- Can be done with unambiguous automata and d-DNNF set circuits
- With nondeterministic automata: hard [Florenzano et al., 2018]
- Testing if a tuple is a solution:
- We don't see how to do it (unlike [Kazana and Segoufin, 2013])
- Open problem: is there a good reason why?

Other problems?

- Counting the number of solutions:
- Can be done with unambiguous automata and d-DNNF set circuits
- With nondeterministic automata: hard [Florenzano et al., 2018]
- Testing if a tuple is a solution:
- We don't see how to do it (unlike [Kazana and Segoufin, 2013])
- Open problem: is there a good reason why?
- Updates: see next talk :)

Other problems?

- Counting the number of solutions:
- Can be done with unambiguous automata and d-DNNF set circuits
- With nondeterministic automata: hard [Florenzano et al., 2018]
- Testing if a tuple is a solution:
- We don't see how to do it (unlike [Kazana and Segoufin, 2013])
- Open problem: is there a good reason why?
- Updates: see next talk :)

Thanks for your attention!

References i

圊 Amarilli，A．，Bourhis，P．，Mengel，S．，and Niewerth，M．（2019a）．
Constant－Delay Enumeration for Nondeterministic Document Spanners．
In ICDT．
围 Amarilli，A．，Bourhis，P．，Mengel，S．，and Niewerth，M．（2019b）． Enumeration on Trees with Tractable Combined Complexity and Efficient Updates．
In PODS．
居 Bagan，G．（2006）．
MSO queries on Tree Decomposable Structures Are Computable with Linear Delay．
In CSL．

References if

围 Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).

Constant Delay Algorithms for Regular Document Spanners.
In PODS.
Kazana, W. and Segoufin, L. (2013).
Enumeration of Monadic Second-Order Queries on Trees.
TOCL, 14(4).
R- Thatcher, J. W. and Wright, J. B. (1968).
Generalized Finite Automata Theory with an Application to a Decision Problem of Second-Order Logic.
Mathematical systems theory, 2(1):57-81.

