
Query Evaluation on Probabilistic Data:
New Hard Cases

Antoine Amarilli1, joint work with Benny Kimelfeld2, İsmail İlkan Ceylan3

October 10, 2019
1Télécom Paris

2Technion

3University of Oxford
1/17



Uncertain data management

• Databases: manage data and answer queries over it

• In this talk, data is simply a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we may be uncertain about the data

2/17



Uncertain data management

• Databases: manage data and answer queries over it

• In this talk, data is simply a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we may be uncertain about the data

2/17



Uncertain data management

• Databases: manage data and answer queries over it

• In this talk, data is simply a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we may be uncertain about the data

2/17



Uncertain data management

• Databases: manage data and answer queries over it
• In this talk, data is simply a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we may be uncertain about the data

2/17



Uncertain data management

• Databases: manage data and answer queries over it
• In this talk, data is simply a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we may be uncertain about the data

2/17



Uncertain data management

• Databases: manage data and answer queries over it
• In this talk, data is simply a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we may be uncertain about the data

2/17



Uncertain data management

• Databases: manage data and answer queries over it
• In this talk, data is simply a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we may be uncertain about the data

2/17



Uncertain data management

• Databases: manage data and answer queries over it
• In this talk, data is simply a labeled graph

WorksAt

Antoine Télécom Paris
Antoine Paris Sud
Benny Paris Sud
Benny Technion
İsmail U. Oxford

MemberOf

Télécom Paris ParisTech
Télécom Paris IP Paris

Paris Sud IP Paris
Paris Sud Paris-Saclay
Technion CESAER

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

→ Problem: we may be uncertain about the data 2/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world? 0.03%

→ This model is simplistic, but already challenging to understand

3/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world? 0.03%

→ This model is simplistic, but already challenging to understand

3/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world? 0.03%

→ This model is simplistic, but already challenging to understand

3/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world? 0.03%

→ This model is simplistic, but already challenging to understand

3/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world? 0.03%

→ This model is simplistic, but already challenging to understand

3/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world?

0.03%

→ This model is simplistic, but already challenging to understand

3/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world?

0.03%

→ This model is simplistic, but already challenging to understand

3/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world? 0.03%

→ This model is simplistic, but already challenging to understand

3/17



Uncertain data model

A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• Uncertain data model: TID, for
tuple-independent database

• Every fact carries a probability

• Every fact exists with the
indicated probability

• All facts are independent

• Possible world: subset of facts

• What is probability of this
possible world? 0.03%

→ This model is simplistic, but already challenging to understand

3/17



Queries

• Query: maps a non-probabilistic graph to YES/NO

• Conjunctive query: can I find an occurrence of a pattern?
x y z

• We want a homomorphism from the pattern to the graph
• Not necessarily injective!

• Union of conjunctive queries: does one of the patterns match?

• Homomorphism-closed query Q: if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

4/17



Queries

• Query: maps a non-probabilistic graph to YES/NO

• Conjunctive query: can I find an occurrence of a pattern?
x y z

• We want a homomorphism from the pattern to the graph
• Not necessarily injective!

• Union of conjunctive queries: does one of the patterns match?

• Homomorphism-closed query Q: if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

4/17



Queries

• Query: maps a non-probabilistic graph to YES/NO

• Conjunctive query: can I find an occurrence of a pattern?
x y z

• We want a homomorphism from the pattern to the graph

• Not necessarily injective!

• Union of conjunctive queries: does one of the patterns match?

• Homomorphism-closed query Q: if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

4/17



Queries

• Query: maps a non-probabilistic graph to YES/NO

• Conjunctive query: can I find an occurrence of a pattern?
x y z

• We want a homomorphism from the pattern to the graph
• Not necessarily injective!

• Union of conjunctive queries: does one of the patterns match?

• Homomorphism-closed query Q: if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

4/17



Queries

• Query: maps a non-probabilistic graph to YES/NO

• Conjunctive query: can I find an occurrence of a pattern?
x y z

• We want a homomorphism from the pattern to the graph
• Not necessarily injective!

