Query Evaluation on Probabilistic Data: New Hard Cases

Antoine Amarilli ${ }^{1}$, joint work with Benny Kimelfeld ${ }^{2}$, İsmail ilkan Ceylan ${ }^{3}$ October 10, 2019
${ }^{1}$ Télécom Paris
${ }^{2}$ Technion
${ }^{3}$ University of Oxford

Uncertain data management

- Databases: manage data and answer queries over it

Uncertain data management

- Databases: manage data and answer queries over it

WorksAt	
Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford

Uncertain data management

- Databases: manage data and answer queries over it

WorksAt		
Antoine	Télécom Paris	
Antoine	Paris Sud	
Benny	Paris Sud	
Benny	Technion	
İsmail	U. Oxford	
MemberOf		
Télécom Paris		
Télécom ParisTech	IP Paris	
Paris Sud	IP Paris	
Paris Sud	Paris-Saclay	
Technion	CESAER	

Uncertain data management

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

WorksAt

Antoine	Télécom Paris
Antoine	Paris Sud
Benny	Paris Sud
Benny	Technion
İsmail	U. Oxford

MemberOf

Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

Uncertain data management

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

Uncertain data management

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

	orksAt	A. Télécom Paris	ParisTech
Antoine	Télécom Paris		
Antoine	Paris Sud		
Benny	Paris Sud		
Benny	Technion		IP Paris
İsmail	U. Oxford		
Mem	mberOf		
Télécom Paris	is ParisTech	Technion	Paris-Saclay
Télécom Paris	is IP Paris		
Paris Sud	IP Paris		
Paris Sud	Paris-Saclay		
Technion	CESAER	i. \longrightarrow U. Oxford	CESAER

Uncertain data management

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

Uncertain data management

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

\rightarrow Problem: we may be uncertain about the data

Uncertain data model

A. \rightarrow Télécom Paris \rightarrow ParisTech

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated probability
- All facts are independent

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated probability
- All facts are independent
- Possible world: subset of facts

Uncertain data model

A. \rightarrow Télécom Paris $-\rightarrow$ ParisTech

i. \longrightarrow U. Oxford

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated probability
- All facts are independent
- Possible world: subset of facts

Uncertain data model

A. \rightarrow Télécom Paris $-\rightarrow$ ParisTech

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated probability
- All facts are independent
- Possible world: subset of facts
- What is probability of this possible world?

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated probability
- All facts are independent
- Possible world: subset of facts
- What is probability of this possible world?

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated probability
- All facts are independent
- Possible world: subset of facts
- What is probability of this possible world? 0.03\%

Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated probability
- All facts are independent
- Possible world: subset of facts
- What is probability of this possible world? 0.03\%
\rightarrow This model is simplistic, but already challenging to understand

Queries

- Query: maps a non-probabilistic graph to YES/NO

Queries

- Query: maps a non-probabilistic graph to YES/NO
- Conjunctive query: can I find an occurrence of a pattern? $x \longrightarrow y \longrightarrow z$

Queries

- Query: maps a non-probabilistic graph to YES/NO
- Conjunctive query: can I find an occurrence of a pattern? $x \longrightarrow z \longrightarrow z$
- We want a homomorphism from the pattern to the graph

Queries

- Query: maps a non-probabilistic graph to YES/NO
- Conjunctive query: can I find an occurrence of a pattern? $x \longrightarrow y \longrightarrow z$
- We want a homomorphism from the pattern to the graph
- Not necessarily injective!

Queries

- Query: maps a non-probabilistic graph to YES/NO
- Conjunctive query: can I find an occurrence of a pattern? $x \longrightarrow y \longrightarrow z$
- We want a homomorphism from the pattern to the graph
- Not necessarily injective!
- Union of conjunctive queries: does one of the patterns match?

Queries

- Query: maps a non-probabilistic graph to YES/NO
- Conjunctive query: can I find an occurrence of a pattern? $x \longrightarrow y \longrightarrow z$
- We want a homomorphism from the pattern to the graph
- Not necessarily injective!
- Union of conjunctive queries: does one of the patterns match?
- Homomorphism-closed query Q : if G satisfies Q and G has a homomorphism to G^{\prime} then G^{\prime} also satisfies Q

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$
- The input is a TID:

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$
- The input is a TID:

- The output is the total probability of the worlds which satisfy the query

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$
- The input is a TID:

- The output is the total probability of the worlds which satisfy the query
\rightarrow Intuition: the probability that the query is true

Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$
- The input is a TID:

- The output is the total probability of the worlds which satisfy the query
\rightarrow Intuition: the probability that the query is true
\rightarrow What is the complexity of the problem $\mathrm{PQE}(Q)$, depending on the query \mathbf{Q} ?

