Query Evaluation:
 Enumeration, Maintenance, Reliability

Antoine Amarilli

November 1, 2023

Télécom Paris

Introduction

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

- Measure the efficiency of this task

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

- Measure the efficiency of this task
- Theoretical study (asymptotic complexity, lower bounds) rather than practical

Example: Reachability query

Data: Graph G

Query $Q(x, y)$:"Which orange nodes x have a directed path to which blue nodes y?"

x	y
1	4
1	5
2	4
2	5

Example: Reachability query

Data: Graph G

Query $Q(x, y)$: "Which orange nodes x have a directed path

Results to which blue nodes y ?"

Extend to three tasks: enumeration, maintenance, and reliability

Enumeration: Producing results in streaming

- Usual complexity measure: time to produce the entire output

Enumeration: Producing results in streaming

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:

Enumeration: Producing results in streaming

 to which blue nodes y?"

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

Enumeration: Producing results in streaming

to which blue nodes y?"

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

Enumeration: Producing results in streaming

 to which blue nodes y?"

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

Enumeration: Producing results in streaming

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

Enumeration: Producing results in streaming

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation
- Delay between each consecutive output

Enumeration: Producing results in streaming

- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation
- Delay between each consecutive output

Enumeration: Producing results in streaming

Query $Q(x, y)$: "Which orange nodes x have a directed path to which blue nodes y ?"

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation
- Delay between each consecutive output

Enumeration: Producing results in streaming

 to which blue nodes y?"

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation
- Delay between each consecutive output

\downarrow	
x	y
1	4
1	5
2	4
2	5
Results	

Enumeration: Producing results in streaming

to which blue nodes y ?"

- Usual complexity measure: time to produce the entire output
- More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation
- Delay between each consecutive output
\rightarrow Test existence of a result, find some results, find all results...

Maintenance over dynamic data: Adapting to changes

Maintenance over dynamic data: Adapting to changes

to which blue nodes y ?"

- Whenever the data is changed, do not recompute the whole result

Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored
 to which blue nodes y ?"

- Whenever the data is changed, do not recompute the whole result

Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored
 to which blue nodes y ?"

- Whenever the data is changed, do not recompute the whole result

Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored
 to which blue nodes y ?"

- Whenever the data is changed, do not recompute the whole result

Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored

Query $Q(x, y)$: "Which orange nodes x have a directed path to which blue nodes y ?"

- Whenever the data is changed, do not recompute the whole result
- Relabeling updates vs more general updates

Reliability: Probabilistic query evaluation

Reliability: Probabilistic query evaluation

x	y
1	4
1	5
2	4
2	5
Results	

Reliability: Probabilistic query evaluation

 to which blue nodes y ?"

- The color of each node is kept with a given probability, assuming independence

Reliability: Probabilistic query evaluation

x	y	
1	4	25%
1	5	25%
2	4	25%
2	5	25%
Results		

Query $Q(x, y)$: "Which orange nodes x have a directed path to which blue nodes y ?"

- The color of each node is kept with a given probability, assuming independence
- We want to know the probability of all results

Reliability: Probabilistic query evaluation

- The color of each node is kept with a given probability, assuming independence
- We want to know the probability of all results
- Here, more interesting: probability of the Boolean query

Reliability: Probabilistic query evaluation

- The color of each node is kept with a given probability, assuming independence
- We want to know the probability of all results
- Here, more interesting: probability of the Boolean query

Provenance circuits: A unified approach to these three problems

 to which blue nodes y ?"

Provenance circuits: A unified approach to these three problems

Provenance circuit to which blue nodes y?"

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation

Provenance circuits: A unified approach to these three problems

Provenance circuit Query $Q(x, y)$: "Which orange nodes x have a directed path
to which blue nodes y ?"

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation,

Provenance circuits: A unified approach to these three problems

Data: Graph G Query $Q(x, y)$: "Which orange nodes x have a directed path to which blue nodes y ?"

Provenance circuit

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration,

Provenance circuits: A unified approach to these three problems

to which blue nodes y ?"

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation

Provenance circuits: A unified approach to these three problems

 to which blue nodes y ?"

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation

Provenance circuits: A unified approach to these three problems

 nodes x have a directed path to which blue nodes y ?"

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation

Provenance circuits: A unified approach to these three problems

Change: make 2 uncolored

Query $Q(x, y)$: "Which orange nodes x have a directed path
to which blue nodes y ?"