• Union of conjunctive queries: does one of the patterns match?

• Homomorphism-closed query Q: if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

4/17



Queries

• Query: maps a non-probabilistic graph to YES/NO

• Conjunctive query: can I find an occurrence of a pattern?
x y z

• We want a homomorphism from the pattern to the graph
• Not necessarily injective!

• Union of conjunctive queries: does one of the patterns match?

• Homomorphism-closed query Q: if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

4/17



Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance: x y z

• The input is a TID: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds
which satisfy the query
→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q),
depending on the query Q?

5/17



Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance: x y z

• The input is a TID: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds
which satisfy the query
→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q),
depending on the query Q?

5/17



Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance: x y z

• The input is a TID: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds
which satisfy the query

→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q),
depending on the query Q?

5/17



Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance: x y z

• The input is a TID: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds
which satisfy the query
→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q),
depending on the query Q?

5/17



Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance: x y z

• The input is a TID: A.

B.

İ.

Télécom Paris

Paris Sud

Technion

U. Oxford

ParisTech

IP Paris

Paris-Saclay

CESAER

80%

10%

40%

80%

100%

90%

90%

50%

90%

100%

• The output is the total probability of the worlds
which satisfy the query
→ Intuition: the probability that the query is true

→ What is the complexity of the problem PQE(Q),
depending on the query Q?

5/17



Existing results

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• Our example query x y z is... safe

Also: dichotomy on the instance families:
Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

• For any query Q in monadic second-order logic, PQE(Q) is in
PTIME if the input TIDs have bounded treewidth

• There is a query Q such that PQE(Q) is #P-hard on any TID family
of unbounded treewidth (with several technical assumptions)

6/17



Existing results

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• Our example query x y z is...

safe

Also: dichotomy on the instance families:
Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

• For any query Q in monadic second-order logic, PQE(Q) is in
PTIME if the input TIDs have bounded treewidth

• There is a query Q such that PQE(Q) is #P-hard on any TID family
of unbounded treewidth (with several technical assumptions)

6/17



Existing results

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• Our example query x y z is... safe

Also: dichotomy on the instance families:
Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

• For any query Q in monadic second-order logic, PQE(Q) is in
PTIME if the input TIDs have bounded treewidth

• There is a query Q such that PQE(Q) is #P-hard on any TID family
of unbounded treewidth (with several technical assumptions)

6/17



Existing results

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• Our example query x y z is... safe

Also: dichotomy on the instance families:
Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

• For any query Q in monadic second-order logic, PQE(Q) is in
PTIME if the input TIDs have bounded treewidth

• There is a query Q such that PQE(Q) is #P-hard on any TID family
of unbounded treewidth (with several technical assumptions)

6/17



Existing results

Dichotomy on the unions of conjunctive queries (UCQs):
Theorem [Dalvi and Suciu, 2012]

• Some UCQs Q are safe and PQE(Q) is in PTIME

• All others are unsafe and PQE(Q) is #P-hard

• Our example query x y z is... safe

Also: dichotomy on the instance families:
Theorem [Amarilli et al., 2015, Amarilli et al., 2016]

• For any query Q in monadic second-order logic, PQE(Q) is in
PTIME if the input TIDs have bounded treewidth

• There is a query Q such that PQE(Q) is #P-hard on any TID family
of unbounded treewidth (with several technical assumptions)

6/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:

• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation

• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj

→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

7/17



Why are some queries unsafe?