Existing results

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and $\operatorname{PQE}(Q)$ is in PTIME
- All others are unsafe and $\mathrm{PQE}(Q)$ is \#P-hard

Existing results

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and $\operatorname{PQE}(Q)$ is \#P-hard
- Our example query $x \longrightarrow y \longrightarrow z$ is...

Existing results

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and $\operatorname{PQE}(Q)$ is in PTIME
- All others are unsafe and PQE(Q) is \#P-hard
- Our example query $x \longrightarrow y \longrightarrow z$ is... safe

Existing results

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and $\mathrm{PQE}(Q)$ is \#P-hard
- Our example query $x \longrightarrow y \longrightarrow z$ is... safe

Also: dichotomy on the instance families:
Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

- For any query Q in monadic second-order logic, $\mathrm{PQE}(Q)$ is in PTIME if the input TIDs have bounded treewidth

Existing results

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are safe and PQE(Q) is in PTIME
- All others are unsafe and $\mathrm{PQE}(Q)$ is \#P-hard
- Our example query $x \longrightarrow y \longrightarrow z$ is... safe

Also: dichotomy on the instance families:
Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

- For any query Q in monadic second-order logic, $\mathrm{PQE}(Q)$ is in PTIME if the input TIDs have bounded treewidth
- There is a query Q such that $\operatorname{PQE}(Q)$ is \#P-hard on any TID family of unbounded treewidth (with several technical assumptions)

Why are some queries unsafe?

This query is unsafe: $x \longrightarrow y \longrightarrow z \longrightarrow w$

Why are some queries unsafe?

This query is unsafe: $x \longrightarrow y \longrightarrow w$

- \#SAT: counting satisfying valuations of a Boolean formula

Why are some queries unsafe?

This query is unsafe: $x \longrightarrow y \longrightarrow w$

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:

Why are some queries unsafe?

This query is unsafe: $x \longrightarrow y \longrightarrow w \longrightarrow$

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:
- Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}

Why are some queries unsafe?

This query is unsafe: $x \longrightarrow y \longrightarrow z \longrightarrow$

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:
- Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- Positive: no negation

Why are some queries unsafe?

This query is unsafe: $x \longrightarrow y \longrightarrow w \longrightarrow w$

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:
- Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- Positive: no negation
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$

Why are some queries unsafe?

This query is unsafe:

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:
- Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- Positive: no negation
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
\rightarrow \#SAT is already \#P-hard

Why are some queries unsafe?

This query is unsafe:

$$
x \longrightarrow y \longrightarrow z \longrightarrow
$$

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:
- Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- Positive: no negation
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
\rightarrow \#SAT is already \#P-hard
- Example: $\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

Why are some queries unsafe?

This query is unsafe:

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:
- Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- Positive: no negation
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
\rightarrow \#SAT is already \#P-hard
- Example: $\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

$$
\begin{aligned}
& a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} \\
& a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} \\
& a_{3}^{\prime} \xrightarrow{1 / 2} a_{3}
\end{aligned}
$$

Why are some queries unsafe?

This query is unsafe:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:
- Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- Positive: no negation
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
\rightarrow \#SAT is already \#P-hard
- Example: $\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

$$
\begin{array}{ll}
a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} & b_{1} \xrightarrow{1 / 2} b_{1}^{\prime} \\
a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} & \\
a_{3}^{\prime} \xrightarrow{1 / 2} a_{3} & b_{2} \xrightarrow{1 / 2} b_{2}^{\prime}
\end{array}
$$

Why are some queries unsafe?

