
Bounded-delay enumeration of regular languages

Antoine Amarilli, Mikaël Monet

November 27, 2023



Who

Joint work with Mikaël Monet – thanks to him for preparing these slides :)

https://arxiv.org/abs/2209.14878

Presented at STACS’23
1 / 28

https://arxiv.org/abs/2209.14878


Outline

Introduction

Main results

Proof of the lower bound

Proof (sketch) of the upper bound

Conclusion

2 / 28



Introduction



Gray code for n-bit words

• Gray code over n-bit words: a permutation

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

Example: build the Reflected Binary Code (RBC) by induction:

• for n = 0, simply ϵ

• given the RBC w1, . . . ,w2n for n-bit words, we build the RBC w ′1, . . . ,w
′

2n+1

for (n + 1)-bit words:
w1

⋮
w2n

w2n

⋮
w1

a

⋮
a

b

⋮
b

w ′1 =

w ′2n+1 =

3 / 28



Gray code for n-bit words

• Gray code over n-bit words: a permutation

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

Example: build the Reflected Binary Code (RBC) by induction:

• for n = 0, simply ϵ

• given the RBC w1, . . . ,w2n for n-bit words, we build the RBC w ′1, . . . ,w
′

2n+1

for (n + 1)-bit words:
w1

⋮
w2n

w2n

⋮
w1

a

⋮
a

b

⋮
b

w ′1 =

w ′2n+1 =

3 / 28



Gray code for n-bit words

• Gray code over n-bit words: a permutation

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

Example: build the Reflected Binary Code (RBC) by induction:

• for n = 0, simply ϵ

• given the RBC w1, . . . ,w2n for n-bit words, we build the RBC w ′1, . . . ,w
′

2n+1

for (n + 1)-bit words:
w1

⋮
w2n

w2n

⋮
w1

a

⋮
a

b

⋮
b

w ′1 =

w ′2n+1 = 3 / 28



Gray code for n-bit words

• Gray code over n-bit words: a permutation

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

Example: build the Reflected Binary Code (RBC) by induction:

• for n = 0, simply ϵ

• given the RBC w1, . . . ,w2n for n-bit words, we build the RBC w ′1, . . . ,w
′

2n+1

for (n + 1)-bit words:
w1

⋮
w2n

w2n

⋮
w1

a

⋮
a

b

⋮
b

w ′1 =

w ′2n+1 = 3 / 28



Gray code for n-bit words

• Gray code over n-bit words: a permutation

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

Example: build the Reflected Binary Code (RBC) by induction:

• for n = 0, simply ϵ

• given the RBC w1, . . . ,w2n for n-bit words, we build the RBC w ′1, . . . ,w
′

2n+1

for (n + 1)-bit words:
w1

⋮
w2n

w2n

⋮
w1

a

⋮
a

b

⋮
b

w ′1 =

w ′2n+1 = 3 / 28



Gray code for n-bit words

• Gray code over n-bit words: a permutation

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

Example: build the Reflected Binary Code (RBC) by induction:

• for n = 0, simply ϵ

• given the RBC w1, . . . ,w2n for n-bit words, we build the RBC w ′1, . . . ,w
′

2n+1

for (n + 1)-bit words:
w1

⋮
w2n

w2n

⋮
w1

a

⋮
a

b

⋮
b

w ′1 =

w ′2n+1 = 3 / 28



Gray code for n-bit words

• Gray code over n-bit words: a permutation

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

Example: build the Reflected Binary Code (RBC) by induction:

• for n = 0, simply ϵ

• given the RBC w1, . . . ,w2n for n-bit words, we build the RBC w ′1, . . . ,w
′

2n+1

for (n + 1)-bit words:
w1

⋮
w2n

w2n

⋮
w1

a

⋮
a

b

⋮
b

w ′1 =

w ′2n+1 = 3 / 28



Gray code for n-bit words

• Gray code over n-bit words: a permutation

w1,w2, . . . ,w2n

of (a + b)n such that wi ,wi+1 differ by exactly one bit.

Example: build the Reflected Binary Code (RBC) by induction:

• for n = 0, simply ϵ

• given the RBC w1, . . . ,w2n for n-bit words, we build the RBC w ′1, . . . ,w
′

2n+1

for (n + 1)-bit words:
w1

⋮
w2n

w2n

⋮
w1

a

⋮
a

b

⋮
b

w ′1 =

w ′2n+1 = 3 / 28



Gray code for languages

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain a permutation w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
1-orderable for the Levenshtein distance if there exists a permutation w1,w2, . . .

of L such that consecutive words are at Levenshtein distance 1.

