

Une dichotomie sur l'évaluation de requêtes closes sous homomorphismes sur les graphes probabilistes

Antoine Amarilli¹ and İsmail İlkan Ceylan²

29 octobre 2020

¹Télécom Paris

²University of Oxford

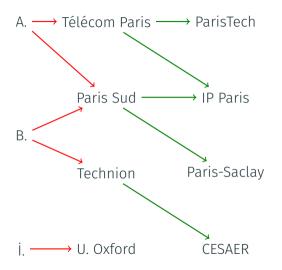
WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford

In this talk, we manage **data** represented as a **labeled graph**

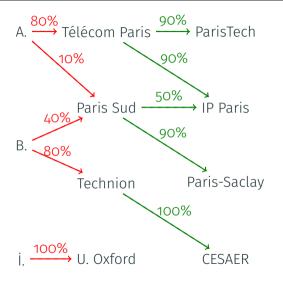
Wo	orksAt
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
Mer	nberOf
Télécom Pari	s ParisTech
Télécom Pari	s IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

_

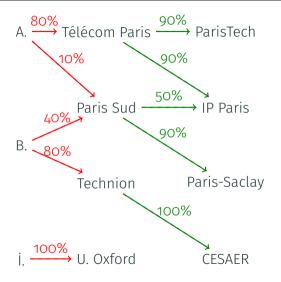
WorksAt		A.	Télécom Paris	ParisTech
Antoine Antoine Benny Benny İsmail	Télécom Paris Paris Sud Paris Sud Technion U. Oxford	_	Paris Sud	IP Paris
M Télécom Pa Télécom Pa Paris Su	aris IP Paris	<u> </u>	Technion	Paris-Saclay
Paris Su Technio	d Paris-Sacla	yi.	U. Oxford	CESAER

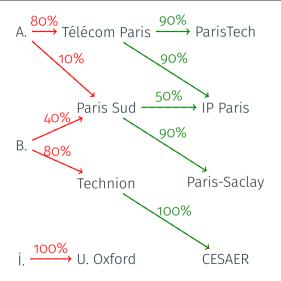

Worl	ksAt
_	lécom Paris
Antoine re Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
15111411	
Memb	perOf
élécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay

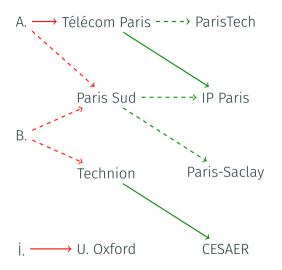
V	VorksAt
Antoine Antoine Benny Benny İsmail	Télécom Paris Paris Sud Paris Sud Technion U. Oxford
	emberOf
Télécom Pa Télécom Pa Paris Suc	aris IP Paris
Paris Suc Technior	Paris-Saclay

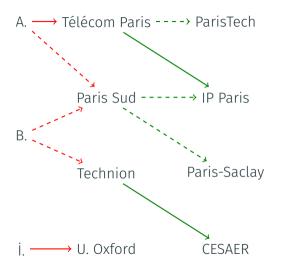

In this talk, we manage data represented as a labeled graph

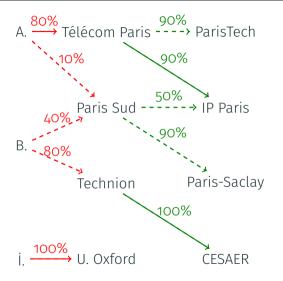
W	orksAt
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
Me	mberOf
Télécom Par	is ParisTech
Télécom Par	is IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

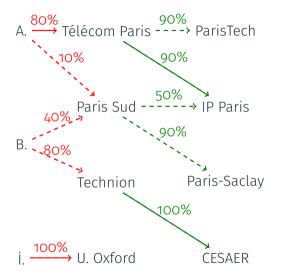

 \rightarrow **Problem:** we are not **certain** about the true state of the data

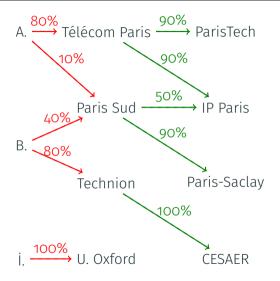

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts


- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the **probability** of this possible world?

