UNIVERSITE
¥ Grenoble TN
& Alpes

TELECOM
NC

i il

A Circuit-Based Approach to Efficient Enumeration

cr il

Antoine Amarilli", Pierre Bourhis?, Louis Jachiet3, Stefan Mengel“
June 15th, 2017

1Télécom ParisTech
2CNRS CRIStAL
3Université Grenoble-Alpes

4CNRS CRIL

1/17

Problem statement

Problem: Enumerating large result sets

Input

Problem: Enumerating large result sets

Input Algorithm

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

2/17

Problem: Enumerating large result sets

Vo Yo | B
O oco|lw
[g]

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

2/17

Problem: Enumerating large result sets

A B C

a b ¢

3 a b ¢

a b ¢

a b oc

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

2/17

Problem: Enumerating large result sets

>
[}

O oco|lw

Loy Y

o 0o o o0

Input Algorithm Output

e Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Solution: Enumerate solutions one after the other
2/17

Enumeration algorithm

& 2

Input

Enumeration algorithm

Step 1
— Indexing

Input | in O(input)

Enumeration algorithm

Step 1: t.
—| Indexing |»
in O(input)| Indexed
Input (input) input

Enumeration algorithm

Step 1: t. Step 2:
— Indexing |» — Enumeration
in O(input)| Indexed in O(result
Input (input) input ()

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

Indexed

Step 2:
Enumeration
in O(result)

input

Results

Enumeration algorithm

A B C
Step 1: t. Step 2: a b ¢
— Indexing |» — Enumeration >
in O(input)| Indexed in O(result
Input put) input ()
Results
0011
il
e

State

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

N

Step 2:
Enumeration
in O(result)

0 2

0011

i
o

State

Results

3/17

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

A B C
Step 2:
s| Enumeration y a b C
in O(result)
Results
010001
&
e (1 D —

State

3/17

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

A B C
Step 2:
3 Enumeration >
in O(result) a bc
Results
01100111
"
e (1 D —

State

3/17

Enumeration algorithm

-

Input

Step 1
Indexing
in O(input)

N

Indexed

input

A B C
Step 2:
3 Enumeration >
in O(result)
a b c
Results
1
i
o

State

3/17

General idea for enumeration

Currently:

>
w
o

o o
o o
o n

AR a H
Input | Enumeration| Results

417

General idea for enumeration

Currently:

ol

o o
o o
o n

X —
Input | Enumeration| Results

>
w
o

[
o o
o n

7 —
Input Enumeration | Results

417

General idea for enumeration

Currently:

>
w
o

bodn

oy
Input | Enumeration| Results

o o
o o
o n

A B C
a b c
—_— ? a b ¢

Input Enumeration | Results

codns
:ﬁ;:(ﬁz —

Input [Enumeration| Resuylts

o | >
o o|w
a0 |a

417

General idea for enumeration

Currently:

A B C

a b ¢

— a b ¢
Results

A B C

a b ¢

— a b oc
Input Enumeration | Results

f‘z"& A B C

= B
Input [Enumeration| Resuylts

Input

Compilation ONG
Circuit

47

General idea for enumeration

Currently:

A B C

a b ¢

— a b ¢
Results

A B C

a b ¢

— a b oc
Input Enumeration | Results

ﬁ"& A B C

= B
Input Enumeration | Results

Input

Input

RO
5]

Compilation

Circuit

417

General idea for enumeration

Currently:

A B C

a b ¢

_)a b ¢

Results

A B C

a b ¢

_)a b ¢

Input Enumeration | Results
A B C

= 8
Input [Enumeration| Resuylts

RO
5]

Compilation

X ”

LA]
POS
s

Compilation

Circuit

417

General idea for enumeration

Currently:

‘:){:){: A B C

e O —
Input | Enumeration| Results

ﬁ)ﬂ: A B C

— S
Input Enumeration | Results

ﬁ"& A B C

= 8 -
Input [Enumeration| Resuylts

Input
- &
Input Compilation
Compilation
A B C
i?ﬁ —
Enumeration| Results

Circuit

Boolean circuits

@ e Directed acyclic graph of gates

5/17

Boolean circuits

@ e Directed acyclic graph of gates

e Qutput gate: @
Q) W

5/17

Boolean circuits

@ e Directed acyclic graph of gates

e Qutput gate: @

e Variable gates: @
OO

5/17

Boolean circuits

Directed acyclic graph of gates

Output gate: @

Variable gates: @
Internal gates: @ @ @

5/17

Boolean circuits

@ e Directed acyclic graph of gates

e Qutput gate: @
e Variable gates: @
° ° e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}..

5/17

Boolean circuits

@ e Directed acyclic graph of gates

e Qutput gate: @
e Variable gates: @
° ° e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}..

5/17

Boolean circuits

@ e Directed acyclic graph of gates

e Qutput gate: @
e Variable gates: @
e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}..

5/17

Boolean circuits

e Directed acyclic graph of gates

e Qutput gate: ©
» Variable gates: @
e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}.. mapped to 1

5/17

Boolean circuits

e Directed acyclic graph of gates

e Qutput gate: ©
» Variable gates: @
e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}.. mapped to 1

» Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

5/17

Boolean circuits

e Directed acyclic graph of gates

e Qutput gate: @

e Variable gates: @
° ° e Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x+— 0, y — 1}.. mapped to 1

° 0 » Assignment: set of variables mapped to 1
Example: S, = {y}; more concise than v

’ Our task: Enumerate all satisfying assignments of an input circuit

5/17

Circuit restrictions

d-DNNF:

. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation » makes two inputs
simultaneously evaluate to 1)

6/17

Circuit restrictions

d-DNNF:

. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

6/17

Circuit restrictions

d-DNNF: v-tree: A-gates follow a tree

on the variables
. @ are all deterministic:

The inputs are mutually exclusive
(= no valuation v makes two inputs
simultaneously evaluate to 1)

. @ are all decomposable:

The inputs are independent
(= no variable x has a path to two
different inputs)

6/17

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

7/17

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C| + |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k € N
(at most k variables are set to 1):

Theorem

Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size < R
with preprocessing linear in |C| + |T| and constant delay

7/17

Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

8/17

Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

A B

a b represented by
— @@

8/17

Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

A B @

{(B:b),(B:b)}
a b represented by O

: E-)6-2

8/17

Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

{(<A:a>,<B:b>)7(<A:a>,<B:b’>)}
A B ((B:b),(B: b}
a b represented by O

a b

8/17

Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

{(<A +a),(B:b)),((A:a),(B: b))}

8/17

Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

{(<A +a),(B:b)),((A:a),(B: b))}

* Relational product @ Relational union @

e Deterministic: We do not obtain the same tuple multiple times

8/17

Application 1: Factorized databases

 Factorized databases: implicit representation of database tables

{(<A +a),(B:b)),((A:a),(B: b))}

* Relational product @ Relational union @

e Deterministic: We do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Zavodny, 2015])
Given a deterministic factorized representation, we can enumerate its
tuples with linear preprocessing and constant delay

8/17

Application 2: Query evaluation

» Compute the results (a, b, ¢) of a query Q(x,y,z) on a database D

9/17

Application 2: Query evaluation

» Compute the results (a, b, ¢) of a query Q(x,y,z) on a database D

e Assumption: the database has bounded treewidth
— Captures trees, words, etc.

9/17

Application 2: Query evaluation

» Compute the results (a, b, ¢) of a query Q(x,y,z) on a database D

e Assumption: the database has bounded treewidth
— Captures trees, words, etc.

» Query given as a deterministic tree automaton
— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

9/17

Application 2: Query evaluation

» Compute the results (a, b, ¢) of a query Q(x,y,z) on a database D

e Assumption: the database has bounded treewidth
— Captures trees, words, etc.