This query is unsafe:

$$
x \longrightarrow y \longrightarrow z \longrightarrow
$$

- \#SAT: counting satisfying valuations of a Boolean formula
- Specifically, reduce from \#PP2DNF:
- Partitioned variables: X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m}
- Positive: no negation
- 2-DNF: disjunction of clauses like $X_{i} \wedge Y_{j}$
\rightarrow \#SAT is already \#P-hard
- Example: $\left(X_{1} \wedge Y_{1}\right) \vee\left(X_{1} \wedge Y_{2}\right) \vee\left(X_{2} \wedge Y_{2}\right) \vee\left(X_{3} \wedge Y_{1}\right) \vee\left(X_{3} \wedge Y_{2}\right)$

New results in this talk

We present more cases where PQE is \#P-hard:

- With İsmail İlkan Ceylan, for expressive queries:

Theorem [Amarilli and Ceylan, 2019]

For any query Q closed under homomorphisms, $\operatorname{PQE}(Q)$ is \#P-hard unless Q is equivalent to a safe UCQ

New results in this talk

We present more cases where PQE is \#P-hard:

- With İsmail İlkan Ceylan, for expressive queries:

Theorem [Amarilli and Ceylan, 2019]

For any query Q closed under homomorphisms, $\operatorname{PQE}(Q)$ is \#P-hard unless Q is equivalent to a safe UCQ

- With Benny Kimelfeld, in the unweighted case:

Theorem [Amarilli and Kimelfeld, 2019]
For any $C Q Q$ without self-joins (every edge has a different color), if Q is unsafe then $\operatorname{PQE}(Q)$ is \#P-hard even if all probabilities are $\mathbf{1 / 2}$

Hardness for queries closed under homomorphisms

Result statement

We consider queries closed under homomorphisms:

Result statement

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
- Example: WorksAt/MemberOf+

Result statement

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
- Example: WorksAt/MemberOf ${ }^{+}$
- Equivalent phrasing: infinite union of CQs
- Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Result statement

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
- Example: WorksAt/MemberOf+
- Equivalent phrasing: infinite union of CQs
- Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

- Some queries closed under homomorphisms are UCQs: the previous dichotomy applies, PQE is PTIME or \#P-hard
- For all other queries closed under homomorphisms, PQE is \#P-hard

Result statement

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
- Example: WorksAt/MemberOf+
- Equivalent phrasing: infinite union of CQs
- Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

- Some queries closed under homomorphisms are UCQs: the previous dichotomy applies, PQE is PTIME or \#P-hard
- For all other queries closed under homomorphisms, PQE is \#P-hard
- The query WA/MO+ is equivalent to WA/MO which is a safe UCQ

Result statement

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
- Example: WorksAt/MemberOf+
- Equivalent phrasing: infinite union of CQs
- Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

- Some queries closed under homomorphisms are UCQs: the previous dichotomy applies, PQE is PTIME or \#P-hard
- For all other queries closed under homomorphisms, PQE is \#P-hard
- The query WA/MO+ is equivalent to WA/MO which is a safe UCQ
- The query WA/MO+ /IN is not equivalent to a UCQ so PQE is \#P-hard

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

but

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

but

- If the query is unbounded, we can find a tight pattern

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

but

- If the query is unbounded, we can find a tight pattern
- Unbounded queries have arbitrarily large minimal models
- Take one such model and disconnect edges as much as possible

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

but

- If the query is unbounded, we can find a tight pattern
- Unbounded queries have arbitrarily large minimal models
- Take one such model and disconnect edges as much as possible
- Unbounded queries have arbitrarily large minimal models

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

but

- If the query is unbounded, we can find a tight pattern
- Unbounded queries have arbitrarily large minimal models
- Take one such model and disconnect edges as much as possible
- Unbounded queries have arbitrarily large minimal models

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

but

- If the query is unbounded, we can find a tight pattern
- Unbounded queries have arbitrarily large minimal models
- Take one such model and disconnect edges as much as possible
- Unbounded queries have arbitrarily large minimal models

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

but

- If the query is unbounded, we can find a tight pattern
- Unbounded queries have arbitrarily large minimal models
- Take one such model and disconnect edges as much as possible
- Unbounded queries have arbitrarily large minimal models

to

to

Proof idea: finding hard patterns

- Fix the query Q and find a tight pattern, i.e,. a graph such that:

but

- If the query is unbounded, we can find a tight pattern
- Unbounded queries have arbitrarily large minimal models
- Take one such model and disconnect edges as much as possible
- Unbounded queries have arbitrarily large minimal models

to

- If Q is still true then the model is "explained" by a union of stars $10 / 17$

Using hard patterns for \#P-hardness

We can reduce from \#PP2DNF like before:

Using hard patterns for \#P-hardness

satisfies Q
but

violates Q

We can reduce from \#PP2DNF like before:

is coded as

Using hard patterns for \#P-hardness

satisfies Q
but

violates Q

We can reduce from \#PP2DNF like before:

is coded as

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies $Q . .$.

