

Query Evaluation on Probabilistic Data: New Hard Cases

Antoine Amarilli¹, joint work with Benny Kimelfeld², İsmail İlkan Ceylan³ October 10, 2019

¹Télécom Paris

²Technion

³University of Oxford

• Databases: manage data and answer queries over it

• Databases: manage data and answer queries over it

WorksAt					
Télécom Paris					
Paris Sud					
Paris Sud					
Technion					
U. Oxford					

• Databases: manage data and answer queries over it

WorksAt					
Antoine	Télécom Paris				
Antoine	Paris Sud				
Benny	Paris Sud				
Benny	Technion				
İsmail	U. Oxford				

MemberOf

Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

WorksAt						
Antoine	Télécom Paris					
Antoine	Paris Sud					
Benny	Paris Sud					
Benny	Technion					
İsmail	U. Oxford					

MemberOf

Télécom Paris	ParisTech
Télécom Paris	IP Paris
Paris Sud	IP Paris
Paris Sud	Paris-Saclay
Technion	CESAER

- Databases: manage data and answer queries over it
- In this talk, **data** is simply a labeled graph

WorksAt		A.	Télécom Paris	ParisTech
Antoine Antoine Benny Benny İsmail	Télécom Paris Paris Sud Paris Sud Technion		Paris Sud	IP Paris
MemberOf		Β.		
Télécom Pa Télécom Pa Paris Sud Paris Sud	ris ParisTech ris IP Paris IP Paris Paris-Saclav	-	Technion	Paris-Saclay
Technion	CESAER	i.	U. Oxford	CESAER

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

- Databases: manage data and answer queries over it
- In this talk, data is simply a labeled graph

 \rightarrow **Problem:** we may be **uncertain** about the data

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated **probability**
- All facts are independent

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated **probability**
- All facts are independent
- Possible world: subset of facts

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated **probability**
- All facts are independent
- Possible world: subset of facts

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a probability
- Every fact exists with the indicated **probability**
- All facts are independent
- Possible world: subset of facts
- What is **probability** of this possible world?

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a **probability**
- Every fact exists with the indicated **probability**
- All facts are independent
- Possible world: subset of facts
- What is **probability** of this possible world?

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a **probability**
- Every fact exists with the indicated **probability**
- All facts are independent
- Possible world: subset of facts
- What is **probability** of this possible world? **0.03%**

- Uncertain data model: TID, for tuple-independent database
- Every fact carries a **probability**
- Every fact exists with the indicated **probability**
- All facts are independent
- Possible world: subset of facts
- What is **probability** of this possible world? **0.03%**

ightarrow This model is **simplistic**, but already challenging to understand

• Query: maps a non-probabilistic graph to YES/NO

- Query: maps a non-probabilistic graph to YES/NO
- Conjunctive query: can I find an occurrence of a pattern?

 $x \longrightarrow y \longrightarrow z$

- Query: maps a non-probabilistic graph to YES/NO
- Conjunctive query: can I find an occurrence of a pattern? $x \longrightarrow y \longrightarrow z$
 - We want a **homomorphism** from the pattern to the graph

- Query: maps a non-probabilistic graph to YES/NO
- Conjunctive query: can I find an occurrence of a pattern?
 x → y → z
 - \cdot We want a **homomorphism** from the pattern to the graph
 - Not necessarily injective!

- Query: maps a non-probabilistic graph to YES/NO
- - \cdot We want a **homomorphism** from the pattern to the graph
 - Not necessarily **injective**!
- Union of conjunctive queries: does one of the patterns match?

- Query: maps a non-probabilistic graph to YES/NO
- - \cdot We want a **homomorphism** from the pattern to the graph
 - Not necessarily injective!
- Union of conjunctive queries: does one of the patterns match?
- Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

• We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$

• We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$

• We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$

• The **output** is the **total probability** of the worlds which satisfy the query

• We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$

- The **output** is the **total probability** of the worlds which satisfy the query
 - \rightarrow Intuition: the probability that the query is true

• We fix a query Q, for instance: $x \longrightarrow y \longrightarrow z$

- The **output** is the **total probability** of the worlds which satisfy the query
 - $\rightarrow~$ Intuition: the probability that the query is true
- → What is the complexity of the problem PQE(Q), depending on the query Q?

