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e Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Solution: Enumerate solutions one after the other
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Boolean circuits

e Directed acyclic graph of gates

e Qutput gate: @

e Variable gates: @
° ° e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}.. mapped to 1

° 0 » Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

’ Our task: Enumerate all satisfying assignments of an input circuit
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Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k € N
(at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size < R
with preprocessing linear in |C| + |T| and constant delay

7/17



Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

8/17



Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

A B

a b represented by
— @@

8/17



Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

A B @

{(B:b),(B:b)}
a b represented by O

: E-)6-2

8/17



Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

{(<A:a>,<B:b>)7(<A:a>,<B:b’>)}
A B ((B:b),(B: b}
a b represented by O

a b

8/17



Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

{(<A +a),(B:b)),((A:a),(B: b))}

8/17



Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

{(<A +a),(B:b)),((A:a),(B: b))}

* Relational product @  Relational union @

e Deterministic: We do not obtain the same tuple multiple times

8/17



Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

{(<A +a),(B:b)),((A:a),(B: b))}

* Relational product @  Relational union @

e Deterministic: We do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Zavodny, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay
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Application 2: Query evaluation

» Compute the results (a, b, ¢) of a query Q(x,y,z) on a database D

e Assumption: the database has bounded treewidth
— Captures trees, words, etc.

» Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013])
For any constant k € N and fixed MSO query Q,

given a database D of treewidth < R, the results of Q on D

can be enumerated with linear preprocessing in D and linear delay
in each answer (— constant delay for free first-order variables)
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Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
» Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in < 2)
11/17



Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

12/17



Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ :

12/17



Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

12/17



Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate

jol

g g
Concatenation: enumerate S(g)
and then enumerate S(g’)

12/17



Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate
g g

Concatenation: enumerate S(g)
and then enumerate S(g’)

Determinism: no duplicates

12/17



Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate

jol jol

g g/ g gl
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)

and then enumerate S(g’) and for each result t enumerate S(g’)

. . and concatenate t with each result
Determinism: no duplicates

12/17



Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate
g g/ g g/
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)
and then enumerate S(g’) and for each result t enumerate S(g’)

Determinism: no duplicates and concatenate t with each result

Decomposability: no duplicates
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» Problem: if S(g) = 0 we waste time

e Solution: compute bottom-up if S(g) = 0
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Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

— Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

/7
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Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index
e Problem: must be done in linear time

Solution: @

» Determinism ensures we have a multitree /
(we cannot have the pattern at the right) .

e Custom constant-delay reachability index for multitrees \g

15/17
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Translating to zero-suppressed semantics

 This is where we use the v-tree //\\
» Add explicitly untested variables /\

y =z

* Problem: quadratic blowup
 Solution:
- Order < on variables in the v-tree
x<y<2)
- Interval [x, Z]

- Range gates to denote \/[x, Z]
in constant space

16/17



Conclusion




Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand

17/17



Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

17/17



Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:
- Develop linear-time compilation algorithm to circuits

17/17



Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

- Develop linear-time compilation algorithm to circuits
- Use restricted circuit classes (structured d-DNNF)

17/17



Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

- Develop linear-time compilation algorithm to circuits
- Use restricted circuit classes (structured d-DNNF)
- Develop general enumeration results on circuits

17/17



Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

- Develop linear-time compilation algorithm to circuits
- Use restricted circuit classes (structured d-DNNF)
- Develop general enumeration results on circuits

Future work:

e Theory: handle updates on the input
 Practice: implement the technique with automata

17/17



Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

- Develop linear-time compilation algorithm to circuits
- Use restricted circuit classes (structured d-DNNF)
- Develop general enumeration results on circuits

Future work:

e Theory: handle updates on the input
 Practice: implement the technique with automata

Thanks for your attention!
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