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation
- Update it if there are changes on the data

Provenance circuits: A unified approach to these three problems

Change: make 2 uncolored

Query $Q(x, y)$: "Which orange nodes x have a directed path
to which blue nodes y ?"

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation
- Update it if there are changes on the data

Provenance circuits: A unified approach to these three problems

Change: make 2 uncolored

Query $Q(x, y)$: "Which orange nodes x have a directed path
to which blue nodes y ?"

- The provenance circuit describes how the query result depends on the data
- Show that it belongs to restricted circuit classes from knowledge compilation
- Use it for evaluation, enumeration, probability computation
- Update it if there are changes on the data

Roadmap of the presentation

- Present data and query formalisms:
\rightarrow Monadic second-order logic (MSO) on words/trees

Roadmap of the presentation

- Present data and query formalisms:
\rightarrow Monadic second-order logic (MSO) on words/trees
- Results on enumeration

Roadmap of the presentation

- Present data and query formalisms:
\rightarrow Monadic second-order logic (MSO) on words/trees
- Results on enumeration
- Results on incremental maintenance

Roadmap of the presentation

- Present data and query formalisms:
\rightarrow Monadic second-order logic (MSO) on words/trees
- Results on enumeration
- Results on incremental maintenance
- Results on probabilistic query evaluation

Context

Families of data

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
 - words: $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

less expressive more expressive

Families of data

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

- Words: $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$
- Trees:

less
 expressive

more
expressive

Families of data

1	2	3	4	5	6	7	8

- Words: $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$
- Trees:

- Bounded-treewidth graphs:

less
expressive
more
expressive

Families of data

1	2	3	4	5	6	7	8

- Words: $\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$
- Trees:

- Bounded-treewidth graphs:

more expressive
- Many other classes of graphs and relational structures:

less
expressive

Query languages

From least to most expressive:

- Conjunctive queries (CQs): find a pattern
- $Q(x, y)$: "Find two adjacent blue nodes x and y with y having an orange neighbor"
$Q(x, y): \exists z x-y$

Query languages

From least to most expressive:

- Conjunctive queries (CQs): find a pattern
- $Q(x, y)$: "Find two adjacent blue nodes x and y with y having an orange neighbor"
- $Q(x, y): \exists z \times y$
- Unions of CQs (UCQs): disjunction of CQs
- $Q(x, y)$: "Find two adjacent blue nodes x and y or two adjacent orange nodes x and y "

Query languages

From least to most expressive:

- Conjunctive queries (CQs): find a pattern
- $Q(x, y)$: "Find two adjacent blue nodes x and y with y having an orange neighbor"
- $Q(x, y): \exists z \times y$
- Unions of CQs (UCQs): disjunction of CQs
- $Q(x, y)$: "Find two adjacent blue nodes x and y or two adjacent orange nodes x and y "
- First-order logic (FO):
\rightarrow conjunction, disjunction, negation, existential quantification, universal quantification

Query languages

From least to most expressive:

- Conjunctive queries (CQs): find a pattern
- $Q(x, y)$: "Find two adjacent blue nodes x and y with y having an orange neighbor"
$Q(x, y): \exists z x-y$
- Unions of CQs (UCQs): disjunction of CQs
- $Q(x, y)$: "Find two adjacent blue nodes x and y or two adjacent orange nodes x and y "
- First-order logic (FO):
\rightarrow conjunction, disjunction, negation, existential quantification, universal quantification
- Monadic second-order logic (MSO): extend FO with quantification over sets
- Equivalent to finite automata on words, trees, tree encodings

Enumeration

Word automata with captures

On words, MSO queries are equivalent to automata

Word automata with captures

On words, MSO queries are equivalent to automata
Q: "Is there an orange node before a blue node?"

Word automata with captures

On words, MSO queries are equivalent to automata
Q: "Is there an orange node before a blue node?"
O,O,O O,O,O O,O,O

Word automata with captures

On words, MSO queries are equivalent to automata

> Q: "Is there an orange node before a blue node?"

Word automata with captures

On words, MSO queries are equivalent to automata

> Q: "Is there an orange node before a blue node?"

Result: YES

Word automata with captures

On words, MSO queries are equivalent to automata with captures

> Q: "Is there an orange node before a blue node?"