• Examples: Are these languages 1-orderable for the Levenshtein distance?
• a∗ yes
• a∗b∗ yes (BLACKBOARD)
• (aa)∗ no

4 / 28



Gray code for languages

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain a permutation w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
1-orderable for the Levenshtein distance if there exists a permutation w1,w2, . . .

of L such that consecutive words are at Levenshtein distance 1.

• Examples: Are these languages 1-orderable for the Levenshtein distance?
• a∗ yes
• a∗b∗ yes (BLACKBOARD)
• (aa)∗ no

4 / 28



Gray code for languages

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain a permutation w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
1-orderable for the Levenshtein distance if there exists a permutation w1,w2, . . .

of L such that consecutive words are at Levenshtein distance 1.

• Examples: Are these languages 1-orderable for the Levenshtein distance?
• a∗

yes
• a∗b∗ yes (BLACKBOARD)
• (aa)∗ no

4 / 28



Gray code for languages

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain a permutation w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
1-orderable for the Levenshtein distance if there exists a permutation w1,w2, . . .

of L such that consecutive words are at Levenshtein distance 1.

• Examples: Are these languages 1-orderable for the Levenshtein distance?
• a∗ yes

• a∗b∗ yes (BLACKBOARD)
• (aa)∗ no

4 / 28



Gray code for languages

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain a permutation w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
1-orderable for the Levenshtein distance if there exists a permutation w1,w2, . . .

of L such that consecutive words are at Levenshtein distance 1.

• Examples: Are these languages 1-orderable for the Levenshtein distance?
• a∗ yes
• a∗b∗

yes (BLACKBOARD)
• (aa)∗ no

4 / 28



Gray code for languages

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain a permutation w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
1-orderable for the Levenshtein distance if there exists a permutation w1,w2, . . .

of L such that consecutive words are at Levenshtein distance 1.

• Examples: Are these languages 1-orderable for the Levenshtein distance?
• a∗ yes
• a∗b∗ yes (BLACKBOARD)

• (aa)∗ no

4 / 28



Gray code for languages

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain a permutation w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
1-orderable for the Levenshtein distance if there exists a permutation w1,w2, . . .

of L such that consecutive words are at Levenshtein distance 1.

• Examples: Are these languages 1-orderable for the Levenshtein distance?
• a∗ yes
• a∗b∗ yes (BLACKBOARD)
• (aa)∗

no

4 / 28



Gray code for languages

• Concatenate Gray codes for n = 0,1,2, . . .: we obtain a permutation w1,w2, . . .

of (a + b)∗ where consecutive words are at Levenshtein distance one.

• In general, let L ⊆ Σ∗ be any language over some alphabet Σ. We say that L is
1-orderable for the Levenshtein distance if there exists a permutation w1,w2, . . .

of L such that consecutive words are at Levenshtein distance 1.

• Examples: Are these languages 1-orderable for the Levenshtein distance?
• a∗ yes
• a∗b∗ yes (BLACKBOARD)
• (aa)∗ no

4 / 28



Orderability for the Levenshtein distance

Definition
We say that L ⊆ Σ∗ is d-orderable for the Levenshtein distance if there exists a
permutation w1,w2, . . . of L such that any two consecutive words are at Levenshtein
distance at most d .

Definition
We say that L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N such
that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

• for k ∈ N, the language (ak)∗ yes

• a∗ + b∗ no (BLACKBOARD)

5 / 28



Orderability for the Levenshtein distance

Definition
We say that L ⊆ Σ∗ is d-orderable for the Levenshtein distance if there exists a
permutation w1,w2, . . . of L such that any two consecutive words are at Levenshtein
distance at most d .

Definition
We say that L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N such
that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

• for k ∈ N, the language (ak)∗ yes

• a∗ + b∗ no (BLACKBOARD)

5 / 28



Orderability for the Levenshtein distance

Definition
We say that L ⊆ Σ∗ is d-orderable for the Levenshtein distance if there exists a
permutation w1,w2, . . . of L such that any two consecutive words are at Levenshtein
distance at most d .

Definition
We say that L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N such
that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

• for k ∈ N, the language (ak)∗

yes

• a∗ + b∗ no (BLACKBOARD)

5 / 28



Orderability for the Levenshtein distance

Definition
We say that L ⊆ Σ∗ is d-orderable for the Levenshtein distance if there exists a
permutation w1,w2, . . . of L such that any two consecutive words are at Levenshtein
distance at most d .