» Query given as a deterministic tree automaton
— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

9/17

Application 2: Query evaluation

» Compute the results (a, b, ¢) of a query Q(x,y,z) on a database D

e Assumption: the database has bounded treewidth
— Captures trees, words, etc.

» Query given as a deterministic tree automaton

— Captures monadic second-order (data-independent translation)
— Captures conjunctive queries, SQL, etc.

— We can construct a d-DNNF that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013])
For any constant k € N and fixed MSO query Q,

given a database D of treewidth < R, the results of Q on D

can be enumerated with linear preprocessing in D and linear delay
in each answer (— constant delay for free first-order variables)

9/17

Proof techniques

Proof overview

Preprocessing phase:

v-tree

Proof overview

Preprocessing phase:

©
@
- : Y ® @
it mararol o
I\ in zero-
y/\z suppressed

v-tree semantics

Proof overview

Preprocessing phase:

Normalization
(linear-time)

©
@
! - ® @
Circuit Translation o
(linear-time) Circuit =
N in zero-
y/\z suppressed
v-tree semantics

b

Normalized
circuit

10/17

Proof overview

Preprocessing phase:

@)
@,

Circuit

Translation

(linear-time)

®» @
— Circuit =

Normalization
(linear-time)

in zero-

AN

N\

y z
v-tree

Enumeration phase:

©
Normalized
circuit

suppressed
semantics

b

Normalized
circuit

Proof overview

Preprocessing phase:

Circuit ™ Translation o Normalization (ﬁa
- - — Circuit = . . — .
A (linear-time) ero (linear-time) | Normalized
A circuit
P suppressed
v-tree semantics

Enumeration phase:

d@b Enumeration A B C
. a b ¢
. 3 (linear delay > v«
Normalized)
o in each result) Results
circuit

10/17

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:

1/17

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:
° 0 « No NOT-gate
0 a e Each gate captures a set of assignments

e Bottom-up definition with x and U

1/17

Zero-suppressed semantics

@ Special zero-suppressed semantics for circuits:
O {{y}’{z}}- No NOT-gate
0 a e Each gate captures a set of assignments

e Bottom-up definition with x and U

1/17

Zero-suppressed semantics

{ovhA{xzt _ -
@ Special zero-suppressed semantics for circuits:
iz, No NOT-gate

» Each gate captures a set of assignments
e Bottom-up definition with x and U

1/17

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

» Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

1/17

Zero-suppressed semantics

{ovhA{xzt . -
@ Special zero-suppressed semantics for circuits:
iz, No NOT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
» Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

1/17

Zero-suppressed semantics

Special zero-suppressed semantics for circuits:

WAz No NoT-gate

e Each gate captures a set of assignments
e Bottom-up definition with x and U

e d-DNNF: U are disjoint, x are on disjoint sets

Many equivalent ways to understand this:

» Generalization of factorized representations
» Analogue of zero-suppressed OBDDs (implicit negation)
e Arithmetic circuits: x and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in < 2)
11/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ :

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate

jol

g g
Concatenation: enumerate S(g)
and then enumerate S(g’)

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate
g g

Concatenation: enumerate S(g)
and then enumerate S(g’)

Determinism: no duplicates

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate

jol jol

g g/ g gl
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)

and then enumerate S(g’) and for each result t enumerate S(g’)

. . and concatenate t with each result
Determinism: no duplicates

12/17

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

— E.g, for S(g9) = {{x,y},{x,z}}, enumerate {x,y} and then {x,z}

Base case: variable @ : enumerate {x} and stop

OR-gate AND-gate
g g/ g g/
Concatenation: enumerate S(g) Lexicographic product: enumerate S(g)
and then enumerate S(g’) and for each result t enumerate S(g’)

Determinism: no duplicates and concatenate t with each result

Decomposability: no duplicates

12/17

Normalization: handling ()