Using hard patterns for \#P-hardness

satisfies Q
but

violates Q

We can reduce from \#PP2DNF like before:

is coded as

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q...

Using hard patterns for \#P-hardness

satisfies Q
but

violates Q

We can reduce from \#PP2DNF like before:

is coded as

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q...

Using hard patterns for \#P-hardness

satisfies Q
but

violates Q

We can reduce from \#PP2DNF like before:

is coded as

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q...
... except we need more from the hard pattern!

Using hard patterns for \#P-hardness

satisfies Q

AND

We can reduce from \#PP2DNF like before:

is coded as

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q...
... except we need more from the hard pattern!

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

Idea: use iterable patterns to reduce from the \#P-hard problem source-to-target connectivity:

- Given a TID with a source and sink, what is the probability that the sink is reachable from the sink?

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

Idea: use iterable patterns to reduce from the \#P-hard problem source-to-target connectivity:

- Given a TID with a source and sink, what is the probability that the sink is reachable from the sink?

Technically challenging to get a correct reduction!

Hardness for unweighted PQE

Problem statement

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different
$x \longrightarrow y \longrightarrow z \longrightarrow w$

Problem statement

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different
$x \longrightarrow y \longrightarrow z \longrightarrow w$

- Existing dichotomy:
- If Q only consists of stars, then it is safe and $\operatorname{PQE}(Q)$ is in PTIME

Problem statement

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different
$x \longrightarrow y \longrightarrow z \longrightarrow w$

- Existing dichotomy:
- If Q only consists of stars, then it is safe and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

Problem statement

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different
$x \longrightarrow y \longrightarrow z \longrightarrow w$

- Existing dichotomy:
- If Q only consists of stars, then it is safe and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, PQE(Q) is \#P-hard

But what if all facts of the TIDs had probability $1 / 2$?
\rightarrow Equivalently: given a graph G, how many subgraphs satisfy Q

- We call this problem $\mathrm{MC}(Q)$: model counting for Q

Problem statement

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different
$x \longrightarrow y \longrightarrow z \longrightarrow w$

- Existing dichotomy:
- If Q only consists of stars, then it is safe and $\operatorname{PQE}(Q)$ is in PTIME
- In all other cases, $\mathrm{PQE}(Q)$ is \#P-hard

But what if all facts of the TIDs had probability $1 / 2$?
\rightarrow Equivalently: given a graph G, how many subgraphs satisfy Q

- We call this problem $M C(Q)$: model counting for Q

Theorem

For any self-join-free $C Q Q$, if Q is unsafe then $M C(Q)$ is \#P-hard.

First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

\rightarrow We must show that $\mathrm{MC}(Q)$ is \#P-hard for this query

First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

\rightarrow We must show that $\mathrm{MC}(Q)$ is \#P-hard for this query
Can we use our earlier reduction for \#P-hardness of PQE?

First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

$$
x \longrightarrow y \longrightarrow z \longrightarrow w
$$

\rightarrow We must show that $\mathrm{MC}(Q)$ is \#P-hard for this query
Can we use our earlier reduction for \#P-hardness of PQE?

\rightarrow Problem: this reduction crucially uses probability 1

Getting to an equation system

We want to reduce from $\operatorname{PQE}(Q)$, on some graph G with probabilities

Task: count the number X of red-blue edge subsets that violate Q

Getting to an equation system

We want to reduce from $\operatorname{PQE}(Q)$, on some graph G with probabilities

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes

$$
\rightarrow X=X_{1}, \ldots, X_{k}
$$

Getting to an equation system

We want to reduce from $\operatorname{PQE}(Q)$, on some graph G with probabilities

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes
$\rightarrow X=X_{1}, \ldots, X_{k}$
- Create unweighted copies of G modified with some gadgets e.g., replace each edge by multiple copies of a path
\rightarrow Created G_{1}, \ldots, G_{k}
\rightarrow Call the oracle for MC(Q) on each to get N_{1}, \ldots, N_{k}

Getting to an equation system

We want to reduce from $\operatorname{PQE}(Q)$, on some graph G with probabilities

$$
\begin{aligned}
& a_{1}^{\prime} \xrightarrow{1 / 2} a_{1} \xrightarrow{1} b_{1} \xrightarrow{1 / 2} b_{1}^{\prime} \\
& a_{2}^{\prime} \xrightarrow{1 / 2} a_{2} \\
& a_{3}^{\prime} \xrightarrow{1 / 2} a_{3} \xrightarrow{1 / 2} b_{2}^{\prime}
\end{aligned}
$$