This query is unsafe: x y z w

• #SAT: counting satisfying valuations of a Boolean formula

• Specifically, reduce from #PP2DNF:
• Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• Positive: no negation
• 2-DNF: disjunction of clauses like Xi ∧ Yj
→ #SAT is already #P-hard

• Example: (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1
7/17



New results in this talk

We present more cases where PQE is #P-hard:

• With İsmail İlkan Ceylan, for expressive queries:

Theorem [Amarilli and Ceylan, 2019]
For any query Q closed under homomorphisms, PQE(Q) is #P-hard
unless Q is equivalent to a safe UCQ

• With Benny Kimelfeld, in the unweighted case:

Theorem [Amarilli and Kimelfeld, 2019]
For any CQ Q without self-joins (every edge has a di�erent color), if
Q is unsafe then PQE(Q) is #P-hard even if all probabilities are 1/2

8/17



New results in this talk

We present more cases where PQE is #P-hard:

• With İsmail İlkan Ceylan, for expressive queries:

Theorem [Amarilli and Ceylan, 2019]
For any query Q closed under homomorphisms, PQE(Q) is #P-hard
unless Q is equivalent to a safe UCQ

• With Benny Kimelfeld, in the unweighted case:

Theorem [Amarilli and Kimelfeld, 2019]
For any CQ Q without self-joins (every edge has a di�erent color), if
Q is unsafe then PQE(Q) is #P-hard even if all probabilities are 1/2

8/17



Hardness for queries closed under
homomorphisms



Result statement

We consider queries closed under homomorphisms:

• Generalizes CQs and UCQs, Datalog, Regular path queries...
• Example: WorksAt/MemberOf+

• Equivalent phrasing: infinite union of CQs
• Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

• Some queries closed under homomorphisms are UCQs:
the previous dichotomy applies, PQE is PTIME or #P-hard

• For all other queries closed under homomorphisms,
PQE is #P-hard

• The query WA/MO+ is equivalent to WA/MO which is a safe UCQ
• The query WA/MO+/IN is not equivalent to a UCQ

so PQE is #P-hard

9/17



Result statement

We consider queries closed under homomorphisms:

• Generalizes CQs and UCQs, Datalog, Regular path queries...
• Example: WorksAt/MemberOf+

• Equivalent phrasing: infinite union of CQs
• Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

• Some queries closed under homomorphisms are UCQs:
the previous dichotomy applies, PQE is PTIME or #P-hard

• For all other queries closed under homomorphisms,
PQE is #P-hard

• The query WA/MO+ is equivalent to WA/MO which is a safe UCQ
• The query WA/MO+/IN is not equivalent to a UCQ

so PQE is #P-hard

9/17



Result statement

We consider queries closed under homomorphisms:

• Generalizes CQs and UCQs, Datalog, Regular path queries...
• Example: WorksAt/MemberOf+

• Equivalent phrasing: infinite union of CQs
• Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

• Some queries closed under homomorphisms are UCQs:
the previous dichotomy applies, PQE is PTIME or #P-hard

• For all other queries closed under homomorphisms,
PQE is #P-hard

• The query WA/MO+ is equivalent to WA/MO which is a safe UCQ
• The query WA/MO+/IN is not equivalent to a UCQ

so PQE is #P-hard

9/17



Result statement

We consider queries closed under homomorphisms:

• Generalizes CQs and UCQs, Datalog, Regular path queries...
• Example: WorksAt/MemberOf+

• Equivalent phrasing: infinite union of CQs
• Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

• Some queries closed under homomorphisms are UCQs:
the previous dichotomy applies, PQE is PTIME or #P-hard

• For all other queries closed under homomorphisms,
PQE is #P-hard

• The query WA/MO+ is equivalent to WA/MO which is a safe UCQ
• The query WA/MO+/IN is not equivalent to a UCQ

so PQE is #P-hard

9/17



Result statement

We consider queries closed under homomorphisms:

• Generalizes CQs and UCQs, Datalog, Regular path queries...
• Example: WorksAt/MemberOf+

• Equivalent phrasing: infinite union of CQs
• Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

• Some queries closed under homomorphisms are UCQs:
the previous dichotomy applies, PQE is PTIME or #P-hard

• For all other queries closed under homomorphisms,
PQE is #P-hard

• The query WA/MO+ is equivalent to WA/MO which is a safe UCQ

• The query WA/MO+/IN is not equivalent to a UCQ
so PQE is #P-hard

9/17



Result statement

We consider queries closed under homomorphisms:

• Generalizes CQs and UCQs, Datalog, Regular path queries...
• Example: WorksAt/MemberOf+

• Equivalent phrasing: infinite union of CQs
• Example: WA/MO, WA/MO/MO, WA/MO/MO/MO, ...