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are **safe** and PQE(**Q**) is in **PTIME**
- All others are **unsafe** and PQE(**Q**) is **#P-hard**

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are **safe** and PQE(**Q**) is in **PTIME**
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- Our example query $x \longrightarrow y \longrightarrow z$ is...

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are **safe** and PQE(**Q**) is in **PTIME**
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- Our example query $x \longrightarrow y \longrightarrow z$ is... safe

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are **safe** and PQE(**Q**) is in **PTIME**
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- Our example query $x \longrightarrow y \longrightarrow z$ is... safe

Also: dichotomy on the **instance families**:

Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

 For any query Q in monadic second-order logic, PQE(Q) is in PTIME if the input TIDs have bounded treewidth

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs **Q** are **safe** and PQE(**Q**) is in **PTIME**
- All others are **unsafe** and PQE(**Q**) is **#P-hard**
- Our example query $x \longrightarrow y \longrightarrow z$ is... safe

Also: dichotomy on the **instance families**:

Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

- For any query Q in monadic second-order logic, PQE(Q) is in PTIME if the input TIDs have bounded treewidth
- There is a query Q such that PQE(Q) is #P-hard on any TID family of unbounded treewidth (with several technical assumptions)

Why are some queries unsafe?

This query is **unsafe**: $x \longrightarrow y \longrightarrow z \longrightarrow w$

This query is **unsafe**: $x \longrightarrow y \longrightarrow z \longrightarrow w$

• **#SAT**: counting satisfying valuations of a Boolean formula
- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:

- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:
 - Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m

- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:
 - Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - Positive: no negation

- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:
 - Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - Positive: no negation
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$

- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:
 - Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - Positive: no negation
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
 - \rightarrow **#SAT** is already **#P-hard**

- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:
 - Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - Positive: no negation
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
 - \rightarrow **#SAT** is already **#P-hard**
- Example: $(X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:
 - Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - Positive: no negation
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
 - \rightarrow **#SAT** is already **#P-hard**
- Example: $(X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

$$a'_{1} \xrightarrow{1/2} a_{1}$$
$$a'_{2} \xrightarrow{1/2} a_{2}$$
$$a'_{3} \xrightarrow{1/2} a_{3}$$

- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:
 - Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - Positive: no negation
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
 - \rightarrow **#SAT** is already **#P-hard**
- Example: $(X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

$$a'_{1} \xrightarrow{1/2} a_{1} \qquad \qquad b_{1} \xrightarrow{1/2} b'_{1}$$
$$a'_{2} \xrightarrow{1/2} a_{2}$$
$$a'_{3} \xrightarrow{1/2} a_{3} \qquad \qquad b_{2} \xrightarrow{1/2} b'_{2}$$

- **#SAT**: counting satisfying valuations of a Boolean formula
- Specifically, reduce from **#PP2DNF**:
 - Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - Positive: no negation
 - **2-DNF**: disjunction of clauses like $X_i \wedge Y_j$
 - \rightarrow **#SAT** is already **#P-hard**
- Example: $(X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

We present **more cases** where PQE is **#P-hard**:

• With İsmail İlkan Ceylan, for **expressive queries**:

Theorem [Amarilli and Ceylan, 2019]

For any **query Q closed under homomorphisms**, PQE(**Q**) is **#P-hard** unless **Q** is equivalent to a **safe UCQ**

We present **more cases** where PQE is **#P-hard**:

• With İsmail İlkan Ceylan, for expressive queries:

Theorem [Amarilli and Ceylan, 2019]

For any **query Q closed under homomorphisms**, PQE(**Q**) is **#P-hard** unless **Q** is equivalent to a **safe UCQ**

• With Benny Kimelfeld, in the **unweighted case**:

Theorem [Amarilli and Kimelfeld, 2019]

For any **CQ Q without self-joins** (every edge has a different color), if **Q** is unsafe then PQE(**Q**) is **#P-hard** even if all probabilities are 1/2

Hardness for queries closed under homomorphisms

We consider queries closed under homomorphisms:

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
 - Example: WorksAt/MemberOf⁺

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
 - Example: WorksAt/MemberOf⁺
- Equivalent phrasing: infinite union of CQs
 - Example: WA/MO, WA/MO/MO, WA/MO/MO, ...