13/17

Normalization: handling ()

{x}33r=R0

13/17

Normalization: handling ()

13/17

Normalization: handling ()

13/17

Normalization: handling ()

» Problem: if S(g) = 0 we waste time

13/17

Normalization: handling ()

» Problem: if S(g) = 0 we waste time

e Solution: compute bottom-up if S(g) = 0

13/17

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{1 in chains of AND-gates
* Solution:

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{1 in chains of AND-gates
* Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{{}} in chains of AND-gates

* Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
- remove inputs with S(g) = {{}} for AND-gates

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

* Solution:

- split g between S(g) N {{}}

and S(g) \ {{}} (homogenization)
- remove inputs with S(g) = {{}} for AND-gates

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
{{x}} in chains of AND-gates
* Solution:
{{x}} . split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

/7

Normalization: handling empty assignments

» Problem: if S(g) contains {} we waste time
in chains of AND-gates

e Solution:

- split g between S(g) N {{}}
and S(g) \ {{}} (homogenization)

X1 - remove inputs with S(g) = {{}} for AND-gates
- collapse AND-chains with fan-in 1

— Now, traversing an AND-gate ensures that we make progress:
it splits the assignments non-trivially

/7

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies

g
1 to find a reachable exit (non-OR gate)

9y

92 g3

15/17

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies

g
1 to find a reachable exit (non-OR gate)

9. Solution: compute reachability index

92 g3

15/17

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index

15/17

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index
e Problem: must be done in linear time

15/17

Normalization: handling OR-hierarchies

e Problem: we waste time in OR-hierarchies
to find a reachable exit (non-OR gate)

 Solution: compute reachability index
e Problem: must be done in linear time

Solution: @

» Determinism ensures we have a multitree /
(we cannot have the pattern at the right) .

e Custom constant-delay reachability index for multitrees \g

15/17

Translating to zero-suppressed semantics

* This is where we use the v-tree X

16/17

Translating to zero-suppressed semantics

/\

* This is where we use the v-tree X

» Add explicitly untested variables

16/17

Translating to zero-suppressed semantics

* This is where we use the v-tree X

» Add explicitly untested variables /\
y z

16/17

Translating to zero-suppressed semantics

* This is where we use the v-tree X

» Add explicitly untested variables /\
y z

* Problem: quadratic blowup

16/17

Translating to zero-suppressed semantics

 This is where we use the v-tree //\\
» Add explicitly untested variables /\

y =z

* Problem: quadratic blowup
 Solution:
- Order < on variables in the v-tree
x<y<2)
- Interval [x, Z]

- Range gates to denote \/[x, Z]
in constant space

16/17

Conclusion

Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand

17/17

Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

17/17

Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:
- Develop linear-time compilation algorithm to circuits

17/17

Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

- Develop linear-time compilation algorithm to circuits
- Use restricted circuit classes (structured d-DNNF)

17/17

Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

- Develop linear-time compilation algorithm to circuits
- Use restricted circuit classes (structured d-DNNF)
- Develop general enumeration results on circuits

17/17

Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

- Develop linear-time compilation algorithm to circuits
- Use restricted circuit classes (structured d-DNNF)
- Develop general enumeration results on circuits

Future work:

e Theory: handle updates on the input
 Practice: implement the technique with automata

17/17

Summary and conclusion

Summary:

e Usual approach: develop enumeration algorithms by hand
e Proposed approach:

- Develop linear-time compilation algorithm to circuits
- Use restricted circuit classes (structured d-DNNF)
- Develop general enumeration results on circuits

Future work:

e Theory: handle updates on the input
 Practice: implement the technique with automata

Thanks for your attention!

17/17

References

[4 Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
[§ Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(1).
[@ Olteanu, D. and Zavodny, J. (2015).
Size bounds for factorised representations of query results.
TODS, 40(1).

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf

	Problem statement
	Proof techniques
	Conclusion
	Appendix