Result: YES

Word automata with captures

On words, MSO queries are equivalent to automata with captures
$Q(x, y)$: "Find an orange node x before a blue node y "

Result: YES

Word automata with captures

On words, MSO queries are equivalent to automata with captures
$Q(x, y)$: "Find an orange node x before a blue node y "

Result: YES

Word automata with captures

On words, MSO queries are equivalent to automata with captures
$Q(x, y)$: "Find an orange node x before a blue node y "

Results: $(x: 1, y: 3),(x: 1, y: 7),(x: 4, y: 7)$

Provenance circuit computation: Product construction

- Product of word and automaton
- Trim nodes that are not reachable/co-reachable
- Collapse transitions with no assignments

Provenance circuit computation: Product construction

- Product of word and automaton
- Trim nodes that are not reachable/co-reachable
- Collapse transitions with no assignments
- Equivalent provenance circuit:

Provenance circuit computation: Product construction

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

- Generalizes from words to trees

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

- Generalizes from words to trees
- Also works for non-deterministic automata

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

- Generalizes from words to trees
- Also works for non-deterministic automata

Theorem (ICDT'19 on words, PODS'19 on trees; with Bourhis, Mengel, Niewerth)
Given an automaton with captures A with constant number of variables, given a word w, we can enumerate the results of A on w with preprocessing $O(P o l y(|A|) \times|w|)$ and delay $\mathrm{O}(\operatorname{Poly}(|A|))$.

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

- Generalizes from words to trees
- Also works for non-deterministic automata

Theorem (ICDT'19 on words, PODS'19 on trees; with Bourhis, Mengel, Niewerth)

Given an automaton with captures A with constant number of variables, given a word w, we can enumerate the results of A on w with preprocessing $O(\operatorname{Poly}(|A|) \times|w|)$ and delay $\mathrm{O}(\operatorname{Poly}(|A|))$.

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

- Decomposable: no variable occurs on both inputs of an \wedge-gate

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

- Decomposable: no variable occurs on both inputs of an \wedge-gate
- Deterministic: inputs to an \vee-gate are mutually exclusive

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

- Decomposable: no variable occurs on both inputs of an \wedge-gate
- Deterministic: inputs to an \vee-gate are mutually exclusive
- Negation normal form: negation on leaves

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

- Decomposable: no variable occurs on both inputs of an \wedge-gate
- Deterministic: inputs to an \vee-gate are mutually exclusive
- Negation normal form: negation on leaves
- Structured by a v-tree

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

- Decomposable: no variable occurs on both inputs of an \wedge-gate
- Deterministic: inputs to an \vee-gate are mutually exclusive
- Negation normal form: negation on leaves
- Structured by a v-tree

Theorem (ICALP'17; with Bourhis, Jachiet, Mengel)

Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying assignments of C with linear preprocessing and output-linear delay.

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

$$
\begin{aligned}
& Q(x, y) \text { : "Find all endpoints } x, y \text { of factors of the form } \bigcirc^{n} \bigcirc^{n "} \\
& \qquad \begin{aligned}
S & \rightarrow \Sigma^{*}(x: \bigcirc) A(y: O) \Sigma^{*} \\
A & \rightarrow \bigcirc A \bigcirc \mid \epsilon
\end{aligned}
\end{aligned}
$$

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

$$
\begin{aligned}
& Q(x, y) \text { : "Find all endpoints } x, y \text { of factors of the form } O^{n} O^{n "} \\
& \qquad \begin{aligned}
S & \rightarrow \Sigma^{*}(x: \bigcirc) A(y: O) \Sigma^{*} \\
A & \rightarrow \bigcirc A \bigcirc \mid \epsilon
\end{aligned}
\end{aligned}
$$

Annotation grammar must be input-output-unambiguous: no result is captured twice

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

$$
\begin{aligned}
& Q(x, y) \text { : "Find all endpoints } x, y \text { of factors of the form } \bigcirc^{n} \bigcirc^{n "} \\
& \qquad \begin{aligned}
S & \rightarrow \Sigma^{*}(x: \bigcirc) A(y: O) \Sigma^{*} \\
A & \rightarrow \bigcirc A \bigcirc \mid \epsilon
\end{aligned}
\end{aligned}
$$

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS'22; with Jachiet, Muñoz, Riveros)

Given an unambiguous annotation grammar G and word w, we can enumerate the results of G on w with preprocessing $O\left(|G| \times|w|^{3}\right)$ and output-linear delay

