
A Circuit-Based Approach to E�cient Enumeration:
Enumerating MSO Query Results on Trees and Words

Antoine Amarilli1, Pierre Bourhis2, Louis Jachiet2, Stefan Mengel3, Matthias
Niewerth4

May 20, 2019
1Télécom ParisTech

2CNRS CRIStAL

3CNRS CRIL

4Universität Bayreuth 1/16

Roadmap of this talk

• Stefan has presented enumeration for d-DNNF set circuits

• This talk: introduce MSO query evaluation on trees and build
a set circuit that represents the answers to enumerate
• Using the previous talk we can reprove the result:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

• Also: new results on combined complexity:
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate the results of an automaton on a tree with:

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

• Next talk: how to support updates (and prove new results)

2/16

Roadmap of this talk

• Stefan has presented enumeration for d-DNNF set circuits
• This talk: introduce MSO query evaluation on trees and build
a set circuit that represents the answers to enumerate

• Using the previous talk we can reprove the result:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

• Also: new results on combined complexity:
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate the results of an automaton on a tree with:

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

• Next talk: how to support updates (and prove new results)

2/16

Roadmap of this talk

• Stefan has presented enumeration for d-DNNF set circuits
• This talk: introduce MSO query evaluation on trees and build
a set circuit that represents the answers to enumerate
• Using the previous talk we can reprove the result:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

• Also: new results on combined complexity:
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate the results of an automaton on a tree with:

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

• Next talk: how to support updates (and prove new results)

2/16

Roadmap of this talk

• Stefan has presented enumeration for d-DNNF set circuits
• This talk: introduce MSO query evaluation on trees and build
a set circuit that represents the answers to enumerate
• Using the previous talk we can reprove the result:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

• Also: new results on combined complexity:
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate the results of an automaton on a tree with:

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

• Next talk: how to support updates (and prove new results)

2/16

Roadmap of this talk

• Stefan has presented enumeration for d-DNNF set circuits
• This talk: introduce MSO query evaluation on trees and build
a set circuit that represents the answers to enumerate
• Using the previous talk we can reprove the result:
Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

• Also: new results on combined complexity:
Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate the results of an automaton on a tree with:

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

• Next talk: how to support updates (and prove new results) 2/16

Boolean MSO on trees

Boolean query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

3/16

Boolean query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

3/16

Boolean query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

3/16

Boolean query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

3/16

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”

4/16

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”

4/16

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”

4/16

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the parent of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is an ancestor of y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node below every pink node”

4/16

Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}

• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

5/16

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

→ Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

→ Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree

6/16

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

→ Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

→ Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree

6/16

Boolean MSO query evaluation via automata

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

→ Given a Boolean MSO query, we can compute a tree automaton
that accepts precisely the trees on which the query holds

→ Complexity (in the query) is generally nonelementary

Corollary
Evaluating a Boolean MSO query on a tree is in linear time in the tree

6/16

Set Circuits for
Non-Boolean MSO Queries

Overall idea

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
• Remark: same construction for free second-order variables

7/16

Overall idea

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn
• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds

→ Add special nodes: for each node n and variable xi,
add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
• Remark: same construction for free second-order variables

7/16

Overall idea

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn
• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
• Remark: same construction for free second-order variables

7/16

Overall idea

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn
• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree

• Remark: same construction for free second-order variables

7/16

Overall idea

• Query: Q(x1, . . . , xn) with free variables x1, . . . , xn
• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special nodes: for each node n and variable xi,

add a node ni which is colored red i� xi is the node n

n

n′ n′′
⇒

n

••

n′ n′′n1 n2

• Rewrite the query to a Boolean query which
uses the new nodes ni to read the valuation of xi
• This can be done in linear time in the input tree
• Remark: same construction for free second-order variables

7/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

8/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

8/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

8/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

8/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

8/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

8/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

8/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects

8/16

Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

8/16

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

9/16

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

9/16

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

9/16

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6

9/16

Set circuit

1

5

76

2

43

Set circuit:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then A
accepts ν(T) i� the set S(g0) of the output
gate g0 contains {g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?

×

∪ 7

2 3

×

×

× ×

∪ ∪ ∪ ∪

> 1 > 4 > 5 > 6
9/16

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

10/16

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

10/16

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

10/16

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

10/16

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

10/16

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

10/16

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

10/16

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

∪ ∪ ∪ ∪
⊥ B P >

×

×

10/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

11/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

11/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

11/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

11/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

11/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

11/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

11/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?

11/16

Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segou�n, 2013]
We can enumerate the answers of MSO queries on trees with
linear-time preprocessing and constant delay.

Semi-open question: what about memory usage?
11/16

Application to
Pattern Matching in Texts

Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)

12/16

Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)

12/16

Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)

12/16

Problem statement: Pattern matching in texts

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200〉, [483, 500〉, . . .

Goal:

• be very e�cient in T (constant-delay)
• be reasonably e�cient in P (polynomial-time)

12/16

Reducing to MSO

• A text is just a tree with a simpler shape

• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

13/16

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO

→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

13/16

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

13/16

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

13/16

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

13/16

Reducing to MSO

• A text is just a tree with a simpler shape• A regular expression pattern can be expressed in MSO
→ More generally: regular expressions with variables
→ Example: P := •∗ α a∗ β b∗ γ •∗

• Translate to a word automaton (with capture variables)

1 2 3 4

•

α

a
β

b
γ

•

→ The MSO result implies:
Theorem [Florenzano et al., 2018]
We can enumerate all matches of a regular expression pattern on a
tree with linear preprocessing and constant delay

→ The resulting set circuit is a binary decision diagram,
i.e., each ×-gate has only one input which is not a variable

13/16

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity

• For regular expressions: exponential (determinization)• However: our methods adapt to nondeterministic automata
• Constant-delay enumeration for set circuits without assuming
determinism but bounding some notion of width

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary: enumeration for regular expression patterns on text

14/16

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity
• For regular expressions: exponential (determinization)

• However: our methods adapt to nondeterministic automata
• Constant-delay enumeration for set circuits without assuming
determinism but bounding some notion of width

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary: enumeration for regular expression patterns on text

14/16

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity
• For regular expressions: exponential (determinization)• However: our methods adapt to nondeterministic automata

• Constant-delay enumeration for set circuits without assuming
determinism but bounding some notion of width

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary: enumeration for regular expression patterns on text

14/16

E�ciency in the query

We have shown linear preprocessing and constant delay in the data;
but what about the query?

