Leveraging the structure of uncertain data

Antoine Amarilli
May 16, 2018

Example application: Subway routing

Database theory and query evaluation

Database

- (Hyper)graph
- Collection of ground facts
$G\left(a a_{1}, a b_{2}\right), G\left(a b_{2}, a c_{3}\right)$,
$S\left(a a_{1}, m_{4}\right), S\left(a b_{2}, r_{B}\right), \ldots$

Database theory and query evaluation

Database

- (Hyper)graph
- Collection of ground facts
$G\left(a a_{1}, a b_{2}\right), G\left(a b_{2}, a c_{3}\right)$,
$S\left(a a_{1}, m_{4}\right), S\left(a b_{2}, r_{B}\right), \ldots$

Rechercher mon itinéraire

- Regular path
(Metro|RER)* |(Bus|Tram)*
- Logic formula
$\forall x(r m \in x \wedge \forall x y$ $(x \in X \wedge G(x, y) \rightarrow$ $y \in X)) \rightarrow g n \in X$

Database theory and query evaluation

Database

- (Hyper)graph
- Collection of ground facts
$G\left(a a_{1}, a b_{2}\right), G\left(a b_{2}, a c_{3}\right)$, $S\left(a a_{1}, m_{4}\right), S\left(a b_{2}, r_{B}\right), \ldots$

Rechercher mon itinéraire

- Regular path
(Metro|RER)* |(Bus|Tram)*
- Logic formula
$\forall x(r m \in x \wedge \forall x y$ $(x \in X \wedge G(x, y) \rightarrow$ $y \in X)) \rightarrow g n \in X$

(i) Result

Départ

20h17-5 rue Monticelli, Paris
$1.1 \mathrm{~km} / 13 \mathrm{~min}$
III

20h30 - CITE UNIVERSITAIRE, Paris
RER B - EPAU
Vers Aéroport CDG Terminal 2 TGV
$\checkmark 6$ arrêts 114 min
© Arrivée
20 h 44 - GARE DU NORD RER, Paris

- TRUE/FALSE
\leftrightarrow Model checking

Probabilistic query evaluation

Probabilistic query evaluation

Panne du RER B : trafic interrompu entre Paris et Roissy, des TGV en renfort

合 > Transports | 06 décembre 2016, 9h56 | MA :06 décembre 2016, Trh03 |f

Probabilistic query evaluation

Panne du RER B : trafic interrompu entre Paris : pourquoi il y a autant de perturbations sur le RER B et à Gare du Nord

La circulation de l'ensemble des trains au départ de gare du Nord est totalement interrompue à la suite d'une panne + électrique.

Probabilistic query evaluation

Panne du RER B : trafic interrompu entre Paris : pourquoi il y a autant de perturbations sur Ie IINCIDENT SUR LE RER B : QUE S'EST-IL PASSÉ CE MATIN ?

Malaise voyageur et application des mesures de sécurité : pour quelles raisons le trafic a-t-il été perturbé ce matin sur la ligne B ?

Pour beaucoup, le voyage a été difficile ce matin. Au fil de vos réactions sur Twitter notamment, je constate que les raisons de ces perturbations ne paraissent pas cohérentes. Je tiens donc à vous apporter des premiers álómonte d'avnlicatinn riso noise nniırane dóvalonnor

Probabilistic query evaluation

Panne du RER B : trafic interrompu	
ris : pourquoi il y a autant de perturbations sur	
Le RER B en panne, les voyageurs n'ont pas eu	
d'autre choix que de descendre sur les voies	
Alors que la circulation alternée a augmenté le nombre de voyageurs dans les transports en commun, le RER B s'est retrouvé à l'arrêt.	
	Pour beaucoup, le voyage a ete difficile ce matin de vos réactions sur Twitter notamment, je cons que les raisons de ces perturbations ne paraisse cohérentes. Je tiens donc à vous apporter des p

Probabilistic query evaluation

Probabilistic query evaluation

Probabilistic query evaluation

Probabilistic query evaluation

Probabilistic query evaluation

Probabilistic database

- (Hyper)graph
- Collection of ground facts
+ independent probabilities

Probabilistic query evaluation

Probabilistic database

- (Hyper)graph
- Collection of ground facts
+ independent probabilities

Rechercher mon itinéraire

- Regular path
(Metro|RER)* |(Bus|Tram)*
- Logic formula
$\forall x(r m \in x \wedge \forall x y$ $(x \in X \wedge G(x, y) \rightarrow$ $y \in X)) \rightarrow g n \in X$

