
Leveraging the structure of uncertain data

Antoine Amarilli
May 16, 2018

1/33

Example application: Subway routing

2/33

Example application: Subway routing

2/33

Example application: Subway routing

2/33

Example application: Subway routing

2/33

Example application: Subway routing

(Metro|RER)*|(Bus|Tram)*
2/33

Database theory and query evaluation

136

23 14

Database

• (Hyper)graph

• Collection of
 ground facts
G(aa1, ab2), G(ab2, ac3),
S(aa1, m4), S(ab2, rB), ...

3/33

Database theory and query evaluation

136

23 14

Query?

+

Database

• (Hyper)graph

• Collection of
 ground facts
G(aa1, ab2), G(ab2, ac3),
S(aa1, m4), S(ab2, rB), ...

• Regular path

∀X(rm ∈ X ∧ ∀xy

(Metro|RER)*

• Logic formula
(x ∈ X ∧ G(x, y) →
y ∈ X)) → gn ∈ X

|(Bus|Tram)*

3/33

Database theory and query evaluation

136

23 14

Query?

+

Database

• (Hyper)graph

• Collection of
 ground facts
G(aa1, ab2), G(ab2, ac3),
S(aa1, m4), S(ab2, rB), ...

• Regular path

∀X(rm ∈ X ∧ ∀xy

i Result

• TRUE/FALSE
↔ Model checking(Metro|RER)*

• Logic formula
(x ∈ X ∧ G(x, y) →
y ∈ X)) → gn ∈ X

|(Bus|Tram)*

3/33

Probabilistic query evaluation

136

23 14

4/33

Probabilistic query evaluation

4/33

Probabilistic query evaluation

4/33

Probabilistic query evaluation

4/33

Probabilistic query evaluation

4/33

Probabilistic query evaluation

4/33

Probabilistic query evaluation

4/33

Probabilistic query evaluation

136

23 14

4/33

Probabilistic query evaluation

136

23 1495%

5% 60

98%

2% 60

4/33

Probabilistic query evaluation

• (Hyper)graph

• Collection of
 ground facts

Probabilistic
database

+ independent
probabilities

136

23 1495%

5% 60

98%

2% 60

4/33

Probabilistic query evaluation

Query?

+

• (Hyper)graph

• Collection of
 ground facts

• Regular path

∀X(rm ∈ X ∧ ∀xy

(Metro|RER)*

• Logic formula
(x ∈ X ∧ G(x, y) →
y ∈ X)) → gn ∈ X

|(Bus|Tram)*

Probabilistic
database

+ independent
probabilities

136

23 1495%

5% 60

98%

2% 60

4/33

Probabilistic query evaluation

Query?

+

• (Hyper)graph

• Collection of
 ground facts

• Regular path

∀X(rm ∈ X ∧ ∀xy

(Metro|RER)*

• Logic formula
(x ∈ X ∧ G(x, y) →
y ∈ X)) → gn ∈ X

|(Bus|Tram)*

Probabilistic
database

+ independent
probabilities

i
Probabilistic
Result

• Probability
 according to
 the input
 distribution

136

23 1495%

5% 60

98%

2% 60

proba to be on time: 98%

4/33

Computational complexity

• Computing paths on a large graph:
→ Well-studied problem, e�cient algorithms

→ #P-hard computational complexity in the database

5/33

Computational complexity

50%

90%

42%

37%

90%

83%

78%

72%

• Computing paths on a large probabilistic graph:
→ ???

→ #P-hard computational complexity in the database

5/33

Computational complexity

50%

90%

42%

37%

90%

83%

78%

72%

• Computing paths on a large probabilistic graph:
→ Exponential number of possibilities

→ #P-hard computational complexity in the database

5/33

Computational complexity

50%

90%

42%

37%

90%

83%

78%

72%

• Computing paths on a large probabilistic graph:
→ Exponential number of possibilities
→ #P-hard computational complexity in the database 5/33

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/33

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/33

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/33

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/33

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/33

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/33

Idea: use the structure of data

→ Shortest path: very easy on a large tree
6/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:

• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees

• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”

• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:

• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees

• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/33

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...
7/33

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

8/33

Query evaluation on words

Database: a word w where nodes have a
color from an alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink
and a blue node?”

i Result: TRUE/FALSE indicating if the word w satis�es the query Q

Computational complexity as a function of w
(the query Q is �xed)

9/33

Query evaluation on words

Database: a word w where nodes have a
color from an alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink
and a blue node?”

i Result: TRUE/FALSE indicating if the word w satis�es the query Q

Computational complexity as a function of w
(the query Q is �xed)

9/33

Query evaluation on words

Database: a word w where nodes have a
color from an alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink
and a blue node?”

i Result: TRUE/FALSE indicating if the word w satis�es the query Q

Computational complexity as a function of w
(the query Q is �xed)

9/33

Query evaluation on words

Database: a word w where nodes have a
color from an alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink
and a blue node?”

i Result: TRUE/FALSE indicating if the word w satis�es the query Q

Computational complexity as a function of w
(the query Q is �xed)

9/33

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node after every pink node”

10/33

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node after every pink node”

10/33

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node after every pink node”

10/33

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x→ y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quanti�er ∃ and
universal quanti�er ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quanti�ers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x→∗ y, i.e., “x is before y”
• ∀x P (x)⇒ ∃y P (y) ∧ x→∗ y
means “There is a blue node after every pink node”

10/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:

⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:

⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}

• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:

⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:

⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:
⊥

P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:
⊥

P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:
⊥ P

P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:
⊥ P P

> >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:
⊥ P P >

>

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:
⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:
⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Word automata

Translate the query Q to a deterministic word automaton

Alphabet: w:
⊥ P P > >

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
>
>

>

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.

11/33

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

12/33

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

12/33

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

12/33

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

12/33

Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}

• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time.

13/33

Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time. 13/33

Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if T satis�es the query Q

Computational complexity as a function of the tree T
(the query Q is �xed)

14/33

Query evaluation on treelike data

Database: a treelike database T ???

? Query Q: a sentence in monadic
second-order logic (MSO)

• P (x) means “x is blue”
• x→ y means “x is the parent of y”

(Metro|RER)∗

| (Bus|Tram)∗

i Result: TRUE/FALSE indicating if T satis�es the query Q

Computational complexity as a function of the tree T
(the query Q is �xed)

14/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

15/33

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant
15/33

Courcelle’s theorem

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

16/33

Courcelle’s theorem

Tree automaton
(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

16/33

Courcelle’s theorem

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

linear

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

16/33

Courcelle’s theorem

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

16/33

Courcelle’s theorem

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q 16/33

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

17/33

Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)

18/33

Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)

18/33

Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)

18/33

Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)

18/33

Roadmap

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

linear

19/33

Roadmap

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

linear linear

Provenance
circuit

19/33

Roadmap

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
circuit

Probability
95%

linear

+probabilities

19/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

20/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

20/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

20/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

20/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

20/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

20/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

20/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects

20/33

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

20/33

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

21/33

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

21/33

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

21/33

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

21/33

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

21/33

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

21/33

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

21/33

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

21/33

Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) i� A accepts ν(T)

22/33

Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) i� A accepts ν(T)

22/33

Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) i� A accepts ν(T)

22/33

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

23/33

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

23/33

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

23/33

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

23/33

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

23/33

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

23/33

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧

∧
¬

23/33

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

23/33

Probabilistic query evaluation

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
circuit

Probability
95%

linear

+probabilities

24/33

Details of the approach

Probabilistic
treelike data

Each fact can
disappear
with some
probability

→ How to compute e�ciently the probability of the circuit?

25/33

Details of the approach

Uncertain
tree encoding

Probabilistic
treelike data

Each fact can
disappear
with some
probability

Each node label
can disappear with
the probability
of the coded fact

→ How to compute e�ciently the probability of the circuit?

25/33

Details of the approach

Uncertain
tree encoding

Probabilistic
treelike data

Each fact can
disappear
with some
probability

Each node label
can disappear with
the probability
of the coded fact

Each variable
can be true with
the probability of
the coded fact

Provenance
circuit

+probabilities

→ How to compute e�ciently the probability of the circuit?