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the **probability** of this possible world?

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the **probability** of this possible world? **0.03%**

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are **independent**
- Possible world W: subset of facts
- What is the **probability** of this possible world? **0.03%**

$$\Pr(W) = \left(\prod_{F \in W} \Pr(F)\right) \times \left(\prod_{F \notin W} (1 - \Pr(F))\right)$$

• Query: maps a graph (without probabilities) to YES/NO

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
 - \rightarrow We want a **homomorphism** from the pattern to the graph (not necessarily **injective**)

- Query: maps a graph (without probabilities) to YES/NO
- **Conjunctive query** (CQ): can I find a match of a **pattern**? e.g., $x \longrightarrow y \longrightarrow z$ \rightarrow We want a **homomorphism** from the pattern to the graph (not necessarily **injective**)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?

- Query: maps a graph (without probabilities) to YES/NO
- **Conjunctive query** (CQ): can I find a match of a **pattern**? e.g., $x \longrightarrow y \longrightarrow z$ \rightarrow We want a **homomorphism** from the pattern to the graph (not necessarily **injective**)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

- Query: maps a graph (without probabilities) to YES/NO
- **Conjunctive query** (CQ): can I find a match of a **pattern**? e.g., $x \longrightarrow y \longrightarrow z$ \rightarrow We want a **homomorphism** from the pattern to the graph (not necessarily **injective**)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

- Query: maps a graph (without probabilities) to YES/NO
- **Conjunctive query** (CQ): can I find a match of a **pattern**? e.g., $x \longrightarrow y \longrightarrow z$ \rightarrow We want a **homomorphism** from the pattern to the graph (not necessarily **injective**)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

Intuition about homomorphism-closed queries:

• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

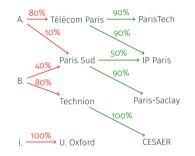
- Query: maps a graph (without probabilities) to YES/NO
- **Conjunctive query** (CQ): can I find a match of a **pattern**? e.g., $x \longrightarrow y \longrightarrow z$ \rightarrow We want a **homomorphism** from the pattern to the graph (not necessarily **injective**)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for inequalities or negation

- Query: maps a graph (without probabilities) to YES/NO
- **Conjunctive query** (CQ): can I find a match of a **pattern**? e.g., $x \longrightarrow y \longrightarrow z$ \rightarrow We want a **homomorphism** from the pattern to the graph (not necessarily **injective**)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for **inequalities** or **negation**
- A homomorphism-closed query can be seen as an infinite union of CQs:
 → The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

- Query: maps a graph (without probabilities) to YES/NO
- **Conjunctive query** (CQ): can I find a match of a **pattern**? e.g., $x \longrightarrow y \longrightarrow z$ \rightarrow We want a **homomorphism** from the pattern to the graph (not necessarily **injective**)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
- \rightarrow Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q


- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for inequalities or negation
- A homomorphism-closed query can be seen as an infinite union of CQs:
 → The query is bounded if the union is finite (it is a UCQ), unbounded otherwise
- Allows pretty wild things, e.g., "There is a path whose length is prime"

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$

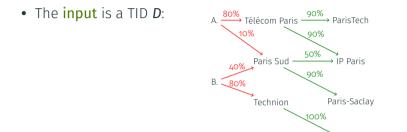
Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$
- The **input** is a TID **D**:

Problem statement: Probabilistic guery evaluation (PQE)

• We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$

• The **output** is the **total probability** of the worlds which satisfy the query:


CESAER

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$
- The input is a TID **D**: A 80% Télécom Paris 90% ParisTech 90% Paris Sud 50% IP Paris B. 80% Technion Paris-Saclay
 - i. 100% U. Oxford CESAER
- The **output** is the **total probability** of the worlds which satisfy the query:
 - Formally: $\sum_{W \subseteq D, W \models Q} \Pr(W)$
 - \rightarrow Intuition: the probability that the query is true

Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$

• The **output** is the **total probability** of the worlds which satisfy the query:

CESAER

 $i \xrightarrow{100\%} U$ Oxford

- Formally: $\sum_{W \subseteq D, W \models Q} \Pr(W)$
- \rightarrow Intuition: the probability that the query is true

 \rightarrow What is the **complexity** of the problem PQE(**Q**), depending on the query **Q**?