Probabilistic query evaluation

Probabilistic database

- (Hyper)graph
- Collection of ground facts
+ independent probabilities

Rechercher mon itinéraire

- Regular path
(Metro|RER)* |(Bus|Tram)*
- Logic formula
$\forall x(r m \in x \wedge \forall x y$ $(x \in X \wedge G(x, y) \rightarrow$ $y \in X)) \rightarrow g n \in X$

Probabilistic Result i)

$\stackrel{\text { Q épart }}{ }$
20h14-5 rue Monticelli, Paris
$425 \mathrm{~m} / 6 \mathrm{~min}$

20h20 - Porte d'Oriéans (Général Leclerc), Paris
Métro 4
Vers Porte de Clignancourt
$\checkmark 20$ arrêts 123 min
(-) Arrivée
20h43 - Gare du Nord, Paris
proba to be on time: 98\%

- Probability according to the input distribution

Computational complexity

- Computing paths on a large graph:
\rightarrow Well-studied problem, efficient algorithms

Computational complexity

- Computing paths on a large probabilistic graph:
\rightarrow ???

Computational complexity

- Computing paths on a large probabilistic graph:
\rightarrow Exponential number of possibilities

Computational complexity

- Computing paths on a large probabilistic graph:
\rightarrow Exponential number of possibilities
\rightarrow \#P-hard computational complexity in the database

Idea: use the structure of data

Idea: use the structure of data

\rightarrow Shortest path: very easy on a large tree

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

In this talk:

- Existing results on non-probabilistic data:

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

In this talk:

- Existing results on non-probabilistic data:
- Tree automata, to evaluate queries on trees

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

In this talk:

- Existing results on non-probabilistic data:
- Tree automata, to evaluate queries on trees
- Treewidth, formalizes the notion of being "close to a tree"

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

In this talk:

- Existing results on non-probabilistic data:
- Tree automata, to evaluate queries on trees
- Treewidth, formalizes the notion of being "close to a tree"
- Courcelle's theorem

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

In this talk:

- Existing results on non-probabilistic data:
- Tree automata, to evaluate queries on trees
- Treewidth, formalizes the notion of being "close to a tree"
- Courcelle's theorem
- Introduce new tools and results:

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

In this talk:

- Existing results on non-probabilistic data:
- Tree automata, to evaluate queries on trees
- Treewidth, formalizes the notion of being "close to a tree"
- Courcelle's theorem
- Introduce new tools and results:
- Provenance circuits of tree automata on uncertain trees

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

In this talk:

- Existing results on non-probabilistic data:
- Tree automata, to evaluate queries on trees
- Treewidth, formalizes the notion of being "close to a tree"
- Courcelle's theorem
- Introduce new tools and results:
- Provenance circuits of tree automata on uncertain trees
- Applications to probabilistic query evaluation

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity when the structure of the data is close to a tree?

In this talk:

- Existing results on non-probabilistic data:
- Tree automata, to evaluate queries on trees
- Treewidth, formalizes the notion of being "close to a tree"
- Courcelle's theorem
- Introduce new tools and results:
- Provenance circuits of tree automata on uncertain trees
- Applications to probabilistic query evaluation
- Other applications: Counting, enumeration, provenance...

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

Query evaluation on words

©Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query evaluation on words

目Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

©Query Q: a sentence (yes/no question) in monadic second-order logic (MSO)
"Is there both a pink and a blue node?"

Query evaluation on words

目Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

"Is there both a pink and a blue node?"

1 Result: TRUE/FALSE indicating if the word w satisfies the query Q

Query evaluation on words

目Database: a word w where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

"Is there both a pink and a blue node?"