Definition
We say that L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N such
that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

• for k ∈ N, the language (ak)∗ yes

• a∗ + b∗ no (BLACKBOARD)

5 / 28



Orderability for the Levenshtein distance

Definition
We say that L ⊆ Σ∗ is d-orderable for the Levenshtein distance if there exists a
permutation w1,w2, . . . of L such that any two consecutive words are at Levenshtein
distance at most d .

Definition
We say that L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N such
that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

• for k ∈ N, the language (ak)∗ yes

• a∗ + b∗

no (BLACKBOARD)

5 / 28



Orderability for the Levenshtein distance

Definition
We say that L ⊆ Σ∗ is d-orderable for the Levenshtein distance if there exists a
permutation w1,w2, . . . of L such that any two consecutive words are at Levenshtein
distance at most d .

Definition
We say that L ⊆ Σ∗ is orderable for the Levenshtein distance if there exists d ∈ N such
that L is d-orderable for the Levenshtein distance.

Examples: Are these orderable for the Levenshtein distance?

• for k ∈ N, the language (ak)∗ yes

• a∗ + b∗ no (BLACKBOARD)

5 / 28



Other distances: definitions

We extend these definitions to other distances:

• the push-pop distance. Defined like the Levenshtein distance, but the basic
operations are:

• popL and popR, to delete the last (resp., the first) letter of the word; and
• pushL(α) and pushR(α) for α ∈ Σ, to add the letter α at the beginning (resp., at

the end) the word.

• the push-pop-right distance. Defined like the push-pop distance, but only
allows popR and pushR(α) for α ∈ Σ.

6 / 28



Other distances: definitions

We extend these definitions to other distances:

• the push-pop distance. Defined like the Levenshtein distance, but the basic
operations are:

• popL and popR, to delete the last (resp., the first) letter of the word; and
• pushL(α) and pushR(α) for α ∈ Σ, to add the letter α at the beginning (resp., at

the end) the word.

• the push-pop-right distance. Defined like the push-pop distance, but only
allows popR and pushR(α) for α ∈ Σ.

6 / 28



Other distances: first observations

languages orderable for push-pop-right ⊆ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗

orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).

For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊆ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗

orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).

For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊆ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗

orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).

For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊆ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).

For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).

For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊆ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).
For push-pop-right?

no

• a∗b∗ orderable for Levenshtein (prev slides).

For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊊ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).

For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊊ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).

For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊊ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).
For push-pop?

yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊊ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).
For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊊ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).
For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.

For push-pop? no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊊ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).
For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.
For push-pop?

no

7 / 28



Other distances: first observations

languages orderable for push-pop-right ⊊ languages orderable for push-pop ⊆ languages
orderable for Levenshtein.

Are these inclusions strict?

• (ϵ + a)b∗ orderable for push-pop (hence for Levenshtein).
For push-pop-right? no

• a∗b∗ orderable for Levenshtein (prev slides).
For push-pop? yes (BLACKBOARD)

• {an(b + c)an ∣ n ∈ N} orderable for Levenshtein.
For push-pop? no

7 / 28



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

8 / 28



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

8 / 28



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

8 / 28



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

8 / 28



Questions

We focus on regular languages

• What are the regular languages that are orderable:
• for the Levenshtein distance?
• for the push-pop distance?
• for the push-pop-right distance?

• Can we recognize them? (e.g., given a DFA)

• Can we always partition a regular language into a finite number of orderable
languages? (as in a∗ + b∗)

• When L is orderable, can we design an enumeration algorithm for it? With what
delay? (poly, constant?)

8 / 28



Main results



Main results (Levenshtein and push-pop)

Let L be regular. We show:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

9 / 28



Main results (Levenshtein and push-pop)

Let L be regular. We show:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.

→ This shows L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

9 / 28



Main results (Levenshtein and push-pop)

Let L be regular. We show:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

9 / 28



Main results (Levenshtein and push-pop)

Let L be regular. We show:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

9 / 28



Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., (ϵ + a)b∗. GOAL: enumerate L with a delay that is independent
from the length of the current word.

Example of a push-pop program for (ϵ + a)b∗:

int main{
output();
while (true) {

pushR(b); output();
pushL(a); output();
popL();

}
}

The current word wi is maintained on a
(doubly-ended) queue (BLACKBOARD)

An edit script is a sequence of push or pop operations executed between two output()
instructions. This push-pop program enumerates (ϵ + a)b∗ with bounded delay.

10 / 28



Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., (ϵ+ a)b∗. GOAL: enumerate L (in a certain sense) with a delay that
is independent from the length of the current word.