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are **safe** and PQE(**Q**) is in **PTIME**
- All others are **unsafe** and PQE(**Q**) is **#P-hard**

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the CQ $x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the CQ $x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe

What about more expressive queries?

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the CQ $x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe

What about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation

Existing results on PQE

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are **safe** and PQE(**Q**) is in **PTIME**
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the CQ $x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe

What about more expressive queries?

- Work by [Fink and Olteanu, 2016] about negation
- No work about recursive queries (but no works about RPQs, Datalog, etc.)

Existing results on PQE

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are safe and PQE(**Q**) is in PTIME
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the CQ $x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe

What about more expressive queries?

- Work by [Fink and Olteanu, 2016] about negation
- No work about recursive queries (but no works about RPQs, Datalog, etc.)
- Only exception: work on **ontology-mediated query answering** [Jung and Lutz, 2012]

We study PQE for **homomorphism-closed queries** and show:

Theorem

- Either **Q** is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**

We study PQE for **homomorphism-closed queries** and show:

Theorem

- Either **Q** is equivalent to a safe UCQ (hence bounded) and PQE(**Q**) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

We study PQE for **homomorphism-closed queries** and show:

Theorem

- Either **Q** is equivalent to a safe UCQ (hence bounded) and PQE(**Q**) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the **RPQ Q**: $\longrightarrow (\longrightarrow)^* \longrightarrow$

We study PQE for **homomorphism-closed queries** and show:

Theorem

- Either **Q** is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the **RPQ Q**: $\longrightarrow (\longrightarrow)^* \longrightarrow$
 - It is **not equivalent to a UCQ**: infinite disjunction $\longrightarrow (\longrightarrow)^i \longrightarrow$ for all $i \in \mathbb{N}$

We study PQE for **homomorphism-closed queries** and show:

Theorem

- Either **Q** is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the **RPQ Q**: $\longrightarrow (\longrightarrow)^* \longrightarrow$
 - It is not equivalent to a UCQ: infinite disjunction $\longrightarrow (\longrightarrow)^i \longrightarrow$ for all $i \in \mathbb{N}$
 - Hence, PQE(Q) is #P-hard

We study PQE for **homomorphism-closed queries** and show:

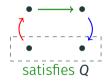
Theorem

- Either **Q** is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the **RPQ Q**: $\longrightarrow (\longrightarrow)^* \longrightarrow$
 - It is not equivalent to a UCQ: infinite disjunction $\longrightarrow (\longrightarrow)^i \longrightarrow$ for all $i \in \mathbb{N}$
 - Hence, PQE(Q) is #P-hard
- We do not study the complexity of deciding which case applies
 - Depends on how queries are **represented**

Proof structure

The challenging part is to show:

Theorem

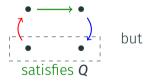

For any query **Q** closed under homomorphisms and **unbounded**, PQE(**Q**) is **#P-hard**

The challenging part is to show:

Theorem

For any query **Q** closed under homomorphisms and **unbounded**, PQE(**Q**) is **#P-hard**

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

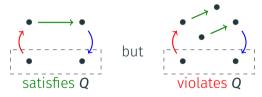


The challenging part is to show:

Theorem

For any query **Q** closed under homomorphisms and **unbounded**, PQE(**Q**) is **#P-hard**

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

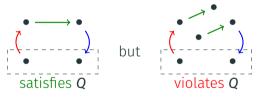


The challenging part is to show:

Theorem

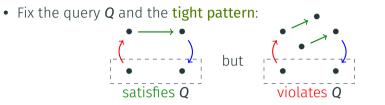
For any query **Q** closed under homomorphisms and **unbounded**, PQE(**Q**) is **#P-hard**

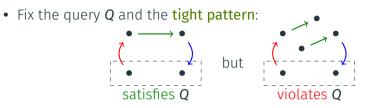
Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