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

$$
\begin{aligned}
& Q(x, y) \text { : "Find all endpoints } x, y \text { of factors of the form } \bigcirc^{n} O^{n} \text { " } \\
& \qquad \begin{aligned}
S & \rightarrow \Sigma^{*}(x: \bigcirc) A(y: O) \Sigma^{*} \\
A & \rightarrow \bigcirc A \bigcirc \mid \epsilon
\end{aligned}
\end{aligned}
$$

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS'22; with Jachiet, Muñoz, Riveros)

Given an unambiguous annotation grammar G and word w, we can enumerate the results of G on w with preprocessing $O\left(|G| \times|w|^{3}\right)$ and output-linear delay

Better preprocessing time for restricted grammar classes

Maintenance

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

$$
Q(x, y) \text { : "Find pairs of an orange node } x \text { and a blue node } y \text { " }
$$

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees
$Q(x, y)$: "Find pairs of an orange node x and a blue node y "

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees
$Q(x, y)$: "Find pairs of an orange node x and a blue node y "

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees
$Q(x, y)$: "Find pairs of an orange node x and a blue node y "

What happens if the tree is modified?

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees
$Q(x, y)$: "Find pairs of an orange node x and a blue node y "

What happens if the tree is modified?

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

$$
Q(x, y) \text { : "Find pairs of an orange node } x \text { and a blue node } y \text { " }
$$

What happens if the tree is modified?

- Can we update the provenance circuit instead of recomputing it from scratch?

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

$$
Q(x, y) \text { : "Find pairs of an orange node } x \text { and a blue node } y \text { " }
$$

What happens if the tree is modified?

- Can we update the provenance circuit instead of recomputing it from scratch?
- Can we avoid re-running the preprocessing phase of the enumeration?

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O (height (T))

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O (height (T))
\rightarrow The provenance circuit computation and enumeration preprocessing are bottom-up

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O (height (T))
\rightarrow The provenance circuit computation and enumeration preprocessing are bottom-up
It suffices to balance the tree at the start (uses balanced tree decompositions)

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O (height(T)
\rightarrow The provenance circuit computation and enumeration preprocessing are bottom-up
It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT'18; with Bourhis, Mengel)

For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q on T with linear preprocessing and output-linear delay, and we can handle relabeling updates to T in time $O(\log |T|)$.

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O (height (T))
\rightarrow The provenance circuit computation and enumeration preprocessing are bottom-up
It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT'18; with Bourhis, Mengel)

For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q on T with linear preprocessing and output-linear delay, and we can handle relabeling updates to T in time $O(\log |T|)$.

Same for updates that change the tree structure (PODS'19; with Bourhis, Mengel, Niewerth) assuming we have an algorithm to keep the tree balanced

Improving the logarithmic complexity

- The update time is $O(\log n)$ and there is a lower bound of $\Omega(\log n / \log \log n)$
\rightarrow Already for Boolean queries on words under relabeling updates

Improving the logarithmic complexity

- The update time is $O(\log n)$ and there is a lower bound of $\Omega(\log n / \log \log n)$
\rightarrow Already for Boolean queries on words under relabeling updates
- Yet, we can do better for some queries, e.g.:

Q: "Is there both an orange node and a blue node?"

Improving the logarithmic complexity

- The update time is $O(\log n)$ and there is a lower bound of $\Omega(\log n / \log \log n)$
\rightarrow Already for Boolean queries on words under relabeling updates
- Yet, we can do better for some queries, e.g.:
Q: "Is there both an orange node and a blue node?"
- Simply maintain the counts! update time $O(1)$

Improving the logarithmic complexity

- The update time is $O(\log n)$ and there is a lower bound of $\Omega(\log n / \log \log n)$
\rightarrow Already for Boolean queries on words under relabeling updates
- Yet, we can do better for some queries, e.g.:
Q: "Is there both an orange node and a blue node?"
- Simply maintain the counts! update time $O(1)$
\rightarrow For a fixed language L, given a word w of length n, what is the best update time to maintain membership of w to L under relabelings?