Theorem

• Some queries closed under homomorphisms are UCQs:
the previous dichotomy applies, PQE is PTIME or #P-hard

• For all other queries closed under homomorphisms,
PQE is #P-hard

• The query WA/MO+ is equivalent to WA/MO which is a safe UCQ
• The query WA/MO+/IN is not equivalent to a UCQ

so PQE is #P-hard 9/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars

10/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars

10/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern

• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars

10/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible

• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars

10/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•

to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars

10/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars

10/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
•

to •
•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars

10/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars

10/17



Proof idea: finding hard patterns

• Fix the query Q and find a tight pattern, i.e,. a graph such that:

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

• If the query is unbounded, we can find a tight pattern
• Unbounded queries have arbitrarily large minimal models
• Take one such model and disconnect edges as much as possible
• Unbounded queries have arbitrarily large minimal models

•

•

•
to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q is still true then the model is “explained” by a union of stars10/17



Using hard patterns for #P-hardness

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

AND •

•
•

•
•

•

violates Q

We can reduce from #PP2DNF like before:

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path x y z w
i� the corresponding world at the right satisfies Q...
... except we need more from the hard pattern!

11/17



Using hard patterns for #P-hardness

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

AND •

•
•

•
•

•

violates Q

We can reduce from #PP2DNF like before:

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path x y z w
i� the corresponding world at the right satisfies Q...
... except we need more from the hard pattern!

11/17



Using hard patterns for #P-hardness

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

AND •

•
•

•
•

•

violates Q

We can reduce from #PP2DNF like before:

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path x y z w
i� the corresponding world at the right satisfies Q...

... except we need more from the hard pattern!

11/17



Using hard patterns for #P-hardness

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

AND •

•
•

•
•

•

violates Q

We can reduce from #PP2DNF like before:

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path x y z w
i� the corresponding world at the right satisfies Q...

... except we need more from the hard pattern!

11/17



Using hard patterns for #P-hardness

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

AND •

•
•

•
•

•

violates Q

We can reduce from #PP2DNF like before:

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path x y z w
i� the corresponding world at the right satisfies Q...

... except we need more from the hard pattern!

11/17



Using hard patterns for #P-hardness

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

AND •

•
•

•
•

•

violates Q

We can reduce from #PP2DNF like before:

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path x y z w
i� the corresponding world at the right satisfies Q...
... except we need more from the hard pattern! 11/17



Using hard patterns for #P-hardness

•

• •

•

satisfies Q

but •

•
•

•
•

•

violates Q

AND •

•
•

•
•

•

violates Q

We can reduce from #PP2DNF like before:

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path x y z w
i� the corresponding world at the right satisfies Q...
... except we need more from the hard pattern! 11/17



From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

•

• • • •

•

( )n

satisfies Q for all n ∈ N

but •

•
•

•
•

•

violates Q

Idea: use iterable patterns to reduce from the #P-hard problem
source-to-target connectivity:

• Given a TID with a source and sink, what is the probability that
the sink is reachable from the sink?

Technically challenging to get a correct reduction!

12/17



From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

•

• • • •

•

( )n

satisfies Q for all n ∈ N

but •

•
•

•
•

•

violates Q

Idea: use iterable patterns to reduce from the #P-hard problem
source-to-target connectivity:

• Given a TID with a source and sink, what is the probability that
the sink is reachable from the sink?

Technically challenging to get a correct reduction!

12/17



From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

•

• • • •

•

( )n

satisfies Q for all n ∈ N

but •

•
•

•
•

•

violates Q

Idea: use iterable patterns to reduce from the #P-hard problem
source-to-target connectivity:

• Given a TID with a source and sink, what is the probability that
the sink is reachable from the sink?

Technically challenging to get a correct reduction!