25/33

Details of the approach

Uncertain
tree encoding

Probabilistic
treelike data

Each fact can
disappear
with some
probability

Each node label
can disappear with
the probability
of the coded fact

Each variable
can be true with
the probability of
the coded fact

Probability

95%

Probability
that the circuit
evaluates
to true

Provenance
circuit

+probabilities

→ How to compute e�ciently the probability of the circuit?

25/33

Details of the approach

Uncertain
tree encoding

Probabilistic
treelike data

Each fact can
disappear
with some
probability

Each node label
can disappear with
the probability
of the coded fact

Each variable
can be true with
the probability of
the coded fact

Probability

95%

Probability
that the circuit
evaluates
to true

Provenance
circuit

+probabilities

→ How to compute e�ciently the probability of the circuit?

25/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable

• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent

• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%

60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent

• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%

60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)

• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)

• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

Computing the probability of a circuit

• We are given a circuit and a probability P for each variable
• Each variable x is true independently with probability P(x)
• What is the probability that the circuit evaluates to true?
∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)
• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1− P(input)
• The ∨-gate has mutually exclusive inputs

• Let’s focus on a restricted class of circuits
that satis�es these conditions

26/33

d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′

P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2

P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2

P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

d-DNNFs

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33

Final result

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
circuit

+probabilities

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

28/33

Final result

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
d-DNNF

+probabilities

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

28/33

Final result

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
d-DNNF

Probability
95%

linear

+probabilities

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

28/33

Final result

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
d-DNNF

Probability
95%

linear

+probabilities

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q 28/33

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

29/33

Non-Boolean queries

• We have studied Boolean queries:
“Is there both a pink and a blue node?”

Q() : ∃x y P (x) ∧ P (y)

• In practice, queries often return some results:
“Find all pairs of a pink and a blue node?”

Q(x, y) : P (x) ∧ P (y)

• We can consider each pair (a,b) and test if Q(a,b) is true

• Can we do better?

30/33

Non-Boolean queries

• We have studied Boolean queries:
“Is there both a pink and a blue node?”

Q() : ∃x y P (x) ∧ P (y)

• In practice, queries often return some results:
“Find all pairs of a pink and a blue node?”

Q(x, y) : P (x) ∧ P (y)

• We can consider each pair (a,b) and test if Q(a,b) is true

• Can we do better?

30/33

Non-Boolean queries

• We have studied Boolean queries:
“Is there both a pink and a blue node?”

Q() : ∃x y P (x) ∧ P (y)

• In practice, queries often return some results:
“Find all pairs of a pink and a blue node?”

Q(x, y) : P (x) ∧ P (y)

• We can consider each pair (a,b) and test if Q(a,b) is true

• Can we do better?

30/33

Non-Boolean queries

• We have studied Boolean queries:
“Is there both a pink and a blue node?”

Q() : ∃x y P (x) ∧ P (y)

• In practice, queries often return some results:
“Find all pairs of a pink and a blue node?”

Q(x, y) : P (x) ∧ P (y)

• We can consider each pair (a,b) and test if Q(a,b) is true

• Can we do better?
30/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds

→ Add special facts to materialize all possible assignments
• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Circuits as factorized representations of query results

• Query: Q(X1, . . . , Xn) with free variables X1, . . . , Xn

• Goal: �nd all tuples a1, . . . ,an such that Q(a1, . . . ,an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2
1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3), X2(5)}

{(X1(1), X2(3)), (X1(1), X2(5))}

31/33

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2018]

• Application: Semiring provenance [Green et al., 2007]

32/33

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]

• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2018]

• Application: Semiring provenance [Green et al., 2007]

32/33

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2018]

• Application: Semiring provenance [Green et al., 2007]

32/33

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results

• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2018]

• Application: Semiring provenance [Green et al., 2007]

32/33

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2018]

• Application: Semiring provenance [Green et al., 2007]

32/33

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2018]

• Application: Semiring provenance [Green et al., 2007]
32/33

Conclusion and perspectives

• Other results:
• Lower bounds: probabilistic query evaluation is hard unless
treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]

• Complexity in the query: generally nonelementary but can be
improved [Amarilli et al., 2017b, Amarilli et al., 2017c]

• Ongoing work (with my wonderful co-authors):
• More e�cient enumeration algorithms on words
• More lower bounds results, connections to knowledge compilation
• More expressive provenance: cycluits (circuits with cycles)
• Combined tractability for probabilistic query evaluation

Pierre Louis Stefan Mikaël Matthias Pierre

Thanks for your attention!