1 Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x$ y $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"

Monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"; also $P_{\bigcirc}(x), P_{\bigcirc}(x)$
- $x \rightarrow y$ means " x is the predecessor of y "
- Propositional logic: formulas with AND \wedge, OR \vee, NOT \neg
- $P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "Node x is pink and node y is blue"
- First-order logic: adds existential quantifier \exists and universal quantifier \forall
- $\exists x y P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ means "There is both a pink and a blue node"
- Monadic second-order logic (MSO): adds quantifiers over sets
- $\exists S \forall x S(x)$ means "there is a set S containing every element x "
- Can express transitive closure $x \rightarrow^{*} y$, i.e., "x is before $y^{\prime \prime}$
- $\forall x P_{\bigcirc}(x) \Rightarrow \exists y P_{\bigcirc}(y) \wedge x \rightarrow^{*} y$ means "There is a blue node after every pink node"

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: $\bigcirc \bigcirc \bigcirc$ w: $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc-\bigcirc x y P_{O}(x) \wedge P_{O}(y)$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc \bigcirc$ w: $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc-\bigcirc x y P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$

Word automata

Translate the query Q to a deterministic word automaton Alphabet: $\bigcirc \bigcirc$ w: $\bigcirc \bigcirc-\bigcirc-\bigcirc x y P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: $\bigcirc \bigcirc$ w: $\bigcirc \bigcirc-\bigcirc-\bigcirc x y P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: $\bigcirc \bigcirc \bigcirc$

$Q: \exists x y P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: $\bigcirc \bigcirc \bigcirc$ w: $\bigcirc-\bigcirc-\bigcirc-\bigcirc x$ - $\bigcirc P_{\circ}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\underset{T}{\bigcirc} T-{ }_{T}$

Word automata

Translate the query Q to a deterministic word automaton

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\bigcap_{T} T-{ }_{\top}$

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: $\bigcirc \bigcirc \bigcirc \quad w: \underset{\perp}{\bigcirc}-\underset{P}{\bigcirc}-\bigcirc-\bigcirc x y P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\bigcap_{\top}^{\bigcirc} \top-{ }_{\top}$

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: $\bigcirc \bigcirc \bigcirc$ w: \bigcirc

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\bigcap_{\top}^{\bigcirc} \top-{ }_{\top}$

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: $\bigcirc \bigcirc \bigcirc$ w: $\bigcirc \underset{\perp}{\bigcirc}-\underset{P}{\bigcirc}-$
$Q: \exists x$ y $P_{\circ}(x) \wedge P_{\circ}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\bigcap_{T} T-{ }_{T}$

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: $\bigcirc \bigcirc \bigcirc$ w: $\bigcirc \underset{\perp}{\bigcirc}-\underset{P}{\bigcirc}-$
$Q: \exists x$ y $P_{O}(x) \wedge P_{O}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples): $\perp-\underset{P}{\bigcirc} P-\bigcap_{T} T-{ }_{T}$

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: $\bigcirc \bigcirc \bigcirc$ w: $\bigcirc_{\perp}^{\bigcirc}-\underset{P}{\bigcirc}-\bigcirc$
 $Q: \exists x y P_{\circ}(x) \wedge P_{\circ}(y)$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$
- Initial function: $\bigcirc \perp \bigcirc P$ ○B
- Transitions (examples): $\perp \underset{P}{\bigcirc} P-\underset{T}{\bigcirc} T-\underset{T}{\bigcirc}$

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words
Corollary
Query evaluation of MSO on words is in linear time.

Query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query evaluation on trees

©Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

? Query Q: a sentence in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "
"Is there both a pink and a blue node?"
$\exists x$ y $P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Query evaluation on trees

目Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$
? Query Q: a sentence in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

$$
\begin{aligned}
& \text { "Is there both a pink } \\
& \text { and a blue node?" } \\
& \exists x \text { y } P_{\bigcirc}(x) \wedge P_{\circ}(y)
\end{aligned}
$$

(i) Result: TRUE/FALSE indicating if the tree T satisfies the query Q

Query evaluation on trees

家Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$
? Query Q: a sentence in monadic second-order logic (MSO)

- $P_{\circ}(x)$ means " x is blue"
$\cdot x \rightarrow y$ means " x is the parent of y "

$$
\begin{aligned}
& \text { "Is there both a pink } \\
& \text { and a blue node?" } \\
& \exists x \text { y } P_{\circ}(x) \wedge P_{\circ}(y)
\end{aligned}
$$