Example of a push-pop program for
(ϵ + a)b∗:

int main{
output();
while (true) {

pushR(b); output();
pushL(a); output();
popL();

}
}

The current word wi is maintained on a
(doubly-ended) queue (BLACKBOARD)

An edit script is a sequence of push or pop operations executed between two output()
instructions. This push-pop program enumerates (ϵ + a)b∗ with bounded delay.

10 / 28



Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., (ϵ+ a)b∗. GOAL: enumerate L (in a certain sense) with a delay that
is independent from the length of the current word. Example of a push-pop program for
(ϵ + a)b∗:

int main{
output();
while (true) {

pushR(b); output();
pushL(a); output();
popL();

}
}

The current word wi is maintained on a
(doubly-ended) queue (BLACKBOARD)

An edit script is a sequence of push or pop operations executed between two output()
instructions. This push-pop program enumerates (ϵ + a)b∗ with bounded delay.

10 / 28



Enumeration algorithms with push-pop edit scripts

Let L regular, e.g., (ϵ+ a)b∗. GOAL: enumerate L (in a certain sense) with a delay that
is independent from the length of the current word. Example of a push-pop program for
(ϵ + a)b∗:

int main{
output();
while (true) {

pushR(b); output();
pushL(a); output();
popL();

}
}

The current word wi is maintained on a
(doubly-ended) queue (BLACKBOARD)

An edit script is a sequence of push or pop operations executed between two output()
instructions. This push-pop program enumerates (ϵ + a)b∗ with bounded delay.

10 / 28



Proof of the lower bound



Lower bound

Theorem
For a regular language L, there exist regular L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance. Moreover L cannot be partitioned
into less than t orderable languages for the Levenshtein distance.

We will now define this number t and show that it is optimal

11 / 28



Lower bound

Theorem
For a regular language L, there exist regular L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance. Moreover L cannot be partitioned
into less than t orderable languages for the Levenshtein distance.

We will now define this number t and show that it is optimal

11 / 28



Connectivity and compatibility of loopable states

Let A = (Q,Σ,q0,F , δ) be a DFA for L. For q ∈ Q, define Aq to be A where the initial
state and final state is q.

Definition: loopable state

A state q ∈ Q is loopable if L(Aq) ≠ {ϵ}. In other words, when there is a non-empty
run that starts and ends at q.

Definition: connectivity

Two loopable states q,q′ ∈ Q are connected when there is a directed path in A from q

to q′, or a directed path in A from q′ to q

Definition: compatibility

Two loopable states q,q′ ∈ Q are compatible when L(Aq) ∩ L(Aq′) ≠ {ϵ}.

12 / 28



Connectivity and compatibility of loopable states

Let A = (Q,Σ,q0,F , δ) be a DFA for L. For q ∈ Q, define Aq to be A where the initial
state and final state is q.

Definition: loopable state

A state q ∈ Q is loopable if L(Aq) ≠ {ϵ}. In other words, when there is a non-empty
run that starts and ends at q.

Definition: connectivity

Two loopable states q,q′ ∈ Q are connected when there is a directed path in A from q

to q′, or a directed path in A from q′ to q

Definition: compatibility

Two loopable states q,q′ ∈ Q are compatible when L(Aq) ∩ L(Aq′) ≠ {ϵ}.

12 / 28



Connectivity and compatibility of loopable states

Let A = (Q,Σ,q0,F , δ) be a DFA for L. For q ∈ Q, define Aq to be A where the initial
state and final state is q.

Definition: loopable state

A state q ∈ Q is loopable if L(Aq) ≠ {ϵ}. In other words, when there is a non-empty
run that starts and ends at q.

Definition: connectivity

Two loopable states q,q′ ∈ Q are connected when there is a directed path in A from q

to q′, or a directed path in A from q′ to q

Definition: compatibility

Two loopable states q,q′ ∈ Q are compatible when L(Aq) ∩ L(Aq′) ≠ {ϵ}.

12 / 28



Interchangeability of loopable states

Note: The connectivity and compatibility relations of loopable states are reflexive but
not transitive

Definition: interchangeability
Interchangeability is the equivalence relation on loopable states that is defined to be
the transitive closure of the union of the connectivity and compatibility relations.

In other words, two loopable states q,q′ ∈ Q are interchangeable if there is a sequence
q = q0, . . . ,qn = q′ of loopable states such that for all 0 ≤ i < n, the states qi and qi+1

are either connected or compatible.