• For general MSO queries: nonelementary complexity
• For regular expressions: exponential (determinization)• However: our methods adapt to nondeterministic automata

• Constant-delay enumeration for set circuits without assuming
determinism but bounding some notion of width

Theorem [Amarilli et al., 2019a, Amarilli et al., 2019b]
We can enumerate all matches of a nondeterministic tree
automaton on a tree with

• Preprocessing linear in the tree and polynomial in the automaton
• Delay constant in the tree and polynomial in the automaton

Corollary: enumeration for regular expression patterns on text
14/16

Implementation (ongoing internship by Rémi Dupré)

• Prototype to �nd matches of a regular expression in a text
• https://github.com/remi-dupre/enum-spanner-rs

• Work-in-progress

• Open questions / projects:
• What about memory usage? (we cannot keep the whole index)
• Output matches in streaming? (problem: duplicates)
• Can we enumerate other notions of matches?

→ factors of maximal/minimal size
→ distinct matching strings
→ etc.

• Which application domains need this?
• Are there good benchmarks?

15/16

https://github.com/remi-dupre/enum-spanner-rs

Implementation (ongoing internship by Rémi Dupré)

• Prototype to �nd matches of a regular expression in a text
• https://github.com/remi-dupre/enum-spanner-rs

• Work-in-progress
• Open questions / projects:

• What about memory usage? (we cannot keep the whole index)
• Output matches in streaming? (problem: duplicates)
• Can we enumerate other notions of matches?

→ factors of maximal/minimal size
→ distinct matching strings
→ etc.

• Which application domains need this?
• Are there good benchmarks?

15/16

https://github.com/remi-dupre/enum-spanner-rs

Implementation (ongoing internship by Rémi Dupré)

• Prototype to �nd matches of a regular expression in a text
• https://github.com/remi-dupre/enum-spanner-rs

• Work-in-progress
• Open questions / projects:

• What about memory usage? (we cannot keep the whole index)
• Output matches in streaming? (problem: duplicates)
• Can we enumerate other notions of matches?

→ factors of maximal/minimal size
→ distinct matching strings
→ etc.

• Which application domains need this?
• Are there good benchmarks?

15/16

https://github.com/remi-dupre/enum-spanner-rs

Other problems?

• Counting the number of solutions:
• Can be done with unambiguous automata and d-DNNF set circuits
• With nondeterministic automata: hard [Florenzano et al., 2018]

• Testing if a tuple is a solution:
• We don’t see how to do it (unlike [Kazana and Segou�n, 2013])
• Open problem: is there a good reason why?

• Updates: see next talk :)
Thanks for your attention!

16/16

Other problems?

• Counting the number of solutions:
• Can be done with unambiguous automata and d-DNNF set circuits
• With nondeterministic automata: hard [Florenzano et al., 2018]

• Testing if a tuple is a solution:
• We don’t see how to do it (unlike [Kazana and Segou�n, 2013])
• Open problem: is there a good reason why?

• Updates: see next talk :)
Thanks for your attention!

16/16

Other problems?

• Counting the number of solutions:
• Can be done with unambiguous automata and d-DNNF set circuits
• With nondeterministic automata: hard [Florenzano et al., 2018]

• Testing if a tuple is a solution:
• We don’t see how to do it (unlike [Kazana and Segou�n, 2013])
• Open problem: is there a good reason why?

• Updates: see next talk :)

Thanks for your attention!

16/16

Other problems?

• Counting the number of solutions:
• Can be done with unambiguous automata and d-DNNF set circuits
• With nondeterministic automata: hard [Florenzano et al., 2018]

• Testing if a tuple is a solution:
• We don’t see how to do it (unlike [Kazana and Segou�n, 2013])
• Open problem: is there a good reason why?

• Updates: see next talk :)
Thanks for your attention!

16/16

References i

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a).
Constant-Delay Enumeration for Nondeterministic Document
Spanners.
In ICDT.
Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).
Enumeration on Trees with Tractable Combined Complexity and
E�cient Updates.
In PODS.
Bagan, G. (2006).
MSO queries on Tree Decomposable Structures Are Computable
with Linear Delay.
In CSL.

https://arxiv.org/abs/1807.09320
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/

References ii

Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc,
D. (2018).
Constant Delay Algorithms for Regular Document Spanners.
In PODS.
Kazana, W. and Segou�n, L. (2013).
Enumeration of Monadic Second-Order Queries on Trees.
TOCL, 14(4).
Thatcher, J. W. and Wright, J. B. (1968).
Generalized Finite Automata Theory with an Application to a
Decision Problem of Second-Order Logic.
Mathematical systems theory, 2(1):57–81.

https://arxiv.org/abs/1803.05277
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

	Boolean MSO on trees
	Set Circuits for Non-Boolean MSO Queries
	Application to Pattern Matching in Texts
	Appendix