(1) Result: TRUE/FALSE indicating if the tree T satisfies the query Q

Computational complexity as a function of T
(the query Q is fixed)

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

Tree automata

Tree alphabet:
000

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, \top\}$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Transitions (examples):

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- Bottom-up deterministic tree automaton
- "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Tree automata

Tree alphabet:
$\bigcirc \bigcirc$

- States: $\{\perp, B, P, \top\}$
- Final states: $\{T\}$
- Initial function: $O \perp \bigcirc P \quad \bigcirc B$
- Transitions (examples):

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Tree automata

Tree alphabet:
$\bigcirc \bigcirc \bigcirc$

- States: $\{\perp, B, P, T\}$
- Final states: $\{\top\}$
- Initial function: $\bigcirc \perp \bigcirc P \bigcirc B$
- Transitions (examples):

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees
Corollary
Query evaluation of MSO on trees is in linear time.

Query evaluation on trees

家Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$
? Query Q: a sentence in monadic second-order logic (MSO)

- $P_{\bigcirc}(x)$ means " x is blue"
- $x \rightarrow y$ means " x is the parent of y "

$$
\begin{aligned}
& \text { "Is there both a pink } \\
& \text { and a blue node?" } \\
& \exists x \text { y } P_{\circ}(x) \wedge P_{\circ}(y)
\end{aligned}
$$

1 Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of the tree T
(the query Q is fixed)

Query evaluation on treelike data

Database: a treelike database T
? Query Q: a sentence in monadic
second-order logic (MSO) (Metro|RER)*
| (Bus|Tram)*

1 Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of the tree T (the query Q is fixed)

Treewidth

Treewidth by example:

Treewidth by example:

Treewidth

Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and ($k-1$)-grids have treewidth $k-1$

Treewidth

Treewidth by example:

- Trees have treewidth 1
- Cycles have treewidth 2
- k-cliques and ($k-1$)-grids have treewidth $k-1$
\rightarrow Treelike: the treewidth is bounded by a constant

Courcelle's theorem

Treelike data

MSO query
(RER|metro)* |(bus|tram)*

Courcelle's theorem

Treelike data

MSO query
(RER|metro)*
|(bus|tram)* \rightarrow

Tree automaton

Courcelle's theorem

Treelike data Tree encoding

MSO query

Tree automaton

(RER|metro)*
|(bus|tram)* \rightarrow

Courcelle's theorem

Treelike data Tree encoding

Query
answer
TRUE

MSO query
Tree automaton
(RER|metro)*
|(bus|tram)* \rightarrow

Courcelle's theorem

Treelike data Tree encoding

Query
answer TRUE

MSO query Tree automaton
(RER|metro)*
|(bus|tram)* \longrightarrow

Theorem [Courcelle, 1990]
For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$, we can compute in linear time in D whether D satisfies Q

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

Probabilistic query evaluation on treelike data

- Database D with treewidth $\leq k$ for some constant k
- Probability of each fact of D to be actually present in the data (independently from other facts)

Probabilistic query evaluation on treelike data

- Database D with treewidth $\leq k$ for some constant k
- Probability of each fact of D to be actually present in the data (independently from other facts)
? Query Q: a sentence in monadic second-order logic (MSO)

(Metro|RER)*
(Bus|Tram)*

Probabilistic query evaluation on treelike data

- Database D with treewidth $\leq k$ for some constant k
- Probability of each fact of D to be actually present in the data (independently from other facts)
? Query Q: a sentence in monadic second-order logic (MSO)

(Metro|RER)*
(Bus|Tram)*
(1) Result: Probability that the database D satisfies query Q

Probabilistic query evaluation on treelike data

- Database D with treewidth $\leq k$ for some constant k
- Probability of each fact of D to be actually present in the data (independently from other facts)
? Query Q: a sentence in monadic second-order logic (MSO)

(Metro|RER)*
(Bus|Tram)*

1 Result: Probability that the database D satisfies query Q

Computational complexity as a function of the database D (the query Q is fixed)