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
 - Example: WorksAt/MemberOf⁺
- Equivalent phrasing: infinite union of CQs
 - Example: WA/MO, WA/MO/MO, WA/MO/MO, ...

Theorem

- Some queries closed under homomorphisms are UCQs: the previous dichotomy applies, PQE is PTIME or #P-hard
- For all other queries closed under homomorphisms, PQE is #P-hard

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
 - Example: WorksAt/MemberOf⁺
- Equivalent phrasing: infinite union of CQs
 - Example: WA/MO, WA/MO/MO, WA/MO/MO, ...

Theorem

- Some queries closed under homomorphisms are UCQs: the previous dichotomy applies, PQE is PTIME or #P-hard
- For all other queries closed under homomorphisms, PQE is #P-hard
- The query WA/MO⁺ is **equivalent** to WA/MO which is a **safe UCQ**

We consider queries closed under homomorphisms:

- Generalizes CQs and UCQs, Datalog, Regular path queries...
 - Example: WorksAt/MemberOf⁺
- Equivalent phrasing: infinite union of CQs
 - Example: WA/MO, WA/MO/MO, WA/MO/MO, ...

Theorem

- Some queries closed under homomorphisms are UCQs: the previous dichotomy applies, PQE is PTIME or #P-hard
- For all other queries closed under homomorphisms, PQE is **#P-hard**
- The query WA/MO⁺ is **equivalent** to WA/MO which is a **safe UCQ**
- The query WA/MO⁺/IN is not equivalent to a UCQ so PQE is #P-hard

• Fix the query **Q** and find a **tight pattern**, i.e,. a graph such that:

• If the query is unbounded, we can find a tight pattern

- If the query is **unbounded**, we can find a **tight pattern**
 - Unbounded queries have arbitrarily large minimal models
 - Take one such model and disconnect edges as much as possible

- If the query is **unbounded**, we can find a **tight pattern**
 - Unbounded queries have arbitrarily large minimal models
 - Take one such model and disconnect edges as much as possible
 - Unbounded queries have arbitrarily large minimal models

- If the query is **unbounded**, we can find a **tight pattern**
 - Unbounded queries have arbitrarily large minimal models
 - Take one such model and disconnect edges as much as possible
 - Unbounded queries have arbitrarily large minimal models

- If the query is **unbounded**, we can find a **tight pattern**
 - Unbounded queries have arbitrarily large minimal models
 - Take one such model and disconnect edges as much as possible
 - Unbounded queries have arbitrarily large minimal models

- If the query is unbounded, we can find a tight pattern
 - Unbounded queries have arbitrarily large minimal models
 - Take one such model and disconnect edges as much as possible
 - Unbounded queries have arbitrarily large minimal models

• Fix the query **Q** and find a **tight pattern**, i.e,. a graph such that:

- If the query is unbounded, we can find a tight pattern
 - Unbounded queries have arbitrarily large minimal models
 - Take one such model and disconnect edges as much as possible
 - Unbounded queries have arbitrarily large minimal models

• If **Q** is still true then the model is "explained" by a **union of stars**10/17

We can reduce from #PP2DNF like before:

We can reduce from #PP2DNF like before:

is coded as

We can reduce from #PP2DNF like before:

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q_{\dots}

We can reduce from #PP2DNF like before:

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q_{\dots}

We can reduce from #PP2DNF like before:

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q_{\dots}

We can reduce from #PP2DNF like before:

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q_{\dots} ... except we need more from the hard pattern!

We can reduce from #PP2DNF like before:

Idea: possible worlds at the left have a path $x \longrightarrow y \longrightarrow z \longrightarrow w$ iff the corresponding world at the right satisfies Q_{\dots} ... except we need more from the hard pattern!

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an **iterable pattern**:

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an **iterable pattern**:

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

Idea: use iterable patterns to reduce from the **#P-hard** problem **source-to-target connectivity**:

• Given a TID with a **source** and **sink**, what is the **probability** that the sink is **reachable** from the sink?