33/33

Conclusion and perspectives

• Other results:
• Lower bounds: probabilistic query evaluation is hard unless
treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]

• Complexity in the query: generally nonelementary but can be
improved [Amarilli et al., 2017b, Amarilli et al., 2017c]

• Ongoing work (with my wonderful co-authors):
• More e�cient enumeration algorithms on words
• More lower bounds results, connections to knowledge compilation
• More expressive provenance: cycluits (circuits with cycles)
• Combined tractability for probabilistic query evaluation

Pierre Louis Stefan Mikaël Matthias Pierre

Thanks for your attention!

33/33

Conclusion and perspectives

• Other results:
• Lower bounds: probabilistic query evaluation is hard unless
treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]

• Complexity in the query: generally nonelementary but can be
improved [Amarilli et al., 2017b, Amarilli et al., 2017c]

• Ongoing work (with my wonderful co-authors):
• More e�cient enumeration algorithms on words
• More lower bounds results, connections to knowledge compilation
• More expressive provenance: cycluits (circuits with cycles)
• Combined tractability for probabilistic query evaluation

Pierre Louis Stefan Mikaël Matthias Pierre
Thanks for your attention! 33/33

References i

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017a).
A Circuit-Based Approach to E�cient Enumeration.
In ICALP.
Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on Trees under Relabelings.
In ICDT.
Amarilli, A., Bourhis, P., Monet, M., and Senellart, P. (2017b).
Combined Tractability of Query Evaluation via Tree Automata
and Cycluits.
In ICDT.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance Circuits for Trees and Treelike Instances.
In ICALP.

https://arxiv.org/abs/1702.05589
http://icalp17.mimuw.edu.pl/
https://arxiv.org/abs/1709.06185
https://edbticdt2018.at/
https://arxiv.org/abs/1612.04203
https://arxiv.org/abs/1612.04203
http://edbticdt2017.unive.it/
https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/

References ii

Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable Lineages on Treelike Instances: Limits and Extensions.
In PODS.
Amarilli, A., Monet, M., and Senellart, P. (2017c).
Conjunctive Queries on Probabilistic Graphs: Combined
Complexity.
In PODS.
Arnborg, S., Lagergren, J., and Seese, D. (1991).
Easy problems for tree-decomposable graphs.
J. Algorithms, 12(2):308–340.

https://arxiv.org/abs/1604.02761
http://sigmod2016.org/
https://arxiv.org/abs/1703.03201
https://arxiv.org/abs/1703.03201
http://sigmod2017.org/

References iii

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets
of �nite graphs.
Inf. Comput., 85(1).

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In PODS.

References iv

Kazana, W. and Segou�n, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Thatcher, J. W. and Wright, J. B. (1968).
Generalized �nite automata theory with an application to a
decision problem of second-order logic.
Mathematical systems theory, 2(1):57–81.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

Image credits

• Slides 2 and 5–6:
• Subway map: https://commons.wikimedia.org/wiki/File:Paris_Metro_map.svg (edited), by user Umx on Wikimedia
Commons, public domain

• Ticket t+: http://www.parisvoyage.com/images/cartoon18.jpg, ParisVoyage, fair use
• Terms and conditions: http://www.vianavigo.com/fileadmin/galerie/pdf/CGU_t_.pdf (cropped), RATP, fair use

• Slides 3–4: screenshots from http://lab.vianavigo.com, Stif, fair use

• Slide 4: newpaper articles (fair use) :
• http://www.leparisien.fr/transports/

circulation-alternee-a-paris-et-en-banlieue-une-panne-de-rer-et-des-bouchons-06-12-2016-6419610.php
• http:

//www.rtl.fr/actu/societe-faits-divers/paris-le-trafic-totalement-interrompu-gare-du-nord-7786171150
• https://www.rerb-leblog.fr/incident-rer-b-sest-passe-matin/
• http://www.huffingtonpost.fr/2016/12/06/le-rer-b-en-panne-les-voyageurs-nont-pas-eu-dautres-choix-que/
• http://www.lexpress.fr/actualite/societe/trafic/

rer-b-en-panne-retards-du-d-circulation-alternee-deuxieme-journee-de-galere_1857905.html
• http://www.lemonde.fr/entreprises/article/2016/12/07/

ile-de-france-le-trafic-toujours-interrompu-sur-le-rer-b-en-direction-de-roissy_5044717_1656994.html

• Slides 6, 16, 19, 24–25, 28: Train map https://commons.wikimedia.org/wiki/File:Carte_TGV.svg?uselang=fr (edited), by
users Jack ma, Muselaar, Benjism89, Pic-Sou, Uwe Dedering, Madcap on Wikimedia Commons, license CC-BY-SA 3.0

• Slide 33: Photos http://www.lifl.fr/~bourhis/pb.png, http://tyrex.inria.fr/people/img/jachiet.png,
http://www.cril.univ-artois.fr/~mengel/snap.jpeg, http://mikael-monet.net/images/moi.jpg,
https://sigmodrecord.org/wp-content/uploads/2017/05/Matthias-Niewerth-matthias.niewerth.jpg,
http://pierre.senellart.com/bubu.jpg, fair use

https://commons.wikimedia.org/wiki/File:Paris_Metro_map.svg
http://www.parisvoyage.com/images/cartoon18.jpg
http://www.vianavigo.com/fileadmin/galerie/pdf/CGU_t_.pdf
http://lab.vianavigo.com
http://www.leparisien.fr/transports/circulation-alternee-a-paris-et-en-banlieue-une-panne-de-rer-et-des-bouchons-06-12-2016-6419610.php
http://www.leparisien.fr/transports/circulation-alternee-a-paris-et-en-banlieue-une-panne-de-rer-et-des-bouchons-06-12-2016-6419610.php
http://www.rtl.fr/actu/societe-faits-divers/paris-le-trafic-totalement-interrompu-gare-du-nord-7786171150
http://www.rtl.fr/actu/societe-faits-divers/paris-le-trafic-totalement-interrompu-gare-du-nord-7786171150
https://www.rerb-leblog.fr/incident-rer-b-sest-passe-matin/
http://www.huffingtonpost.fr/2016/12/06/le-rer-b-en-panne-les-voyageurs-nont-pas-eu-dautres-choix-que/
http://www.lexpress.fr/actualite/societe/trafic/rer-b-en-panne-retards-du-d-circulation-alternee-deuxieme-journee-de-galere_1857905.html
http://www.lexpress.fr/actualite/societe/trafic/rer-b-en-panne-retards-du-d-circulation-alternee-deuxieme-journee-de-galere_1857905.html
http://www.lemonde.fr/entreprises/article/2016/12/07/ile-de-france-le-trafic-toujours-interrompu-sur-le-rer-b-en-direction-de-roissy_5044717_1656994.html
http://www.lemonde.fr/entreprises/article/2016/12/07/ile-de-france-le-trafic-toujours-interrompu-sur-le-rer-b-en-direction-de-roissy_5044717_1656994.html
https://commons.wikimedia.org/wiki/File:Carte_TGV.svg?uselang=fr
http://www.lifl.fr/~bourhis/pb.png
http://tyrex.inria.fr/people/img/jachiet.png
http://www.cril.univ-artois.fr/~mengel/snap.jpeg
http://mikael-monet.net/images/moi.jpg
https://sigmodrecord.org/wp-content/uploads/2017/05/Matthias-Niewerth-matthias.niewerth.jpg
http://pierre.senellart.com/bubu.jpg

	Introduction
	

	Existing tools
	

	Provenance circuits and probabilistic query evaluation
	

	Other applications
	

	Appendix