Roadmap

Treelike data Tree encoding

MSO query
Tree automaton
(RER|metro)*
|(bus|tram) ${ }^{*} \rightarrow$

Roadmap

Treelike data

MSO query

Tree encoding

Provenance circuit

(RER|metro)*
|(bus|tram) ${ }^{*} \rightarrow$
Tree automaton

Roadmap

Uncertain trees

Uncertain trees

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Uncertain trees

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,3,7 \mapsto 1, * \mapsto \mathrm{O}\}$

Uncertain trees

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$

Uncertain trees

A valuation of a tree decides whether to keep (1) or discard (o) node labels Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$

Uncertain trees

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"

Uncertain trees

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2,3,7 \mapsto 1, \quad * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"
The tree automaton A accepts

Uncertain trees

A valuation of a tree decides whether to keep (1) or discard (o) node labels

Valuation: $\{2 \mapsto 1, * \mapsto 0\}$
A: "Is there both a pink and a blue node?"
The tree automaton A rejects

Uncertain trees

A valuation of a tree decides whether to keep (1) or discard (0) node labels

Valuation: $\{2,7 \mapsto 1, * \mapsto \mathrm{O}\}$
A: "Is there both a pink and a blue node?"
The tree automaton A accepts

Boolean circuit

- Directed acyclic graph of gates

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates: X

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates: x
- Internal gates: $\checkmark \backsim ๑$

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates: $\vee \wedge \smile$
- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates: $\vee \wedge \smile$
- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates: $\vee \wedge \smile$
- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{x \mapsto 0, y \mapsto 1\} \ldots$

Boolean circuit

- Directed acyclic graph of gates
- Output gate:

- Variable gates:

- Internal gates: $\vee \wedge \smile$
- Valuation: function from variables to $\{0,1\}$ Example: $\nu=\{\boldsymbol{x} \mapsto \mathbf{0}, \boldsymbol{y} \mapsto 1\} \ldots$ mapped to 1

Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Provenance circuit

Query: Is there both a pink and a blue node?

Provenance circuit:

Formally:

- Tree automaton A, uncertain tree T, circuit C
- Variable gates of C : nodes of T
- Condition: Let ν be a valuation of T, then $\nu(C)$ iff A accepts $\nu(T)$

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

P

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

P

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

P

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States: $\{\perp, B, P, T\}$
- Final: $\{T\}$

P
(n)

$\stackrel{\perp}{v} \stackrel{B}{v} \stackrel{P}{v} \stackrel{V}{v}^{\top}$

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Building provenance circuits on trees

Theorem

For any bottom-up tree automaton A and input tree T, we can build a provenance circuit of A on T in $O(|A| \times|T|)$

- Alphabet: $\bigcirc \bigcirc \bigcirc$
- Automaton: "Is there both a pink and a blue node?"
- States:
$\{\perp, B, P, T\}$
- Final: $\{T\}$
- Transitions:

Probabilistic query evaluation

Details of the approach

Probabilistic treelike data

Each fact can disappear
with some probability

Details of the approach

Probabilistic treelike data

Each fact can disappear with some probability

Uncertain tree encoding

Each node label
can disappear with
the probability
of the coded fact

Details of the approach

Details of the approach

Probabilistic	Uncertain tree encoding	Provenance circuit trobabilities
Probability		

Details of the approach

Probabilistic	Uncertain tree encoding	Provenance circuit trobelike data	Probabilitity

\rightarrow How to compute efficiently the probability of the circuit?

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability 1 - P (input)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability 1 - P (input)
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- $P(x)=40 \%$
- $P(y)=50 \%$

Computing the probability of a circuit

- We are given a circuit and a probability P for each variable
- Each variable x is true independently with probability $P(x)$
- What is the probability that the circuit evaluates to true?

- In general, \#P-hard (harder than SAT)
- Here it's easy:
- The inputs to the \wedge-gate are independent
- The \neg-gate has probability $1-P$ (input)
- The \vee-gate has mutually exclusive inputs
- Let's focus on a restricted class of circuits that satisfies these conditions
- $P(x)=40 \%$
- $P(y)=50 \%$

d-DNNFs

The circuit is a d-DNNF...

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as inputs

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs

d-DNNFs

The circuit is a d-DNNF...

- - gates only have variables as inputs
- V gates always have mutually exclusive inputs
- ^ gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...
... so probability computation is easy!

- (gates only have variables as inputs

- (V) gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...
... so probability computation is easy!

