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Uncertain data management

• Databases: manage data and answer queries over it

• In this talk, data is simply a labeled graph
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Uncertain data model
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• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world? 0.03%

→ This model is simplistic, but already challenging to understand
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Queries

• Query: maps a non-probabilistic graph to YES/NO

• Conjunctive query: can I find an occurrence of a pattern?
x y z

• We want a homomorphism from the pattern to the graph
• Not necessarily injective!

• Union of conjunctive queries: does one of the patterns match?

• Homomorphism-closed query Q: if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q
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Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance: x y z

• The input is a TID: A.

B.

İ.
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• The output is the total probability of the worlds
which satisfy the query
→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q),
depending on the query Q?
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Existing results

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• Our example query x y z is... safe

Also: dichotomy on the instance families:
Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

• For any query Q in monadic second-order logic, PQE(Q) is in
PTIME if the input TIDs have bounded treewidth

• There is a query Q such that PQE(Q) is #P-hard on any TID family
of unbounded treewidth (with several technical assumptions)
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Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)
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New results in this talk

We present more cases where PQE is #P-hard:

• With İsmail İlkan Ceylan, for expressive queries:

Theorem [Amarilli and Ceylan, 2019]
For any query Q closed under homomorphisms, PQE(Q) is #P-hard
unless Q is equivalent to a safe UCQ

• With Benny Kimelfeld, in the unweighted case:

Theorem [Amarilli and Kimelfeld, 2019]
For any CQ Q without self-joins (every edge has a di�erent color), if
Q is unsafe then PQE(Q) is #P-hard even if all probabilities are 1/2

8/17



New results in this talk

We present more cases where PQE is #P-hard:

• With İsmail İlkan Ceylan, for expressive queries:

Theorem [Amarilli and Ceylan, 2019]
For any query Q closed under homomorphisms, PQE(Q) is #P-hard
unless Q is equivalent to a safe UCQ

• With Benny Kimelfeld, in the unweighted case:

Theorem [Amarilli and Kimelfeld, 2019]
For any CQ Q without self-joins (every edge has a di�erent color), if
Q is unsafe then PQE(Q) is #P-hard even if all probabilities are 1/2

8/17



Hardness for queries closed under
homomorphisms



Result statement

We consider queries closed under homomorphisms:

• Generalizes CQs and UCQs, Datalog, Regular path queries...
• Example: WorksAt/MemberOf+

• Equivalent phrasing: infinite union of CQs
• Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

• Some queries closed under homomorphisms are UCQs:
the previous dichotomy applies, PQE is PTIME or #P-hard

• For all other queries closed under homomorphisms,
PQE is #P-hard

• The query WA/MO+ is equivalent to WA/MO which is a safe UCQ
• The query WA/MO+/IN is not equivalent to a UCQ

so PQE is #P-hard
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Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars
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Using hard patterns for #P-hardness

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

AND •

•
•

•
•

•

violates Q

We can reduce from #PP2DNF like before:

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path x y z w
i� the corresponding world at the right satisfies Q...
... except we need more from the hard pattern!
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From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

•

• • • •

•

( )n

satisfies Q for all n ∈ N

but •

•
•

•
•

•

violates Q

Idea: use iterable patterns to reduce from the #P-hard problem
source-to-target connectivity:

• Given a TID with a source and sink, what is the probability that
the sink is reachable from the sink?

Technically challenging to get a correct reduction!

12/17
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Hardness for unweighted PQE



Problem statement

• We restrict back to CQs
• We impose self-join-freeness: every edge color is di�erent

x y z w x y
z

w

• Existing dichotomy:
• If Q only consists of stars, then it is safe and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

But what if all facts of the TIDs had probability 1/2?

→ Equivalently: given a graph G, how many subgraphs satisfy Q
• We call this problem MC(Q): model counting for Q

Theorem
For any self-join-free CQ Q, if Q is unsafe then MC(Q) is #P-hard.

13/17
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First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

x y z w

→ We must show that MC(Q) is #P-hard for this query

Can we use our earlier reduction for #P-hardness of PQE?

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

→ Problem: this reduction crucially uses probability 1
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Getting to an equation system

We want to reduce from PQE(Q), on
some graph G with probabilities

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes
→ X = X1, . . . , Xk

• Create unweighted copies of G modified with some gadgets
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Using the equation system

We have obtained the system:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



• The oracle for MC has given us N1, . . . ,Nk

• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction
→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks
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Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise

• We have shown:
• PQE(Q) is #P-hard for any Q closed under homomorphisms

unless it is equivalent to a safe UCQ
• PQE(Q) is #P-hard for any self-join-free CQ Q

even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!
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