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language L on words under relabeling updates

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language L on words under relabeling updates

- If L is in QLZG, then the problem is in O(1)

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language L on words under relabeling updates

- If L is in QLZG, then the problem is in O(1)
- If L is in $\mathbf{Q S G} \backslash \mathbf{Q L Z G}$, then the problem is in $O(\log \log n)$

QLZG: in $O(1)$

QSG: in $O(\log \log n)$ not in $O(1)$? and conditionally not in $O(1)$

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language L on words under relabeling updates

- If L is in QLZG, then the problem is in O(1)
- If L is in $\mathbf{Q S G} \backslash \mathbf{Q L Z G}$, then the problem is in $O(\log \log n)$ and conditionally not in $O(1)$
- If L is not in QSG, then the problem is in $\Theta(\log n / \log \log n)$

QLZG: in $O(1)$

QSG: in $O(\log \log n)$ not in $O(1)$?

All: in $\Theta(\log n / \log \log n)$

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP'21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a regular language L on words under relabeling updates

- If L is in QLZG, then the problem is in O(1)
- If L is in $\mathbf{Q S G} \backslash \mathbf{Q L Z G}$, then the problem is in $O(\log \log n)$ and conditionally not in $O(1)$
- If L is not in QSG, then the problem is in $\Theta(\log n / \log \log n)$

QLZG: in $O(1)$

QSG: in $O(\log \log n)$ not in $O(1)$?

All: in $\Theta(\log n / \log \log n)$

- QLZG: "in all submonoids of the stable semigroup, all subgroup elements are central" \rightarrow Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...
- QSG: "the stable semigroup satisfies the equation $x^{\omega+1} y x^{\omega}=x^{\omega} y x^{\omega+1}$ "
\rightarrow Aperiodic languages, tame combinations of aperiodic and commutative languages...

Reliability

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: "There is both an orange node and a blue node"

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities
Q: "There is both an orange node and a blue node"

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities
Q: "There is both an orange node and a blue node"

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities
Q: "There is both an orange node and a blue node"

$\operatorname{PQE}(Q)$: compute the total probability that Q is satisfied, here:

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities
Q: "There is both an orange node and a blue node"

$\operatorname{PQE}(Q)$: compute the total probability that Q is satisfied, here: 56.25%

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities
Q: "There is both an orange node and a blue node"

$\operatorname{PQE}(Q)$: compute the total probability that Q is satisfied, here: 56.25%

- Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data) [Dalvi and Suciu, 2013]: the problem is either \#P-hard or in PTIME

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!
Q: "There is both an orange node and a blue node"

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: "There is both an orange node and a blue node"

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: "There is both an orange node and a blue node"

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: "There is both an orange node and a blue node"

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: "There is both an orange node and a blue node"

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: "There is both an orange node and a blue node"

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: "There is both an orange node and a blue node"

- Probability of \wedge is the product of the probabilities (uses decomposability)
- Probability of \vee is the sum of the probabilities (uses determinism)

Intractability of probabilistic query evaluation in the general case

What about more general data?

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

- On any unbounded-treewidth class of probabilistic graphs (conditions apply),

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

- On any unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the matching query:

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

- On any unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the matching query:
- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

- On any unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the matching query:
- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits
- PQE is \#P-hard under randomized reductions

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

- On any unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the matching query:
- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits
- PQE is \#P-hard under randomized reductions
- When allowing arbitrary instances:

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

- On any unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the matching query:
- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits
- PQE is \#P-hard under randomized reductions
- When allowing arbitrary instances:
- We show hardness of PQE for non-hierarchical self-join free CQs, in the uniform case (where all probabilities are 1/2)

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

- On any unbounded-treewidth class of probabilistic graphs (conditions apply), for a specific query called the matching query:
- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits
- PQE is \#P-hard under randomized reductions
- When allowing arbitrary instances:
- We show hardness of PQE for non-hierarchical self-join free CQs, in the uniform case (where all probabilities are 1/2)
- We show the same for all unbounded homomorphism-closed queries on graphs

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there are no two edges that share an endpoint

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there are no two edges that share an endpoint

Theorem (ICDT'18; with Monet and Senellart)

For some $d \in \mathbb{N}$, any d-SDNNF provenance circuit for Q on a graph G of treewidth k must have size $2^{\Omega\left(k^{1 / d}\right)}$.

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there are no two edges that share an endpoint

Theorem (ICDT'18; with Monet and Senellart)

For some $d \in \mathbb{N}$, any d-SDNNF provenance circuit for Q on a graph G of treewidth k must have size $2^{\Omega\left(k^{1 / d}\right)}$.

