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• Introduce new tools and results:
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• Applications to probabilistic query evaluation
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Query evaluation on words

Database: a word w where nodes have a
color from an alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink
and a blue node?”

i Result: TRUE/FALSE indicating if the word w satis�es the query Q

Computational complexity as a function of w
(the query Q is �xed)
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Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node after every pink node”
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Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:

⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.
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Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)
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Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.
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Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if T satis�es the query Q

Computational complexity as a function of the tree T
(the query Q is �xed)
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Query evaluation on treelike data

Database: a treelike database T ???

? Query Q: a sentence in monadic
second-order logic (MSO)

• P (x) means “x is blue”
• x→ y means “x is the parent of y”

(Metro|RER)∗

| (Bus|Tram)∗
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Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant
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Courcelle’s theorem

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q
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Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)
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∨

¬

x

∧
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• Directed acyclic graph of gates
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• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1
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43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) i� A accepts ν(T)
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Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬
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Probabilistic query evaluation

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
circuit

Probability
95%

linear

+probabilities
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Details of the approach
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treelike data

Each fact can
disappear
with some
probability

→ How to compute e�ciently the probability of the circuit?
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Computing the probability of a circuit

• We are given a circuit and a probability P for each variable

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions
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d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF
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Final result

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
circuit

+probabilities

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q
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Non-Boolean queries

• We have studied Boolean queries:
“Is there both a pink and a blue node?”

Q() : ∃x y P (x) ∧ P (y)

• In practice, queries often return some results:
“Find all pairs of a pink and a blue node?”

Q(x, y) : P (x) ∧ P (y)

• We can consider each pair (a,b) and test if Q(a,b) is true

• Can we do better?
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Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}
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Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2018]

• Application: Semiring provenance [Green et al., 2007]
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