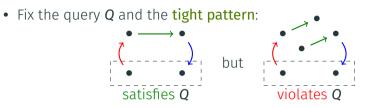


The challenging part is to show:

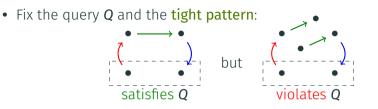
Theorem


For any query **Q** closed under homomorphisms and **unbounded**, PQE(**Q**) is **#P-hard**


Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

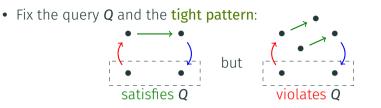

Theorem

Any unbounded query closed under homomorphisms has a tight pattern

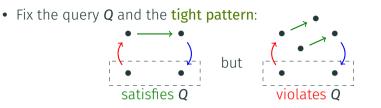


• We reduce from PQE for the **unsafe** CQ: $Q_0 : x \longrightarrow y \longrightarrow z \longrightarrow w$

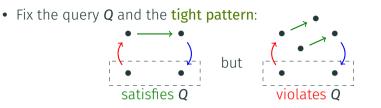
• We reduce from PQE for the **unsafe** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$



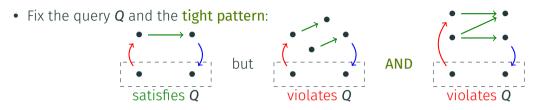
• We reduce from PQE for the **unsafe** CQ: $Q_0 : x \longrightarrow y \longrightarrow z \longrightarrow w$


Idea: possible worlds at the left have a path that matches Q_0 iff the corresponding possible world of the TID at the right satisfies the query $Q_{...}$

• We reduce from PQE for the **unsafe** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$


Idea: possible worlds at the left have a path that matches Q_0 iff the corresponding possible world of the TID at the right satisfies the query $Q_{...}$

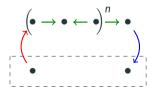
• We reduce from PQE for the **unsafe** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$

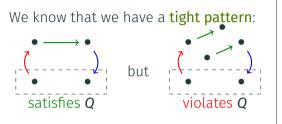

Idea: possible worlds at the left have a path that matches Q_0 iff the corresponding possible world of the TID at the right satisfies the query $Q_{...}$

• We reduce from PQE for the **unsafe** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$

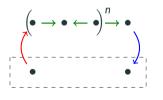
Idea: possible worlds at the **left** have a path that matches **Q**_o iff the corresponding possible world of the TID at the **right** satisfies the query **Q**... ... except we need **more** from the tight pattern!

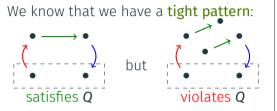
• We reduce from PQE for the **unsafe** CQ: $Q_0: x \longrightarrow y \longrightarrow z \longrightarrow w$

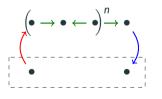



Idea: possible worlds at the left have a path that matches *Q*_o iff the corresponding possible world of the TID at the right satisfies the query *Q*... ... except we need more from the tight pattern!

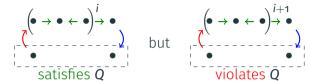
Consider its **iterates**

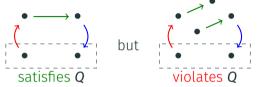


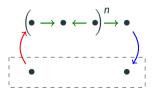

Consider its **iterates** for each $n \in \mathbb{N}$:

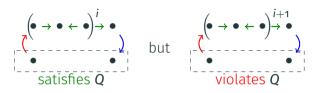


Consider its **iterates** for each $n \in \mathbb{N}$:

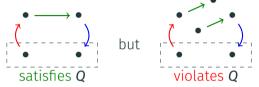



Consider its **iterates** for each $n \in \mathbb{N}$:

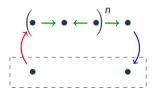

Case 1: some iterate **violates** the query:



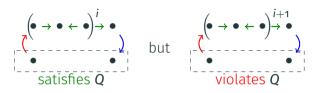

Consider its **iterates** for each $n \in \mathbb{N}$:



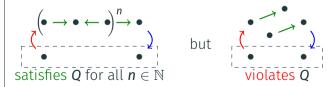
Case 1: some iterate **violates** the query:



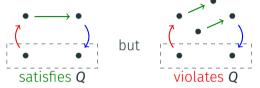
 \rightarrow Reduce from PQE(Q_o) as we explained



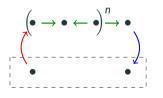
Consider its **iterates** for each $n \in \mathbb{N}$:

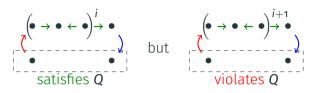


Case 1: some iterate **violates** the query:

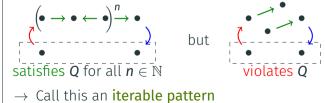


 \rightarrow Reduce from $\mathrm{PQE}(\mathbf{Q_o})$ as we explained


Case 2: all iterates satisfy the query:



Consider its **iterates** for each $n \in \mathbb{N}$:

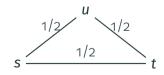


Case 1: some iterate **violates** the query:

 $ightarrow \, {
m Reduce \, from \, PQE}({\it Q}_{o})$ as we explained

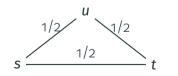
Case 2: all iterates satisfy the query:

We have an iterable pattern: $(\bullet \rightarrow \bullet \leftarrow \bullet)^n \rightarrow \bullet$ but $\bullet \bullet \bullet$ but $\bullet \bullet \bullet \bullet \bullet$ but $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$


Idea: reduce from the **#P-hard** problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the **probability** that the source and target are **connected**?

Idea: reduce from the **#P-hard** problem source-to-target connectivity:

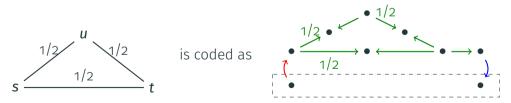

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

Idea: reduce from the **#P-hard** problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

is coded as

Idea: reduce from the **#P-hard** problem source-to-target connectivity:


- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

Idea: reduce from the **#P-hard** problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

Idea: There is a **path connecting** *s* **and** *t* in a possible world of the graph at the left iff the query *Q* is **satisfied** in the corresponding possible world of the TID at the right

11/12

Using iterable patterns to show hardness of PQE

Idea: reduce from the **#P-hard** problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

Idea: There is a **path connecting s and t** in a possible world of the graph at the left iff the query **Q** is **satisfied** in the corresponding possible world of the TID at the right

11/12

Using iterable patterns to show hardness of PQE

Idea: reduce from the **#P-hard** problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability 1/2
- Output: what is the probability that the source and target are connected?

Idea: There is a **path connecting s and t** in a possible world of the graph at the left iff the query **Q** is **satisfied** in the corresponding possible world of the TID at the right

11/12

- Our result: PQE(*Q*) is **#P-hard** for any query *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - \rightarrow Dichotomy for probabilistic query evaluation over **homomorphism-closed** queries
 - \rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

- Our result: PQE(*Q*) is **#P-hard** for any query *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - \rightarrow Dichotomy for probabilistic query evaluation over **homomorphism-closed** queries
 - → Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)
- Open problems:
 - The result only applies to **graphs**, not higher-arity databases

- Our result: PQE(*Q*) is **#P-hard** for any query *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - \rightarrow Dichotomy for probabilistic query evaluation over **homomorphism-closed** queries
 - → Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

• Open problems:

- The result only applies to **graphs**, not higher-arity databases
 - We **conjecture** that the same result holds for higher-arity queries and TIDs
 - But instance transformations are harder to visualize and do not seem to work as-is

- Our result: PQE(*Q*) is **#P-hard** for any query *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - \rightarrow Dichotomy for probabilistic query evaluation over **homomorphism-closed** queries
 - → Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

• Open problems:

- The result only applies to **graphs**, not higher-arity databases
 - We **conjecture** that the same result holds for higher-arity queries and TIDs
 - But instance transformations are **harder to visualize** and do not seem to work as-is
- Does the result still hold for **unweighted** PQE, where all probabilities are **1**/2?