We then define t to be the number of interchangeable classes
Some examples follow

13 / 28



Interchangeability of loopable states

Note: The connectivity and compatibility relations of loopable states are reflexive but
not transitive

Definition: interchangeability
Interchangeability is the equivalence relation on loopable states that is defined to be
the transitive closure of the union of the connectivity and compatibility relations.

In other words, two loopable states q,q′ ∈ Q are interchangeable if there is a sequence
q = q0, . . . ,qn = q′ of loopable states such that for all 0 ≤ i < n, the states qi and qi+1

are either connected or compatible.

We then define t to be the number of interchangeable classes
Some examples follow

13 / 28



Interchangeability of loopable states

Note: The connectivity and compatibility relations of loopable states are reflexive but
not transitive

Definition: interchangeability
Interchangeability is the equivalence relation on loopable states that is defined to be
the transitive closure of the union of the connectivity and compatibility relations.

In other words, two loopable states q,q′ ∈ Q are interchangeable if there is a sequence
q = q0, . . . ,qn = q′ of loopable states such that for all 0 ≤ i < n, the states qi and qi+1

are either connected or compatible.

We then define t to be the number of interchangeable classes
Some examples follow

13 / 28



Example: (a + b)∗

0

a,b

• Loopable states: 0

Ô⇒ t = 1

14 / 28



Example: (a + b)∗

0

a,b

• Loopable states: 0

Ô⇒ t = 1

14 / 28



Example: (a + b)∗

0

a,b

• Loopable states: 0

Ô⇒ t = 1

14 / 28



Example: a∗b∗

0 1

a b

b

• Loopable states: 0 and 1

• 0 and 1 are connected, hence interchangeable

Ô⇒ t = 1

15 / 28



Example: a∗b∗

0 1

a b

b

• Loopable states: 0 and 1

• 0 and 1 are connected, hence interchangeable

Ô⇒ t = 1

15 / 28



Example: a∗b∗

0 1

a b

b

• Loopable states: 0 and 1

• 0 and 1 are connected, hence interchangeable

Ô⇒ t = 1

15 / 28



Example: a∗b∗

0 1

a b

b

• Loopable states: 0 and 1

• 0 and 1 are connected, hence interchangeable

Ô⇒ t = 1

15 / 28



Example: c∗a∗ + c∗b∗

0

1

2

c a

b

a

b

• Loopable states: 0, 1 and 2
• 0 and 1 are connected hence interchangeable
• 0 and 2 are connected hence interchangeable
• so 1 and 2 are also interchangeable

Ô⇒ t = 1

16 / 28



Example: c∗a∗ + c∗b∗

0

1

2

c a

b

a

b

• Loopable states: 0, 1 and 2

• 0 and 1 are connected hence interchangeable
• 0 and 2 are connected hence interchangeable
• so 1 and 2 are also interchangeable

Ô⇒ t = 1

16 / 28



Example: c∗a∗ + c∗b∗

0

1

2

c a

b

a

b

• Loopable states: 0, 1 and 2
• 0 and 1 are connected hence interchangeable

• 0 and 2 are connected hence interchangeable
• so 1 and 2 are also interchangeable

Ô⇒ t = 1

16 / 28



Example: c∗a∗ + c∗b∗

0

1

2

c a

b

a

b

• Loopable states: 0, 1 and 2
• 0 and 1 are connected hence interchangeable
• 0 and 2 are connected hence interchangeable

• so 1 and 2 are also interchangeable
Ô⇒ t = 1

16 / 28



Example: c∗a∗ + c∗b∗

0

1

2

c a

b

a

b

• Loopable states: 0, 1 and 2
• 0 and 1 are connected hence interchangeable
• 0 and 2 are connected hence interchangeable
• so 1 and 2 are also interchangeable

Ô⇒ t = 1

16 / 28



Example: c∗a∗ + c∗b∗

0

1

2

c a

b

a

b

• Loopable states: 0, 1 and 2
• 0 and 1 are connected hence interchangeable
• 0 and 2 are connected hence interchangeable
• so 1 and 2 are also interchangeable