12/17



From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

•

• • • •

•

( )n

satisfies Q for all n ∈ N

but •

•
•

•
•

•

violates Q

Idea: use iterable patterns to reduce from the #P-hard problem
source-to-target connectivity:

• Given a TID with a source and sink, what is the probability that
the sink is reachable from the sink?

Technically challenging to get a correct reduction!

12/17



From tight patterns to iterable patterns

When we cannot find a tight pattern, we can find an iterable pattern:

•

• • • •

•

( )n

satisfies Q for all n ∈ N

but •

•
•

•
•

•

violates Q

Idea: use iterable patterns to reduce from the #P-hard problem
source-to-target connectivity:

• Given a TID with a source and sink, what is the probability that
the sink is reachable from the sink?

Technically challenging to get a correct reduction!
12/17



Hardness for unweighted PQE



Problem statement

• We restrict back to CQs
• We impose self-join-freeness: every edge color is di�erent

x y z w x y
z

w

• Existing dichotomy:
• If Q only consists of stars, then it is safe and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

But what if all facts of the TIDs had probability 1/2?

→ Equivalently: given a graph G, how many subgraphs satisfy Q
• We call this problem MC(Q): model counting for Q

Theorem
For any self-join-free CQ Q, if Q is unsafe then MC(Q) is #P-hard.

13/17



Problem statement

• We restrict back to CQs
• We impose self-join-freeness: every edge color is di�erent

x y z w x y
z

w

• Existing dichotomy:
• If Q only consists of stars, then it is safe and PQE(Q) is in PTIME

• In all other cases, PQE(Q) is #P-hard

But what if all facts of the TIDs had probability 1/2?

→ Equivalently: given a graph G, how many subgraphs satisfy Q
• We call this problem MC(Q): model counting for Q

Theorem
For any self-join-free CQ Q, if Q is unsafe then MC(Q) is #P-hard.

13/17



Problem statement

• We restrict back to CQs
• We impose self-join-freeness: every edge color is di�erent

x y z w x y
z

w

• Existing dichotomy:
• If Q only consists of stars, then it is safe and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

But what if all facts of the TIDs had probability 1/2?

→ Equivalently: given a graph G, how many subgraphs satisfy Q
• We call this problem MC(Q): model counting for Q

Theorem
For any self-join-free CQ Q, if Q is unsafe then MC(Q) is #P-hard.

13/17



Problem statement

• We restrict back to CQs
• We impose self-join-freeness: every edge color is di�erent

x y z w x y
z

w

• Existing dichotomy:
• If Q only consists of stars, then it is safe and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

But what if all facts of the TIDs had probability 1/2?

→ Equivalently: given a graph G, how many subgraphs satisfy Q
• We call this problem MC(Q): model counting for Q

Theorem
For any self-join-free CQ Q, if Q is unsafe then MC(Q) is #P-hard.

13/17



Problem statement

• We restrict back to CQs
• We impose self-join-freeness: every edge color is di�erent

x y z w x y
z

w

• Existing dichotomy:
• If Q only consists of stars, then it is safe and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

But what if all facts of the TIDs had probability 1/2?

→ Equivalently: given a graph G, how many subgraphs satisfy Q
• We call this problem MC(Q): model counting for Q

Theorem
For any self-join-free CQ Q, if Q is unsafe then MC(Q) is #P-hard.

13/17



First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

x y z w

→ We must show that MC(Q) is #P-hard for this query

Can we use our earlier reduction for #P-hardness of PQE?

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

→ Problem: this reduction crucially uses probability 1

14/17



First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

x y z w

→ We must show that MC(Q) is #P-hard for this query

Can we use our earlier reduction for #P-hardness of PQE?

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

→ Problem: this reduction crucially uses probability 1

14/17



First step: Restricting to a simpler query

For any unsafe query, we can reduce from simpler queries, essentially:

x y z w

→ We must show that MC(Q) is #P-hard for this query

Can we use our earlier reduction for #P-hardness of PQE?

