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Introduction



Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

Data

?
Query

Query evaluation

A B

a1 b1
a2 b2
a3 b3

Results

• Measure the efficiency of this task

• Theoretical study (asymptotic complexity, lower bounds) rather than practical
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Example: Reachability query

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query evaluation

x y

1 4
1 5
2 4
2 5

Results

Extend to three tasks: enumeration, maintenance, and reliability

3/29



Example: Reachability query

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query evaluation

x y

1 4
1 5
2 4
2 5

Results

Extend to three tasks: enumeration, maintenance, and reliability

3/29



Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query
evaluation

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation
• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...
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Maintenance over dynamic data: Adapting to changes

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query evaluation

x y

1 4
1 5
2 4
2 4

Results

Change: make 2 uncolored

• Whenever the data is changed, do not recompute the whole result
• Relabeling updates vs more general updates
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Reliability: Probabilistic query evaluation
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nodes x have a directed path

to which blue nodes y?”
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2 4
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Results

56.25%

Result

• The color of each node is kept with a given probability, assuming independence
• We want to know the probability of all results
• Here, more interesting: probability of the Boolean query
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Provenance circuits: A unified approach to these three problems
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Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation

x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration, probability computation
• Update it if there are changes on the data
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Roadmap of the presentation

• Present data and query formalisms:
→ Monadic second-order logic (MSO) on words/trees

• Results on enumeration

• Results on incremental maintenance

• Results on probabilistic query evaluation
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Context



Families of data

less
expressive

more
expressive

• Words:
1 2 3 4 5 6 7 8

• Trees:
1

2 3

4 5 6 7

• Bounded-treewidth graphs:

• Many other classes of graphs and relational structures:
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Query languages

From least to most expressive:

• Conjunctive queries (CQs): find a pattern
• Q(x, y): “Find two adjacent blue nodes x and y with y having an orange neighbor”
• Q(x, y) : ∃z y zx

• Unions of CQs (UCQs): disjunction of CQs
• Q(x, y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y”

• First-order logic (FO):
→ conjunction, disjunction, negation, existential quantification, universal quantification

• Monadic second-order logic (MSO): extend FO with quantification over sets
• Equivalent to finite automata on words, trees, tree encodings
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Enumeration



Word automata with captures

On words, MSO queries are equivalent to automata

with captures

Q: “Is there an orange node before a blue node?”

0start 1 2

, , , , , ,

w:
1 2 3 4 5 6 7 8

Result: YES
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Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x, y): “Find an orange node x before a blue node y”

0start 1 2

, ,

x :

, ,

y :

, ,

w:
1 2 3 4 5 6 7 8

Results: (x :1, y :3), (x :1, y :7), (x :4, y :7)
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Provenance circuit computation: Product construction
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Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

• Generalizes from words to trees

• Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)
Given an automaton with captures A with constant number of variables, given a word w,
we can enumerate the results of A on w with preprocessing O(Poly(|A|)× |w|)
and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A
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Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

• Decomposable: no variable occurs on both inputs of an ∧-gate

• Deterministic: inputs to an ∨-gate are mutually exclusive

• Negation normal form: negation on leaves

• Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)
Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.
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Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x, y): “Find all endpoints x, y of factors of the form n n”

S → Σ∗ (x : ) A (y : ) Σ∗

A → A | ϵ

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Muñoz, Riveros)
Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| × |w|3) and output-linear delay

Better preprocessing time for restricted grammar classes
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Maintenance



Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x, y): “Find pairs of an orange node x and a blue node y”

1

2 3

4 5 6 7

∧

∨ ∨

x:4 x:5 y:6 y:7

What happens if the tree is modified?

• Can we update the provenance circuit instead of recomputing it from scratch?

• Can we avoid re-running the preprocessing phase of the enumeration?
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Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))

→ The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)
For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q
on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

Same for updates that change the tree structure (PODS’19; with Bourhis, Mengel,
Niewerth) assuming we have an algorithm to keep the tree balanced
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Improving the logarithmic complexity

• The update time is O(log n) and there is a lower bound of Ω(log n/ log log n)
→ Already for Boolean queries on words under relabeling updates

• Yet, we can do better for some queries, e.g.:
Q: “Is there both an orange node and a blue node?”

• Simply maintain the counts! update time O(1)

→ For a fixed language L, given a word w of length n, what is the best update time to
maintain membership of w to L under relabelings?
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Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)
Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

• If L is in QLZG, then the problem is in O(1)

• If L is in QSG \ QLZG, then the problem is in O(log log n)
and conditionally not in O(1)

• If L is not in QSG, then the problem is in Θ(log n/ log log n)

All: in Θ(log n/ log log n)

QSG: in O(log log n)
not in O(1)?

QLZG: in O(1)

• QLZG: “in all submonoids of the stable semigroup, all subgroup elements are central”
→ Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...

• QSG: “the stable semigroup satisfies the equation xω+1yxω = xωyxω+1”
→ Aperiodic languages, tame combinations of aperiodic and commutative languages...
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Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)
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Reliability



Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

• Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME
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Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)
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Intractability of probabilistic query evaluation in the general case

What about more general data?

We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs
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Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)
For some d ∈ N, any d-SDNNF provenance circuit for Q on a graph G of treewidth k
must have size 2Ω(k1/d).

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G ∈ G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

23/29



Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)
For some d ∈ N, any d-SDNNF provenance circuit for Q on a graph G of treewidth k
must have size 2Ω(k1/d).

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G ∈ G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

23/29



Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)
For some d ∈ N, any d-SDNNF provenance circuit for Q on a graph G of treewidth k
must have size 2Ω(k1/d).

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G ∈ G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

23/29



Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)
For some d ∈ N, any d-SDNNF provenance circuit for Q on a graph G of treewidth k
must have size 2Ω(k1/d).

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G ∈ G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]
23/29



Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

E.g., x y z but not x y z w

Known dichotomy: PQE on tuple-independent databases is intractable for the
non-hierarchical such queries [Dalvi and Suciu, 2007]

Theorem (ICDT’21, LMCS; with Kimelfeld)
For any non-hierarchical self-join-free conjunctive query Q, computing probabilistic
query evaluation problem for Q input TID databases is #P-hard even if all input
probabilities are 1/2.
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Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a
homomorphism to G′ then G′ satisfies Q

→ Examples: CQs, UCQs, Datalog...

Theorem (ICDT’20, LMCS; with Ceylan)
For any unbounded homomorphism-closed query Q on graphs,
the PQE problem for Q is #P-hard.

Theorem (ICDT’23)
This holds even if all probabilities are 1/2.
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Conclusion



Summary and perspectives

• Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data

• Properties of the automata correspond to knowledge compilation circuit classes

• May also extend to other settings:
• Explored for enumeration with annotated context-free grammars on words
• Open if circuits explain the tractability of PQE for safe UCQs
• Other cases? (e.g., UCQs with tractable enumeration?)

• Finer bounds on incremental maintenance via algebraic methods
• Connections with circuits not (yet) understood
• Unclear if the results extend to enumeration and to trees

• For PQE, hardness holds outside of the bounded-treewidth setting
• Better joint criteria for width when considering the instance and query?

• Enumeration of large solutions by editing previous solutions? (STACS’23; with Monet)

Thanks for your attention!
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