Une dichotomie sur l'évaluation de requêtes closes sous homomorphismes sur les graphes probabilistes

Antoine Amarilli ${ }^{1}$ and İsmail Iilkan Ceylan ${ }^{2}$
29 octobre 2020
${ }^{1}$ Télécom Paris
${ }^{2}$ University of Oxford

Uncertain data management

In this talk, we manage data represented as a labeled graph

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	
Télécom Paris	ParisTech
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

A. Télécom Paris ParisTech	
B.	
Baris Sud	IP Paris
i. Technion	
	U. Oxford

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	
Télécom ParisTech	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

Télécom Paris ParisTech

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	
Télécom Paris Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

Uncertain data management

In this talk, we manage data represented as a labeled graph

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford
MemberOf	
Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

\rightarrow Problem: we are not certain about the true state of the data

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W : subset of facts

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W : subset of facts

Uncertain data model

A. \longrightarrow Télécom Paris ----> ParisTech

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W : subset of facts
- What is the probability of this possible world?

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world?

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world? 0.03\%

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world? 0.03\%

$$
\operatorname{Pr}(W)=\left(\prod_{F \in W} \operatorname{Pr}(F)\right) \times\left(\prod_{F \notin \mathcal{W}}(1-\operatorname{Pr}(F))\right)
$$

Queries

- Query: maps a graph (without probabilities) to YES/NO

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\rightarrow Homomorphism-closed query Q : if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\rightarrow Homomorphism-closed query Q : if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Intuition about homomorphism-closed queries:

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\rightarrow Homomorphism-closed query Q : if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Intuition about homomorphism-closed queries:

- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\rightarrow Homomorphism-closed query Q : if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Intuition about homomorphism-closed queries:

- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for inequalities or negation

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\rightarrow Homomorphism-closed query Q : if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Intuition about homomorphism-closed queries:

- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for inequalities or negation
- A homomorphism-closed query can be seen as an infinite union of CQs:
\rightarrow The query is bounded if the union is finite (it is a UCQ), unbounded otherwise

Queries

- Query: maps a graph (without probabilities) to YES/NO
- Conjunctive query (CQ): can I find a match of a pattern? e.g., $x \longrightarrow y \longrightarrow z$
\rightarrow We want a homomorphism from the pattern to the graph (not necessarily injective)
- Union of conjunctive queries (UCQ): can I find a match of some pattern?
\rightarrow Homomorphism-closed query Q : if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Intuition about homomorphism-closed queries:

- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for inequalities or negation
- A homomorphism-closed query can be seen as an infinite union of CQs:
\rightarrow The query is bounded if the union is finite (it is a UCQ), unbounded otherwise
- Allows pretty wild things, e.g., "There is a path whose length is prime"

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$
- The input is a TID D:

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \longrightarrow y \longrightarrow z$
- The input is a TID D:

- The output is the total probability of the worlds which satisfy the query:
- Formally: $\sum_{W \subseteq D, W \models Q} \operatorname{Pr}(W)$
\rightarrow Intuition: the probability that the query is true
\rightarrow What is the complexity of the problem $\operatorname{PQE}(Q)$, depending on the query Q ?

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and $\operatorname{PQE}(Q)$ is in PTIME
- All others are unsafe and $\operatorname{PQE}(Q)$ is \#P-hard

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and $\operatorname{PQE}(Q)$ is in PTIME
- All others are unsafe and PQE(Q) is \#P-hard
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the CQ $x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and $\operatorname{PQE}(Q)$ is in PTIME
- All others are unsafe and PQE(Q) is \#P-hard
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the $\mathrm{CQ} x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe What about more expressive queries?

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and PQE(Q) is \#P-hard
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the CQ $x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe What about more expressive queries?
- Work by [Fink and Olteanu, 2016] about negation

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and PQE(Q) is \#P-hard
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the CQ $x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe What about more expressive queries?
- Work by [Fink and Olteanu, 2016] about negation
- No work about recursive queries (but no works about RPQs, Datalog, etc.)

Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and PQE(Q) is \#P-hard
- The CQ $x \longrightarrow y \longrightarrow z$ is safe, but the $\mathrm{CQ} x \longrightarrow y \longrightarrow z \longrightarrow w$ is unsafe What about more expressive queries?
- Work by [Fink and Olteanu, 2016] about negation
- No work about recursive queries (but no works about RPQs, Datalog, etc.)
- Only exception: work on ontology-mediated query answering [Jung and Lutz, 2012]

Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.

Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$

Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$

Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and PQE(Q) is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$
- Hence, $\mathrm{PQE}(Q)$ is \#P-hard

Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard
- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the RPQ Q: $\longrightarrow(\longrightarrow) \longrightarrow$
- It is not equivalent to a UCQ: infinite disjunction $\longrightarrow(\longrightarrow)^{i} \longrightarrow$ for all $i \in \mathbb{N}$
- Hence, $\mathrm{PQE}(Q)$ is \#P-hard
- We do not study the complexity of deciding which case applies
- Depends on how queries are represented

Proof structure

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\mathrm{PQE}(Q)$ is \#P-hard
Idea: find a tight pattern, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

Theorem

Any unbounded query closed under homomorphisms has a tight pattern

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the unsafe CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the unsafe CQ: $Q_{0}: x \longrightarrow y \longrightarrow z \longrightarrow w$

is coded as

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the unsafe CQ: Q_{0} :

is coded as

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query $Q . .$.

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the unsafe CQ: $Q_{0}: x \longrightarrow y$

is coded as

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the unsafe CQ: $Q_{0}: x \longrightarrow y$

is coded as

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query Q...

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the unsafe CQ: Q_{0} :

is coded as

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query $Q . .$.
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

- We reduce from PQE for the unsafe CQ: Q_{0} :

is coded as

Idea: possible worlds at the left have a path that matches Q_{o} iff the corresponding possible world of the TID at the right satisfies the query $Q . .$.
... except we need more from the tight pattern!

Saving the proof

We know that we have a tight pattern:

Saving the proof

We know that we have a tight pattern:

Consider its iterates

Saving the proof

We know that we have a tight pattern:

Consider its iterates for each $n \in \mathbb{N}$:

Saving the proof

We know that we have a tight pattern:

but

Consider its iterates for each $n \in \mathbb{N}$:

Saving the proof

Case 1: some iterate violates the query:

Saving the proof

Case 1: some iterate violates the query:

Saving the proof

Case 1: some iterate violates the query:

$$
\begin{aligned}
& (\bullet \rightarrow \bullet \leftarrow \bullet)_{\rightarrow \bullet}^{i} \quad(\bullet \rightarrow \bullet \leftarrow \bullet)^{i+1} \rightarrow \bullet \\
& \rightarrow \text { Reduce from } \operatorname{PQE}\left(Q_{0}\right) \text { as we explained }
\end{aligned}
$$

Case 2: all iterates satisfy the query:

but

Saving the proof

Case 1: some iterate violates the query:

$$
\begin{aligned}
& \rightarrow \text { Reduce from } \operatorname{PQE}\left(Q_{0}\right) \text { as we explained }
\end{aligned}
$$

Case 2: all iterates satisfy the query:

\rightarrow Call this an iterable pattern

Using iterable patterns to show hardness of PQE

Using iterable patterns to show hardness of PQE

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $1 / 2$
- Output: what is the probability that the source and target are connected?

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $1 / 2$
- Output: what is the probability that the source and target are connected?

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $1 / 2$
- Output: what is the probability that the source and target are connected?

is coded as

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $1 / 2$
- Output: what is the probability that the source and target are connected?

is coded as

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

but

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $\mathbf{1 / 2}$
- Output: what is the probability that the source and target are connected?

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right

Conclusion and open problems

Conclusion and open problems

- Our result: $\mathrm{PQE}(Q)$ is \#P-hard for any query Q closed under homomorphisms unless it is equivalent to a safe UCQ
\rightarrow Dichotomy for probabilistic query evaluation over homomorphism-closed queries
\rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

Conclusion and open problems

- Our result: $\operatorname{PQE}(Q)$ is \#P-hard for any query Q closed under homomorphisms unless it is equivalent to a safe UCQ
\rightarrow Dichotomy for probabilistic query evaluation over homomorphism-closed queries
\rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)
- Open problems:
- The result only applies to graphs, not higher-arity databases

Conclusion and open problems

- Our result: $\operatorname{PQE}(Q)$ is \#P-hard for any query Q closed under homomorphisms unless it is equivalent to a safe UCQ
\rightarrow Dichotomy for probabilistic query evaluation over homomorphism-closed queries
\rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)
- Open problems:
- The result only applies to graphs, not higher-arity databases
- We conjecture that the same result holds for higher-arity queries and TIDs
- But instance transformations are harder to visualize and do not seem to work as-is