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1

1

1

1

→ Problem: this reduction crucially uses probability 1
14/17



Getting to an equation system

We want to reduce from PQE(Q), on
some graph G with probabilities

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes
→ X = X1, . . . , Xk

• Create unweighted copies of G modified with some gadgets
e.g., replace each edge by multiple copies of a path
→ Created G1, . . . ,Gk
→ Call the oracle for MC(Q) on each to get N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



15/17



Getting to an equation system

We want to reduce from PQE(Q), on
some graph G with probabilities

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes
→ X = X1, . . . , Xk

• Create unweighted copies of G modified with some gadgets
e.g., replace each edge by multiple copies of a path
→ Created G1, . . . ,Gk
→ Call the oracle for MC(Q) on each to get N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



15/17



Getting to an equation system

We want to reduce from PQE(Q), on
some graph G with probabilities

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes
→ X = X1, . . . , Xk

• Create unweighted copies of G modified with some gadgets
e.g., replace each edge by multiple copies of a path
→ Created G1, . . . ,Gk
→ Call the oracle for MC(Q) on each to get N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



15/17



Getting to an equation system

We want to reduce from PQE(Q), on
some graph G with probabilities

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes
→ X = X1, . . . , Xk

• Create unweighted copies of G modified with some gadgets
e.g., replace each edge by multiple copies of a path
→ Created G1, . . . ,Gk
→ Call the oracle for MC(Q) on each to get N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk


15/17



Using the equation system

We have obtained the system:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



• The oracle for MC has given us N1, . . . ,Nk

• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction
→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

16/17



Using the equation system

We have obtained the system:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



• The oracle for MC has given us N1, . . . ,Nk

• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction
→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

16/17



Using the equation system

We have obtained the system:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



• The oracle for MC has given us N1, . . . ,Nk

• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

16/17



Using the equation system

We have obtained the system:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



• The oracle for MC has given us N1, . . . ,Nk

• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction
→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

16/17



Using the equation system

We have obtained the system:
N1
...

Nk

 =


α1,1 · · · α1,k
...

. . .
...

αk,1 · · · αk,k

 ·

X1
...

Xk



• The oracle for MC has given us N1, . . . ,Nk

• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction
→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

16/17



Conclusion and open problems



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise

• We have shown:
• PQE(Q) is #P-hard for any Q closed under homomorphisms

unless it is equivalent to a safe UCQ
• PQE(Q) is #P-hard for any self-join-free CQ Q

even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)

• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ...

... ... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ...

... ? Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ?

Thanks for your attention!

17/17



Conclusion and open problems

• On UCQs: PQE(Q) PTIME for safe UCQs and #P-hard otherwise
• We have shown:

• PQE(Q) is #P-hard for any Q closed under homomorphisms
unless it is equivalent to a safe UCQ

• PQE(Q) is #P-hard for any self-join-free CQ Q
even when all probabilities must be 1/2 (model counting)

Open problems:

• What about higher-arity databases? (hypergraphs)
• The result on self-join-free CQs extends to that context
• For queries closed under homomorphisms: still open

• What about unweighted PQE for UCQs or beyond?
→ Open, probably challenging

• What about disequalities? negations?
→ Poorly understood, even for UCQs

• What about tractable cases? ... ... ... ? Thanks for your attention!
17/17



References i

Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance Circuits for Trees and Treelike Instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable Lineages on Treelike Instances: Limits and Extensions.
In PODS.
Amarilli, A. and Ceylan, I. I. (2019).
A Dichotomy for Homomorphism-Closed Queries on Probabilistic
Graphs.
Preprint: https://arxiv.org/abs/1910.02048.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1910.02048
https://arxiv.org/abs/1910.02048


References ii

Amarilli, A. and Kimelfeld, B. (2019).
Model Counting for Conjunctive Queries Without Self-Joins.
Preprint: https://arxiv.org/abs/1908.07093.

Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of
conjunctive queries.
J. ACM, 59(6).

https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1908.07093
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf

	Hardness for queries closed under homomorphisms
	Hardness for unweighted PQE
	Conclusion and open problems
	Appendix