Task: count the number X of red-blue edge subsets that violate Q

- Split the subsets on some parameter e.g., the number of nodes
$\rightarrow X=X_{1}, \ldots, X_{k}$
- Create unweighted copies of G modified with some gadgets e.g., replace each edge by multiple copies of a path
\rightarrow Created G_{1}, \ldots, G_{k}
\rightarrow Call the oracle for MC(Q) on each to get N_{1}, \ldots, N_{k}
- Show that each N_{i} is a linear function of X_{1}, \ldots, X_{k}, so:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction
\rightarrow If the matrix is invertible, then we have succeeded

Using the equation system

We have obtained the system:

$$
\left(\begin{array}{c}
N_{1} \\
\vdots \\
N_{k}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{1,1} & \cdots & \alpha_{1, k} \\
\vdots & \ddots & \vdots \\
\alpha_{k, 1} & \cdots & \alpha_{k, k}
\end{array}\right) \cdot\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{k}
\end{array}\right)
$$

- The oracle for MC has given us N_{1}, \ldots, N_{k}
- We need $X=X_{1}+\cdots+X_{k}$ to solve PQE and finish the reduction
\rightarrow If the matrix is invertible, then we have succeeded
We can choose gadgets and parameters to get a Vandermonde matrix, and show invertibility via several arithmetical tricks

Conclusion and open problems

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Open problems:

- What about higher-arity databases? (hypergraphs)

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Open problems:

- What about higher-arity databases? (hypergraphs)
- The result on self-join-free CQs extends to that context
- For queries closed under homomorphisms: still open

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Open problems:

- What about higher-arity databases? (hypergraphs)
- The result on self-join-free CQs extends to that context
- For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
\rightarrow Open, probably challenging

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Open problems:

- What about higher-arity databases? (hypergraphs)
- The result on self-join-free CQs extends to that context
- For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
\rightarrow Open, probably challenging
- What about disequalities? negations?
\rightarrow Poorly understood, even for UCQs

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Open problems:

- What about higher-arity databases? (hypergraphs)
- The result on self-join-free CQs extends to that context
- For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
\rightarrow Open, probably challenging
- What about disequalities? negations?
\rightarrow Poorly understood, even for UCQs
- What about tractable cases? ...

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Open problems:

- What about higher-arity databases? (hypergraphs)
- The result on self-join-free CQs extends to that context
- For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
\rightarrow Open, probably challenging
- What about disequalities? negations?
\rightarrow Poorly understood, even for UCQs
- What about tractable cases?

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Open problems:

- What about higher-arity databases? (hypergraphs)
- The result on self-join-free CQs extends to that context
- For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
\rightarrow Open, probably challenging
- What about disequalities? negations?
\rightarrow Poorly understood, even for UCQs
- What about tractable cases? ?

Conclusion and open problems

- On UCQs: PQE(Q) PTIME for safe UCQs and \#P-hard otherwise
- We have shown:
- PQE(Q) is \#P-hard for any Q closed under homomorphisms unless it is equivalent to a safe UCQ
- $\operatorname{PQE}(Q)$ is \#P-hard for any self-join-free CQ Q even when all probabilities must be $1 / 2$ (model counting)

Open problems:

- What about higher-arity databases? (hypergraphs)
- The result on self-join-free CQs extends to that context
- For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
\rightarrow Open, probably challenging
- What about disequalities? negations?
\rightarrow Poorly understood, even for UCQs
- What about tractable cases? ? Thanks for your attention!

References i

囯 Amarilli，A．，Bourhis，P．，and Senellart，P．（2015）．
Provenance Circuits for Trees and Treelike Instances．
In ICALP．
围 Amarilli，A．，Bourhis，P．，and Senellart，P．（2016）．
Tractable Lineages on Treelike Instances：Limits and Extensions．
In PODS．
围 Amarilli，A．and Ceylan，I．I．（2019）．
A Dichotomy for Homomorphism－Closed Queries on Probabilistic Graphs．
Preprint：https：／／arxiv．org／abs／1910．02048．

References ii

婳 Amarilli, A. and Kimelfeld, B. (2019).
Model Counting for Conjunctive Queries Without Self-Joins.
Preprint: https://arxiv.org/abs/1908.07093.
囯 Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries.
J. ACM, 59(6).