Ô⇒ t = 1
16 / 28



Example: a∗ + b∗

0

1

2

a

b

a

b

• Loopable states: 1 and 2

• 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Ô⇒ t = 2

17 / 28



Example: a∗ + b∗

0

1

2

a

b

a

b

• Loopable states: 1 and 2

• 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Ô⇒ t = 2

17 / 28



Example: a∗ + b∗

0

1

2

a

b

a

b

• Loopable states: 1 and 2

• 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Ô⇒ t = 2

17 / 28



Example: a∗ + b∗

0

1

2

a

b

a

b

• Loopable states: 1 and 2

• 1 and 2 are neither connected, nor compatible, so they are not interchangeable

Ô⇒ t = 2

17 / 28



Example: a(a + bc)∗ + b(cb)∗ddd∗

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1

18 / 28



Example: a(a + bc)∗ + b(cb)∗ddd∗

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6

• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1

18 / 28



Example: a(a + bc)∗ + b(cb)∗ddd∗

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable

• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1

18 / 28



Example: a(a + bc)∗ + b(cb)∗ddd∗

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable

• 1 and 4 are compatible (with the word bc), hence interchangeable
Ô⇒ t = 1

18 / 28



Example: a(a + bc)∗ + b(cb)∗ddd∗

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1

18 / 28



Example: a(a + bc)∗ + b(cb)∗ddd∗

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Loopable states: 1,2,3,4 and 6
• 1 and 2 are connected hence interchangeable
• 4, 3 and 6 are connected hence interchangeable
• 1 and 4 are compatible (with the word bc), hence interchangeable

Ô⇒ t = 1 18 / 28



The partition

Let C1, . . . ,Ct be the interchangeability classes of loopable states of A.

Definition
For 1 ≤ i ≤ t, define

Li = {w ∈ L(A) ∣ the run of w goes through a state of Ci}.

Also define

NL = {w ∈ L(A) ∣ the run of w does not use loopable states}.

Proposition
We have L = NL ⊔ L1 ⊔ . . . ⊔ Lt

Proof: (BLACKBOARD)

19 / 28



The partition

Let C1, . . . ,Ct be the interchangeability classes of loopable states of A.

Definition
For 1 ≤ i ≤ t, define

Li = {w ∈ L(A) ∣ the run of w goes through a state of Ci}.

Also define

NL = {w ∈ L(A) ∣ the run of w does not use loopable states}.

Proposition
We have L = NL ⊔ L1 ⊔ . . . ⊔ Lt

Proof: (BLACKBOARD)
19 / 28



Proof of the lower bound

Proposition
We have L = NL ⊔ L1 ⊔ . . . ⊔ Lt

Proposition
L cannot be partitioned into less than t languages that each are orderable for the
Levenshtein distance.

Proof: we only do the case t = 2 and NL = ∅ (so L = L1 ⊔ L2).
We prove (BLACKBOARD): for any distance d ∈ N, there is a threshold l ∈ N such that
for any two words u ∈ L1 and v ∈ L2 with i ≠ j and ∣u∣ ≥ l and ∣v ∣ ≥ l , we have
δLev(u, v) > d .
Indeed this is enough, using the same argument as for a∗ + b∗

20 / 28



Proof of the lower bound

Proposition
We have L = NL ⊔ L1 ⊔ . . . ⊔ Lt

Proposition
L cannot be partitioned into less than t languages that each are orderable for the
Levenshtein distance.

Proof: we only do the case t = 2 and NL = ∅ (so L = L1 ⊔ L2).
We prove (BLACKBOARD): for any distance d ∈ N, there is a threshold l ∈ N such that
for any two words u ∈ L1 and v ∈ L2 with i ≠ j and ∣u∣ ≥ l and ∣v ∣ ≥ l , we have
δLev(u, v) > d .
Indeed this is enough, using the same argument as for a∗ + b∗

20 / 28



Proof (sketch) of the upper bound



Upper bound: existence of an ordering

We have shown:

Theorem

Given a DFA A, we can partition L(A) into

L = L1 ⊔ . . . ⊔ Lt

such that L cannot be partitioned into less than t orderable languages for the
Levenshtein distance.

We now show that each Li is orderable for the push-pop distance

21 / 28



Upper bound: existence of an ordering

We have shown:

Theorem

Given a DFA A, we can partition L(A) into

L = L1 ⊔ . . . ⊔ Lt

such that L cannot be partitioned into less than t orderable languages for the
Levenshtein distance.

We now show that each Li is orderable for the push-pop distance

21 / 28



We want

We want to show:

Upper bound: existence
Let A be a DFA that has only one class of interchangeable loopable states.
Then L(A) is orderable for the push-pop distance.

Let δpp denote the push-pop distance on Σ∗

22 / 28



We want

We want to show:

Upper bound: existence
Let A be a DFA that has only one class of interchangeable loopable states.
Then L(A) is orderable for the push-pop distance.