Theorem (MFCS'22; with Monet)

On any graph family \mathcal{G} in which we can efficiently find high-treewidth graphs, the PQE problem for Q on an input graph $G \in \mathcal{G}$ under an input probability distribution is \#P-hard under randomized reductions.

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there are no two edges that share an endpoint

Theorem (ICDT'18; with Monet and Senellart)

For some $d \in \mathbb{N}$, any d-SDNNF provenance circuit for Q on a graph G of treewidth k must have size $2^{\Omega\left(k^{1 / d}\right)}$.

Theorem (MFCS'22; with Monet)

On any graph family \mathcal{G} in which we can efficiently find high-treewidth graphs, the PQE problem for Q on an input graph $G \in \mathcal{G}$ under an input probability distribution is \#P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

Known dichotomy: PQE on tuple-independent databases is intractable for the non-hierarchical such queries [Dalvi and Suciu, 2007]

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

Known dichotomy: PQE on tuple-independent databases is intractable for the non-hierarchical such queries [Dalvi and Suciu, 2007]

Theorem (ICDT'21, LMCS; with Kimelfeld)

For any non-hierarchical self-join-free conjunctive query Q, computing probabilistic query evaluation problem for Q input TID databases is \#P-hard even if all input probabilities are 1/2.

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} satisfies Q
\rightarrow Examples: CQs, UCQs, Datalog...

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} satisfies Q
\rightarrow Examples: CQs, UCQs, Datalog...

Theorem (ICDT'20, LMCS; with Ceylan)

For any unbounded homomorphism-closed query Q on graphs, the PQE problem for Q is \#P-hard.

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} satisfies Q
\rightarrow Examples: CQs, UCQs, Datalog...

Theorem (ICDT'20, LMCS; with Ceylan)

For any unbounded homomorphism-closed query Q on graphs, the PQE problem for Q is \#P-hard.

Theorem (ICDT'23)

This holds even if all probabilities are 1/2.

Conclusion

Summary and perspectives

- Circuits can be a unifying framework for enumeration, incremental maintenance and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes

Summary and perspectives

- Circuits can be a unifying framework for enumeration, incremental maintenance and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)

Summary and perspectives

- Circuits can be a unifying framework for enumeration, incremental maintenance and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)
- Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees

Summary and perspectives

- Circuits can be a unifying framework for enumeration, incremental maintenance and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)
- Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees
- For PQE, hardness holds outside of the bounded-treewidth setting
- Better joint criteria for width when considering the instance and query?

Summary and perspectives

- Circuits can be a unifying framework for enumeration, incremental maintenance and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)
- Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees
- For PQE, hardness holds outside of the bounded-treewidth setting
- Better joint criteria for width when considering the instance and query?
- Enumeration of large solutions by editing previous solutions? (STACS'23; with Monet)

Summary and perspectives

- Circuits can be a unifying framework for enumeration, incremental maintenance and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes
- May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)
- Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees
- For PQE, hardness holds outside of the bounded-treewidth setting
- Better joint criteria for width when considering the instance and query?
- Enumeration of large solutions by editing previous solutions? (STACS'23; with Monet)

Thanks for your attention! 26/29

Advertisement: TCS4F and "No free view? No review!"

Are you concerned about how academic research in theoretical computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)
www.tcs4f.org
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée, Tijn de Vos)

Advertisement: TCS4F and "No free view? No review!"

Are you concerned about how academic research in theoretical computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)
www.tcs4f.org
(with Thomas Schwentick, Thomas Colcombet, Hugo Férée, Tijn de Vos)

NO FREE VIEW?

NO REVIEW!

Are you tired of doing reviewing work for conferences and journals that do not publish their research online?

If so, sign the pledge "No free view? No review!"
www.nofreeviewnoreview.org
(with Antonin Delpeuch)

References i

園 Bagan，G．（2006）．
MSO queries on tree decomposable structures are computable with linear delay．
In CSL．
囯 Chekuri，C．and Chuzhoy，J．（2016）．
Polynomial bounds for the grid－minor theorem．
JACM，63（5）．
嗇 Dalvi，N．and Suciu，D．（2007）．
Efficient query evaluation on probabilistic databases．
VLDBJ，16（4）．

References ii

國 Dalvi, N. and Suciu, D. (2013).
The dichotomy of probabilistic inference for unions of conjunctive queries. JACM, 59(6).
國 Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees. TOCL, 14(4).