From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an **iterable pattern**:

Idea: use iterable patterns to reduce from the **#P-hard** problem **source-to-target connectivity**:

• Given a TID with a **source** and **sink**, what is the **probability** that the sink is **reachable** from the sink?

Technically challenging to get a **correct** reduction!

Hardness for unweighted PQE

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different

$x \longrightarrow y \longrightarrow z \longrightarrow w$

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different

$x \longrightarrow y \longrightarrow z \longrightarrow w$

- Existing dichotomy:
 - If Q only consists of stars, then it is safe and PQE(Q) is in PTIME

W

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different

$x \longrightarrow y \longrightarrow z \longrightarrow w$

- Existing dichotomy:
 - If Q only consists of stars, then it is safe and PQE(Q) is in PTIME
 - In all other cases, PQE(**Q**) is **#P-hard**

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different

$x \longrightarrow y \longrightarrow z \longrightarrow w$

• Existing dichotomy:

- If Q only consists of stars, then it is safe and PQE(Q) is in PTIME
- In all other cases, PQE(**Q**) is **#P-hard**

But what if all facts of the TIDs had **probability 1/2**?

- → Equivalently: given a graph *G*, how many **subgraphs** satisfy *Q*
 - We call this problem MC(Q): model counting for Q

x - y - w

- We restrict back to CQs
- We impose self-join-freeness: every edge color is different

$x \longrightarrow y \longrightarrow z \longrightarrow w$

• Existing dichotomy:

- If Q only consists of stars, then it is safe and PQE(Q) is in PTIME
- In all other cases, PQE(Q) is **#P-hard**

But what if all facts of the TIDs had probability 1/2?

- → Equivalently: given a graph *G*, how many **subgraphs** satisfy *Q*
 - We call this problem MC(Q): model counting for Q

Theorem

For any **self-join-free CQ Q**, if **Q** is unsafe then *MC*(**Q**) is **#P-hard**.

x - y - w

First step: Restricting to a simpler query

For any unsafe query, we can reduce from **simpler queries**, essentially:

 \rightarrow We must show that MC(Q) is #P-hard for this query

First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

 \rightarrow We must show that MC(*Q*) is #P-hard for this query

Can we use our earlier reduction for #P-hardness of PQE?

First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

 $x \longrightarrow y \longrightarrow z \longrightarrow w$

 \rightarrow We must show that MC(*Q*) is #P-hard for this query

Can we use our earlier reduction for #P-hardness of PQE?

 \rightarrow Problem: this reduction crucially uses **probability 1**

We want to reduce from PQE(*Q*), on some graph *G* with probabilities

Task: count the number X of red-blue edge subsets that violate Q

We want to reduce from PQE(*Q*), on some graph *G* with probabilities

Task: count the number X of red-blue edge subsets that violate Q

• Split the **subsets** on some **parameter** e.g., the number of nodes $\rightarrow X = X_1, \dots, X_k$

We want to reduce from PQE(**Q**), on some graph **G** with probabilities

Task: count the number X of red-blue edge subsets that violate Q

- Split the **subsets** on some **parameter** e.g., the number of nodes $\rightarrow X = X_1, \dots, X_k$
- Create unweighted copies of *G* modified with some gadgets e.g., replace each edge by multiple copies of a path
 - \rightarrow Created G_1, \ldots, G_k
 - ightarrow Call the **oracle** for MC(Q) on each to get N_1, \ldots, N_k

We want to reduce from PQE(**Q**), on some graph **G** with probabilities

Task: count the number X of red-blue edge subsets that violate Q

- Split the **subsets** on some **parameter** e.g., the number of nodes $\rightarrow X = X_1, \dots, X_k$
- Create unweighted copies of *G* modified with some gadgets e.g., replace each edge by multiple copies of a path
 - \rightarrow Created G_1, \ldots, G_k
 - $\rightarrow~{\sf Call}$ the <code>oracle</code> for ${\rm MC}({\rm Q})$ on each to get N_1,\ldots,N_k
- Show that each N_i is a linear function of X_1, \ldots, X_k , so:

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

• The oracle for MC has given us N_1, \ldots, N_k

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

- The oracle for MC has given us N_1, \ldots, N_k
- We **need** $X = X_1 + \cdots + X_k$ to solve **PQE** and finish the reduction

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

- The oracle for MC has given us N_1, \ldots, N_k
- We **need** $X = X_1 + \cdots + X_k$ to solve **PQE** and finish the reduction
- ightarrow If the matrix is **invertible**, then we have succeeded

$$\begin{pmatrix} N_1 \\ \vdots \\ N_k \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & \alpha_{k,k} \end{pmatrix} \cdot \begin{pmatrix} X_1 \\ \vdots \\ X_k \end{pmatrix}$$

- The oracle for MC has given us N_1, \ldots, N_k
- We **need** $X = X_1 + \cdots + X_k$ to solve **PQE** and finish the reduction
- ightarrow If the matrix is **invertible**, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix, and show invertibility via several arithmetical tricks

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise

- On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ

- On UCQs: PQE(Q) PTIME for safe UCQs and **#P-hard** otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

- On UCQs: PQE(Q) PTIME for safe UCQs and **#P-hard** otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)

- On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

- What about higher-arity databases? (hypergraphs)
 - The result on self-join-free CQs extends to that context
 - For queries closed under homomorphisms: still open

- On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

- What about higher-arity databases? (hypergraphs)
 - The result on self-join-free CQs **extends to that context**
 - $\cdot\,$ For queries closed under homomorphisms: still open
- What about **unweighted PQE** for **UCQs** or beyond?
 - ightarrow Open, probably challenging

- On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

- What about higher-arity databases? (hypergraphs)
 - The result on self-join-free CQs **extends to that context**
 - For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
 - ightarrow Open, probably challenging
- What about disequalities? negations?
 - $\rightarrow~$ Poorly understood, even for $\rm UCQs$

- On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

- What about higher-arity databases? (hypergraphs)
 - The result on self-join-free CQs **extends to that context**
 - For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
 - ightarrow Open, probably challenging
- What about disequalities? negations?
 - $\rightarrow~$ Poorly understood, even for $\rm UCQs$
- What about tractable cases? ...

- On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

- What about higher-arity databases? (hypergraphs)
 - The result on self-join-free CQs extends to that context
 - For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
 - ightarrow Open, probably challenging
- What about disequalities? negations?
 - $\rightarrow~$ Poorly understood, even for $\rm UCQs$
- What about tractable cases?

- On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

- What about higher-arity databases? (hypergraphs)
 - The result on self-join-free CQs extends to that context
 - For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
 - ightarrow Open, probably challenging
- What about disequalities? negations?
 - $\rightarrow~$ Poorly understood, even for $\rm UCQs$
- What about **tractable cases**? ?

- On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
- We have shown:
 - PQE(*Q*) is **#P-hard** for any *Q* closed under homomorphisms unless it is equivalent to a safe UCQ
 - PQE(Q) is #P-hard for any self-join-free CQ Q even when all probabilities must be 1/2 (model counting)

- What about higher-arity databases? (hypergraphs)
 - The result on self-join-free CQs extends to that context
 - For queries closed under homomorphisms: still open
- What about unweighted PQE for UCQs or beyond?
 - ightarrow Open, probably challenging
- What about disequalities? negations?
 - $\rightarrow~$ Poorly understood, even for $\rm UCQs$
- What about tractable cases? ? Thanks for your attention!

Amarilli, A., Bourhis, P., and Senellart, P. (2015). **Provenance Circuits for Trees and Treelike Instances.** In *ICALP*.

Amarilli, A., Bourhis, P., and Senellart, P. (2016). **Tractable Lineages on Treelike Instances: Limits and Extensions.** In *PODS*.

 Amarilli, A. and Ceylan, I. I. (2019).
A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs.
Preprint: https://arxiv.org/abs/1910.02048.

Amarilli, A. and Kimelfeld, B. (2019). **Model Counting for Conjunctive Queries Without Self-Joins.** Preprint: https://arxiv.org/abs/1908.07093.

Dalvi, N. and Suciu, D. (2012).

The dichotomy of probabilistic inference for unions of conjunctive queries.

J. ACM, 59(6).