Let δpp denote the push-pop distance on Σ∗

22 / 28



d-connectivity

Definition

Two words w ,w ′ in a language L are d-connected in L if there exists a
sequence w0, . . . ,wn of words of L with w0 = w , wn = w ′, and δpp(wi ,wi+1) ≤ d for
all 0 ≤ i < n.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph GL,d whose nodes are words of L and where two words are
connected by an edge if they are at push-pop distance ≤ d is connex.

• Note: if L is d-orderable, then L is d-connected.

→ the converse is not true! E.g., a∗ + b∗ is 1-connected (but not orderable)

• We show a kind of converse for finite languages in the next slide

23 / 28



d-connectivity

Definition

Two words w ,w ′ in a language L are d-connected in L if there exists a
sequence w0, . . . ,wn of words of L with w0 = w , wn = w ′, and δpp(wi ,wi+1) ≤ d for
all 0 ≤ i < n.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph GL,d whose nodes are words of L and where two words are
connected by an edge if they are at push-pop distance ≤ d is connex.

• Note: if L is d-orderable, then L is d-connected.

→ the converse is not true! E.g., a∗ + b∗ is 1-connected (but not orderable)

• We show a kind of converse for finite languages in the next slide

23 / 28



d-connectivity

Definition

Two words w ,w ′ in a language L are d-connected in L if there exists a
sequence w0, . . . ,wn of words of L with w0 = w , wn = w ′, and δpp(wi ,wi+1) ≤ d for
all 0 ≤ i < n.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph GL,d whose nodes are words of L and where two words are
connected by an edge if they are at push-pop distance ≤ d is connex.

• Note: if L is d-orderable, then L is d-connected.

→ the converse is not true! E.g., a∗ + b∗ is 1-connected (but not orderable)

• We show a kind of converse for finite languages in the next slide

23 / 28



d-connectivity

Definition

Two words w ,w ′ in a language L are d-connected in L if there exists a
sequence w0, . . . ,wn of words of L with w0 = w , wn = w ′, and δpp(wi ,wi+1) ≤ d for
all 0 ≤ i < n.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph GL,d whose nodes are words of L and where two words are
connected by an edge if they are at push-pop distance ≤ d is connex.

• Note: if L is d-orderable, then L is d-connected.

→ the converse is not true! E.g., a∗ + b∗ is 1-connected (but not orderable)

• We show a kind of converse for finite languages in the next slide

23 / 28



d-connectivity

Definition

Two words w ,w ′ in a language L are d-connected in L if there exists a
sequence w0, . . . ,wn of words of L with w0 = w , wn = w ′, and δpp(wi ,wi+1) ≤ d for
all 0 ≤ i < n.
We say that L is d-connected if every pair of words of L is d-connected in L

In other words, the graph GL,d whose nodes are words of L and where two words are
connected by an edge if they are at push-pop distance ≤ d is connex.

• Note: if L is d-orderable, then L is d-connected.

→ the converse is not true! E.g., a∗ + b∗ is 1-connected (but not orderable)

• We show a kind of converse for finite languages in the next slide

23 / 28



d-connectivity implies 3d-orderability for finite languages

Proposition
If L is finite and d-connected then it is 3d-orderable.

Proof: take a spanning tree T of GL,d . For n ∈ T , let h(n) be its depth. Apply the
following algorithm to the root of T :

void visit(node n){
if(h(n) is even){

enumerate(n);
for (child ch of n)

visit(ch);
}
if(h(n) is odd){

for (child ch of n)
visit(ch);

enumerate(n);
}

}

Example (BLACKBOARD)
Two consecutive nodes enumerated by this
algorithm are at distance ≤ 3 in T , hence
in GL,d , hence the corresponding words are
at distance ≤ 3d for δpp.

24 / 28



d-connectivity implies 3d-orderability for finite languages

Proposition
If L is finite and d-connected then it is 3d-orderable.

Proof: take a spanning tree T of GL,d . For n ∈ T , let h(n) be its depth. Apply the
following algorithm to the root of T :

void visit(node n){
if(h(n) is even){

enumerate(n);
for (child ch of n)

visit(ch);
}
if(h(n) is odd){

for (child ch of n)
visit(ch);

enumerate(n);
}

}

Example (BLACKBOARD)

Two consecutive nodes enumerated by this
algorithm are at distance ≤ 3 in T , hence
in GL,d , hence the corresponding words are
at distance ≤ 3d for δpp.

24 / 28



d-connectivity implies 3d-orderability for finite languages

Proposition
If L is finite and d-connected then it is 3d-orderable.