- Our result: PQE(*Q*) is **#P-hard** for any query *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - \rightarrow Dichotomy for probabilistic query evaluation over **homomorphism-closed** queries
 - \rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

• Open problems:

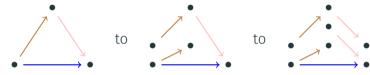
- The result only applies to graphs, not higher-arity databases
 - We **conjecture** that the same result holds for higher-arity queries and TIDs
 - But instance transformations are harder to visualize and do not seem to work as-is
- Does the result still hold for **unweighted** PQE, where all probabilities are **1**/**2**?
 - PQE for **non-hierarchical self-join-free CQs** was recently shown to be **#P-hard** in this sense [Amarilli and Kimelfeld, 2020]
 - Similar techniques may adapt for our work, but not to the unsafe UCQs...

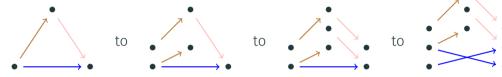

- Our result: PQE(*Q*) is **#P-hard** for any query *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - \rightarrow Dichotomy for probabilistic query evaluation over **homomorphism-closed** queries
 - \rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

• Open problems:

- The result only applies to graphs, not higher-arity databases
 - We **conjecture** that the same result holds for higher-arity queries and TIDs
 - But instance transformations are harder to visualize and do not seem to work as-is
- Does the result still hold for **unweighted** PQE, where all probabilities are **1**/**2**?
 - PQE for **non-hierarchical self-join-free CQs** was recently shown to be **#P-hard** in this sense [Amarilli and Kimelfeld, 2020]
 - Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!


- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:


- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

• If **Q** becomes false at one step, then we have found a tight pattern

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process **terminates**

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process terminates
 - At the end of the process, we obtain a union of stars D'

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process terminates
 - At the end of the process, we obtain a union of stars D'
 - It is homomorphically equivalent to a constant-sized D" satisfying Q

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process terminates
 - At the end of the process, we obtain a union of stars D'
 - It is homomorphically equivalent to a constant-sized D" satisfying Q
 - *D*" has a **homomorphism** back to *D*

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model **D** and **disconnect its edges**:

- If **Q** becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a **contradiction**:
 - The disconnection process terminates
 - At the end of the process, we obtain a **union of stars** D'
 - It is homomorphically equivalent to a constant-sized D" satisfying Q
 - *D*" has a **homomorphism** back to *D*
 - This contradicts the **minimality** of the large **D**

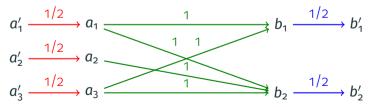
- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has **3** satisfying valuations

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:

- Reduce from the problem of counting satisfying valuations of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m

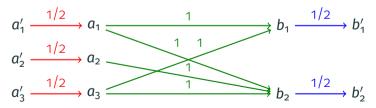
- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
- Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$


- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
- Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

$$a'_{1} \xrightarrow{1/2} a_{1}$$
$$a'_{2} \xrightarrow{1/2} a_{2}$$
$$a'_{3} \xrightarrow{1/2} a_{3}$$

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
- Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$



- Reduce from the problem of counting satisfying valuations of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
- Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

How to show the **#P-hardness** of PQE for the **unsafe** query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
- Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Idea: Satisfying valuations of ϕ correspond to possible worlds with a match of Q

Amarilli, A. and Kimelfeld, B. (2020).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
Under review.

📄 Dalvi, N. and Suciu, D. (2012).

The dichotomy of probabilistic inference for unions of conjunctive queries. *J. ACM*, 59(6).

Fink, R. and Olteanu, D. (2016).
 Dichotomies for queries with negation in probabilistic databases.
 ACM Transactions on Database Systems, 41(1):4:1–4:47.

📄 Jung, J. C. and Lutz, C. (2012).

Ontology-based access to probabilistic data with OWL QL.

In Proceedings of the 11th International Conference on The Semantic Web - Volume Part I, pages 182–197.