- (gates only have variables as inputs
$\begin{gathered}\text { 〒 } \\ g^{\prime} \\ \end{gathered} \quad P(g):=1-P\left(g^{\prime}\right)$

$$
P(g):=1-P\left(g^{\prime}\right)
$$

d-DNNFs

The circuit is a d-DNNF...
... so probability computation is easy!

- \bigodot gates only have variables as inputs
- V gates always have mutually exclusive inputs
g_{1}^{\prime}

〒)
g^{\prime}

- \wedge gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs ... so probability computation is easy!

d-DNNFs

The circuit is a d-DNNF...

- \neg gates only have variables as inputs
- V gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs
... so probability computation is easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

g^{\prime}

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as inputs
- V gates always have mutually exclusive inputs
- \wedge gates are all on independent inputs

d-DNNFs

The circuit is a d-DNNF...

- (gates only have variables as inputs
- (1) gates amas have mutually exclusive inputs
- \wedge gates are all on independent inputs
... so probability computation is easy!

$$
P(g):=1-P\left(g^{\prime}\right)
$$

g^{\prime}

Lemma

The provenance circuit computed in our construction is a d-DNNF

Final result

Probabilistic treelike data

MSO query
(RER|metro)*
|(bus|tram)* \longrightarrow

Uncertain tree encoding

Provenance circuit +probabilities

Tree automaton

Final result

Probabilistic treelike data

MSO query
(RER|metro)*
|(bus|tram)* \longrightarrow

Uncertain tree encoding

Provenance d-DNNF
+probabilities

Tree automaton

Final result

Final result

MSO query
(RER|metro)* |(bus|tram)* \rightarrow

Uncertain tree encoding

Provenance

 d-DNNF+probabilities

Tree automaton

linear \downarrow
95\%
Probability

Theorem [Amarilli et al., 2015]
For any fixed Boolean MSO query Q and $k \in \mathbb{N}$, given a database D of treewidth $\leq k$ with independent probabilities, we can compute in linear time the probability that D satisfies Q

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

Non-Boolean queries

- We have studied Boolean queries:
"Is there both a pink and a blue node?"

$$
Q(): \exists x \text { y } P_{\bigcirc}(x) \wedge P_{\circ}(y)
$$

Non-Boolean queries

- We have studied Boolean queries:
"Is there both a pink and a blue node?"

$$
Q(): \exists x \text { y } P_{\bigcirc}(x) \wedge P_{\circ}(y)
$$

- In practice, queries often return some results:
"Find all pairs of a pink and a blue node?"

$$
Q(x, y): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
$$

Non-Boolean queries

- We have studied Boolean queries:
"Is there both a pink and a blue node?"

$$
Q(): \exists x \text { y } P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
$$

- In practice, queries often return some results:
"Find all pairs of a pink and a blue node?"

$$
Q(x, y): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
$$

- We can consider each pair (a, b) and test if $Q(a, b)$ is true

Non-Boolean queries

- We have studied Boolean queries:
"Is there both a pink and a blue node?"

$$
Q(): \exists x \text { y } P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
$$

- In practice, queries often return some results:
"Find all pairs of a pink and a blue node?"

$$
Q(x, y): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)
$$

- We can consider each pair (a, b) and test if $Q(a, b)$ is true
- Can we do better?

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds \rightarrow Add special facts to materialize all possible assignments
- e.g., $X_{i}\left(a_{j}\right)$ means element a_{i} is mapped to variable X_{j}

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special facts to materialize all possible assignments
- e.g., $X_{i}\left(a_{j}\right)$ means element a_{i} is mapped to variable X_{j}
\rightarrow The provenance circuit of Q is now a factorized representation which describes all the tuples that make Q true

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special facts to materialize all possible assignments
- e.g., $X_{i}\left(a_{j}\right)$ means element a_{i} is mapped to variable X_{j}
\rightarrow The provenance circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\circ}(y)$

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special facts to materialize all possible assignments
- e.g., $X_{i}\left(a_{j}\right)$ means element a_{i} is mapped to variable X_{j}
\rightarrow The provenance circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$

Database:

(1)-(2)-(3)-5

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special facts to materialize all possible assignments
- e.g., $X_{i}\left(a_{j}\right)$ means element a_{i} is mapped to variable X_{j}
\rightarrow The provenance circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{○}(y)$

Database:

Results:

X_{1}	X_{2}
1	3
1	5

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special facts to materialize all possible assignments
- e.g., $X_{i}\left(a_{j}\right)$ means element a_{i} is mapped to variable X_{j}
\rightarrow The provenance circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{○}(x) \wedge P_{○}(y)$ Database:

Results:

X_{1}	X_{2}
1	3
1	5

Provenance circuit:

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special facts to materialize all possible assignments
- e.g., $X_{i}\left(a_{j}\right)$ means element a_{i} is mapped to variable X_{j}
\rightarrow The provenance circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ Database:

Results:

X_{1}	X_{2}
1	3
1	5

Provenance circuit:

Circuits as factorized representations of query results

- Query: $Q\left(X_{1}, \ldots, X_{n}\right)$ with free variables X_{1}, \ldots, X_{n}
- Goal: find all tuples a_{1}, \ldots, a_{n} such that $Q\left(a_{1}, \ldots, a_{n}\right)$ holds
\rightarrow Add special facts to materialize all possible assignments
- e.g., $X_{i}\left(a_{j}\right)$ means element a_{i} is mapped to variable X_{j}
\rightarrow The provenance circuit of Q is now a factorized representation which describes all the tuples that make Q true

Example query:
$Q\left(X_{1}, X_{2}\right): P_{\bigcirc}(x) \wedge P_{\bigcirc}(y)$ Database:

Results:

X_{1}	X_{2}
1	3
1	5

Provenance circuit:

Application of factorized representations

This factorized representation of the results of the query can be computed in linear time in the data

Application of factorized representations

This factorized representation of the results of the query can be computed in linear time in the data

- Application: Counting query results [Arnborg et al., 1991]

Application of factorized representations

This factorized representation of the results of the query can be computed in linear time in the data

- Application: Counting query results [Arnborg et al., 1991]
- Exclusive \vee means + , independent \wedge means \times
- Reproves existing result: [Arnborg et al., 1991]

Application of factorized representations

This factorized representation of the results of the query can be computed in linear time in the data

- Application: Counting query results [Arnborg et al., 1991]
- Exclusive \vee means + , independent \wedge means \times
- Reproves existing result: [Arnborg et al., 1991]
- Application: Constant-delay enumeration of query results

Application of factorized representations

This factorized representation of the results of the query can be computed in linear time in the data

- Application: Counting query results [Arnborg et al., 1991]
- Exclusive \vee means + , independent \wedge means \times
- Reproves existing result: [Arnborg et al., 1991]
- Application: Constant-delay enumeration of query results
- Requires some linear-time preprocessing of the input circuit
- Exclusive \vee means disjoint \cup, independent \wedge means relational \times
- New modular proof of existing enumeration result [Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017a]
- Extensions to support updates on the database [Amarilli et al., 2018]

Application of factorized representations

This factorized representation of the results of the query can be computed in linear time in the data

- Application: Counting query results [Arnborg et al., 1991]
- Exclusive \vee means + , independent \wedge means \times
- Reproves existing result: [Arnborg et al., 1991]
- Application: Constant-delay enumeration of query results
- Requires some linear-time preprocessing of the input circuit
- Exclusive \vee means disjoint \cup, independent \wedge means relational \times
- New modular proof of existing enumeration result [Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017a]
- Extensions to support updates on the database [Amarilli et al., 2018]
- Application: Semiring provenance [Green et al., 2007]

Conclusion and perspectives

- Other results:
- Lower bounds: probabilistic query evaluation is hard unless treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]
- Complexity in the query: generally nonelementary but can be improved [Amarilli et al., 2017b, Amarilli et al., 2017c]

Conclusion and perspectives

- Other results:
- Lower bounds: probabilistic query evaluation is hard unless treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]
- Complexity in the query: generally nonelementary but can be improved [Amarilli et al., 2017b, Amarilli et al., 2017c]
- Ongoing work (with my wonderful co-authors):
- More efficient enumeration algorithms on words
- More lower bounds results, connections to knowledge compilation
- More expressive provenance: cycluits (circuits with cycles)
- Combined tractability for probabilistic query evaluation