Proof: take a spanning tree T of GL,d . For n ∈ T , let h(n) be its depth. Apply the
following algorithm to the root of T :

void visit(node n){
if(h(n) is even){

enumerate(n);
for (child ch of n)

visit(ch);
}
if(h(n) is odd){

for (child ch of n)
visit(ch);

enumerate(n);
}

}

Example (BLACKBOARD)
Two consecutive nodes enumerated by this
algorithm are at distance ≤ 3 in T , hence
in GL,d , hence the corresponding words are
at distance ≤ 3d for δpp.

24 / 28



Using this for infinite languages

Definition
For L a language and i , ℓ ∈ N, define the i-th ℓ-stratum of L as

Si = {w ∈ L ∣ (i − 1)ℓ ≤ ∣w ∣ < iℓ}

We can show (technical!):

Proposition

Let L = L(A) with A having only one interchangeable class of loopable states. Let,
letting ℓ = 8∣A∣2 and d = 16∣A∣2, each Si is d-connected.

We conclude by concatenating orderings for S1,S2, . . . obtained with the enumeration
technique of the previous slide, with well-chosen starting and ending points
(BLACKBOARD).

25 / 28



Using this for infinite languages

Definition
For L a language and i , ℓ ∈ N, define the i-th ℓ-stratum of L as

Si = {w ∈ L ∣ (i − 1)ℓ ≤ ∣w ∣ < iℓ}

We can show (technical!):

Proposition

Let L = L(A) with A having only one interchangeable class of loopable states. Let,
letting ℓ = 8∣A∣2 and d = 16∣A∣2, each Si is d-connected.

We conclude by concatenating orderings for S1,S2, . . . obtained with the enumeration
technique of the previous slide, with well-chosen starting and ending points
(BLACKBOARD).

25 / 28



Using this for infinite languages

Definition
For L a language and i , ℓ ∈ N, define the i-th ℓ-stratum of L as

Si = {w ∈ L ∣ (i − 1)ℓ ≤ ∣w ∣ < iℓ}

We can show (technical!):

Proposition

Let L = L(A) with A having only one interchangeable class of loopable states. Let,
letting ℓ = 8∣A∣2 and d = 16∣A∣2, each Si is d-connected.

We conclude by concatenating orderings for S1,S2, . . . obtained with the enumeration
technique of the previous slide, with well-chosen starting and ending points
(BLACKBOARD).

25 / 28



Conclusion



Main results (Levenshtein and push-pop)

Let L be regular. Then:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows that L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

26 / 28



Main results (Levenshtein and push-pop)

Let L be regular. Then:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.

→ This shows that L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

26 / 28



Main results (Levenshtein and push-pop)

Let L be regular. Then:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows that L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

26 / 28



Main results (Levenshtein and push-pop)

Let L be regular. Then:

• There exists t ∈ N and regular languages L1, . . . ,Lt such that

L = L1 ⊔ . . . ⊔ Lt

and each Li is orderable for the push-pop distance

• This t is optimal, even for the Levenshtein distance: L cannot be partitioned into
less than t orderable languages for the Levenshtein distance.
→ This shows that L is orderable for Levenshtein iff it is for push-pop!

• When L is orderable for push-pop then, in a suitable pointer machine model, we
have an algorithm that outputs push-pop edit scripts to enumerate L, with
bounded delay (i.e., independent from the current word length)

26 / 28



Other results

Other results:

• It is NP-hard, given a DFA A such that L(A) is orderable (for Levenshtein or
push-pop), to determine the minimal d such that L(A) is d-orderable.

• A regular language is partitionable into finitely many orderable languages for the
push-pop-right distance if and only if it is slender.

• Further, the optimal number of languages can also be computed from the automaton
• We can also enumerate in bounded delay

27 / 28



Future work

Open questions and future work:

• Make the delay polynomial in ∣A∣? (currently it is exp)

• What about enumeration in radix order? in lexicographic order?

• What about the push-left pop-right distance? the padded Hamming distance?

• What about regular tree languages?

• Other uses of the enumeration model?

• Implementation and real-life use-cases?

Thanks for your attention!

28 / 28



Future work

Open questions and future work:

• Make the delay polynomial in ∣A∣? (currently it is exp)

• What about enumeration in radix order? in lexicographic order?

• What about the push-left pop-right distance? the padded Hamming distance?

• What about regular tree languages?

• Other uses of the enumeration model?

• Implementation and real-life use-cases?

Thanks for your attention!

28 / 28



Acknowledgements

Thanks to Mikaël Monet for preparing the original version of these slides.


	Introduction
	Main results
	Proof of the lower bound
	Proof (sketch) of the upper bound
	Conclusion
	Appendix