Conclusion and open problems

- Our result: $\operatorname{PQE}(Q)$ is \#P-hard for any query Q closed under homomorphisms unless it is equivalent to a safe UCQ
\rightarrow Dichotomy for probabilistic query evaluation over homomorphism-closed queries
\rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)
- Open problems:
- The result only applies to graphs, not higher-arity databases
- We conjecture that the same result holds for higher-arity queries and TIDs
- But instance transformations are harder to visualize and do not seem to work as-is
- Does the result still hold for unweighted PQE, where all probabilities are 1/2?

Conclusion and open problems

- Our result: $\operatorname{PQE}(Q)$ is \#P-hard for any query Q closed under homomorphisms unless it is equivalent to a safe UCQ
\rightarrow Dichotomy for probabilistic query evaluation over homomorphism-closed queries
\rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)
- Open problems:
- The result only applies to graphs, not higher-arity databases
- We conjecture that the same result holds for higher-arity queries and TIDs
- But instance transformations are harder to visualize and do not seem to work as-is
- Does the result still hold for unweighted PQE, where all probabilities are $\mathbf{1 / 2}$?
- PQE for non-hierarchical self-join-free CQs was recently shown to be \#P-hard in this sense [Amarilli and Kimelfeld, 2020]
- Similar techniques may adapt for our work, but not to the unsafe UCQs...

Conclusion and open problems

- Our result: $\operatorname{PQE}(Q)$ is \#P-hard for any query Q closed under homomorphisms unless it is equivalent to a safe UCQ
\rightarrow Dichotomy for probabilistic query evaluation over homomorphism-closed queries
\rightarrow Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)
- Open problems:
- The result only applies to graphs, not higher-arity databases
- We conjecture that the same result holds for higher-arity queries and TIDs
- But instance transformations are harder to visualize and do not seem to work as-is
- Does the result still hold for unweighted PQE, where all probabilities are $\mathbf{1 / 2}$?
- PQE for non-hierarchical self-join-free CQs was recently shown to be \#P-hard in this sense [Amarilli and Kimelfeld, 2020]
- Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

to

to

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

- If Q becomes false at one step, then we have found a tight pattern

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:

to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a union of stars D^{\prime}

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a union of stars D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a union of stars D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q
- $D^{\prime \prime}$ has a homomorphism back to D

Why can we always find tight patterns?

- Unbounded queries have arbitrarily large minimal models
- Take a large minimal model D and disconnect its edges:
 to

- If Q becomes false at one step, then we have found a tight pattern
- Otherwise, we have found a contradiction:
- The disconnection process terminates
- At the end of the process, we obtain a union of stars D^{\prime}
- It is homomorphically equivalent to a constant-sized $D^{\prime \prime}$ satisfying Q
- $D^{\prime \prime}$ has a homomorphism back to D
- This contradicts the minimality of the large D

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

$$
\begin{aligned}
& a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} \\
& a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} \\
& a_{3}^{\prime} \xrightarrow{1 / 2} a_{3}
\end{aligned}
$$

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

$$
\begin{array}{ll}
a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} & b_{1} \xrightarrow{1 / 2} b_{1}^{\prime} \\
a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} & \\
a_{3}^{\prime} \xrightarrow{1 / 2} a_{3} & b_{2} \xrightarrow{1 / 2} b_{2}^{\prime}
\end{array}
$$

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \longrightarrow y \longrightarrow z \longrightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
- e.g., given $(x \vee y) \wedge z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
- Positive (no negation) and Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
- Example: $\phi:\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

Idea: Satisfying valuations of ϕ correspond to possible worlds with a match of Q

References i

(Amarilli, A. and Kimelfeld, B. (2020).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
Under review.
固 Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries.
J. $A C M, 59(6)$.

Fink, R. and Olteanu, D. (2016).
Dichotomies for queries with negation in probabilistic databases.
ACM Transactions on Database Systems, 41(1):4:1-4:47.

References ii

娄 Jung, J. C. and Lutz, C. (2012).
Ontology-based access to probabilistic data with OWL QL.
In Proceedings of the 11th International Conference on The Semantic Web - Volume Part I, pages 182-197.