Pierre

Louis

Stefan

Mikaël

Matthias

Pierre

Conclusion and perspectives

- Other results:
- Lower bounds: probabilistic query evaluation is hard unless treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]
- Complexity in the query: generally nonelementary but can be improved [Amarilli et al., 2017b, Amarilli et al., 2017c]
- Ongoing work (with my wonderful co-authors):
- More efficient enumeration algorithms on words
- More lower bounds results, connections to knowledge compilation
- More expressive provenance: cycluits (circuits with cycles)
- Combined tractability for probabilistic query evaluation

Pierre

Louis

Stefan

Mikaël

Matthias

Pierre

Thanks for your attention!

References i

囯 Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017a).
A Circuit-Based Approach to Efficient Enumeration.
In ICALP.
(10) Amarilli, A., Bourhis, P., and Mengel, S. (2018).

Enumeration on Trees under Relabelings.
In ICDT.
R Amarilli, A., Bourhis, P., Monet, M., and Senellart, P. (2017b).
Combined Tractability of Query Evaluation via Tree Automata and Cycluits.
In ICDT.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance Circuits for Trees and Treelike Instances.
In ICALP.

References ii

Pi Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable Lineages on Treelike Instances: Limits and Extensions.
In PODS.
R Amarilli, A., Monet, M., and Senellart, P. (2017c).
Conjunctive Queries on Probabilistic Graphs: Combined
Complexity.
In PODS.
囯 Arnborg, S., Lagergren, J., and Seese, D. (1991).
Easy problems for tree-decomposable graphs.
J. Algorithms, 12(2):308-340.

References iii

逼 Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
固 Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1).
(0) Green, T. J., Karvounarakis, G., and Tannen, V. (2007).

Provenance semirings.
In PODS.

References iv

回 Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
E- Thatcher, J. W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical systems theory, 2(1):57-81.

Image credits

- Slides 2 and 5-6:
- Subway map: https://commons.wikimedia.org/wiki/File:Paris_Metro_map.svg (edited), by user Umx on Wikimedia Commons, public domain
- Ticket t+: http://www.parisvoyage.com/images/cartoon18.jpg, ParisVoyage, fair use
- Terms and conditions: http://www.vianavigo.com/fileadmin/galerie/pdf/CGU_t_.pdf (cropped), RATP, fair use
- Slides 3-4: screenshots from http://lab. vianavigo. com, Stif, fair use
- Slide 4: newpaper articles (fair use) :
- http://www.leparisien.fr/transports/ circulation-alternee-a-paris-et-en-banlieue-une-panne-de-rer-et-des-bouchons-06-12-2016-6419610.php
- http:
//www.rtl.fr/actu/societe-faits-divers/paris-le-trafic-totalement-interrompu-gare-du-nord-7786171150
- https://www.rerb-leblog.fr/incident-rer-b-sest-passe-matin/
- http://www.huffingtonpost.fr/2016/12/06/le-rer-b-en-panne-les-voyageurs-nont-pas-eu-dautres-choix-que/
- http://www.lexpress.fr/actualite/societe/trafic/
rer-b-en-panne-retards-du-d-circulation-alternee-deuxieme-journee-de-galere_1857905.html
- http://www.lemonde.fr/entreprises/article/2016/12/07/
ile-de-france-le-trafic-toujours-interrompu-sur-le-rer-b-en-direction-de-roissy_5044717_1656994.html
- Slides 6, 16, 19, 24-25, 28: Train map https://commons.wikimedia.org/wiki/File:Carte_TGV.svg?uselang=fr (edited), by users Jack ma, Muselaar, Benjism89, Pic-Sou, Uwe Dedering, Madcap on Wikimedia Commons, license CC-BY-SA 3.0
- Slide 33: Photos http://www.lifl.fr/~bourhis/pb.png, http://tyrex.inria.fr/people/img/jachiet.png, http://www.cril.univ-artois.fr/~mengel/snap.jpeg, http://mikael-monet.net/images/moi.jpg,
https://sigmodrecord.org/wp-content/uploads/2017/05/Matthias-Niewerth-matthias.niewerth.jpg,
http://pierre.senellart.com/bubu.jpg, fair use

